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Abstract. We call a hybrid systerstableif every trajectory inevitably ends up
in a given region. Our notion of stability deviates from dliaal definitions in
control theory. In this paper, we present a model checkiggrahm for stability
in the new sense. The idea of the algorithm is to reduce tidistaroof for the
whole system to a set of (smaller) proofs for several oneersydtems.

1 Introduction

Consider a heating system for a plant that consists of a haatean internal engine.
The internal engine may overheat and switch off the heatepeearily, even though
the desired temperature is not yet reached. This meansthgtng from low, the tem-
perature will not increase strictly monotonically but itlvélso decrease during some
(relatively short) periods of time. We do not know when ekastich periods start and
how long they will be. A sample trajectory of the system iswshan Fig. 1.
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Fig. 1. Sample trajectory of the heating system.

When does such a system behaves correctly? Informally, pectthat the heating
system will bring the temperature of the plant to a range betw20 and 25 degrees and
then keep it there, whatever the initial temperatures optaat and the heater are and
whatever the exact time points are when the controller fi@gdhe heater from “on”
to “off” and back. In this paper we introduce a new notion afslity that allows one
to formalize the corresponding notion of correctness. Wethén give an algorithm
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to verify that a hybrid system is stable in our sense. Therdlyu is parameterized by
the constraint solver that it calls as a subroutine in eadtsdfifferent steps. Using a
constraint solver for linear constraints, we obtain a dpealgorithm for linear hybrid
systems.

The contribution of this paper is threefold. First, our oatiof stability fills the
need to specify correctness properties of hybrid systeatscdmnot be formalized by
“classical” notions like asymptotic or exponential stépi[2,17,23]. An example of
such a system is the above mentioned heating system. Anatienple may be an
aircraft that oscillates around an optimal course withierain allowance. Any realistic
model of such a system does not satisfy a stability properthé classical sense yet
the performance of the aircraft is acceptable.

Second, we use existing reachability tools to reduce thmlisygproof for the whole
system to a set of proofs for one-mode systems [12, 11, 29kl¥¢eshow (and this is
the third part of our contribution) how one can carry ovehtaques that are used in
program analysis for termination proofs to stability pé&r one-mode hybrid sys-
tems [25, 26,9, 4].

2 Related Work

In this section, we discuss the relation between our andicklsnotions of stability
in control theory, and the relation between our algorithrd gerification methods in
control theory and model checking.

Stability is a central themes in control theory. There areywiifferent variations of
this property, such as asymptotical stability or exporemiability [2,3,17, 19, 21].
These classical notions of stability refer to a single equilm point. As we have
pointed out in the introduction, stability with respect tneopoint does not seem to
be always adequate. In the example of the heating systenrewthe temperature is
specified by upper and lower bounds, such an equilibriumtplmias not even exist.

The example of the heating system shows that it is not alwagsiple to express
stability with respect to a region in terms of e.g. asymptdtstability. The other way
round, asymptotical stability with respect to a pakgtis expressible as stability with
respect taeveryregion(xo — €,%0 + €), for € > 0. However, it does not seem clear how
to compare these notions of stability. In particular we d@&’e how one could use
existing techniques for proving classical stability (€2.3,18—20]) to prove that a
hybrid system is stable with respect to a given region.

Verification methods for non-reachability properties (ooperties that can be re-
duced to non-reachability) for hybrid systems have beeengively studied by both
computer scientists and control theorists [32, 10, 34,Ba2d have lead to popular
verification systems such asHRver [12], HSolver [29], d/dt [11] and CheckMate [7].
Stability properties (in the classical as well as in our s¢ase fundamentally different
from (non-)reachability. The methods used in reachabditplysis are inherently not
applicable to stability. This means it is hot possible toath&ability with existing tools
for reachability.



The open problem that this paper attacks is the questionhehetodel checking
for our new definition of stability is possible. Our resulegyether with preliminary
experiments in a prototypical implementation implicatt tiis is possible in principle.

3 Preliminaries: Hybrid Systems and Trajectories

In this section, we rephrase the classical definitions ofsiyrgax and semantics of
hybrid systems [1, 13, 14].

A hybrid systemis a tuple (fixed from now on)

A = (L 7[’/ 9 (jumn”;,f/)&[/e[, 9 (flowf)[e[, 9 (invf)[e[, 9 (initf)ée[, )
consisting of the following components:

1. afinite sett of locations.

2. afinite setv of real-valued variables, including a variablénat denotes the time.

3. afamily(jumpg//)w,& of formulas overy representing the possible jumps from
location/ to location?’. _

4. afamily(flow,), ., of formulqs over’ andv specifying the continuous variable

update in locatior/. We usev = {xi,%,...} for the set of dotted variables. A
variablex represents the first derivative Bfwith respect to time, i.ex = dx/dt.
Especially the derivative of timewith respect to itself is always equal totls 1.

5. afamily(inv,),., of formulas over’ representing the invariant condition in loca-
tion ¢.

6. afamily(init,) of formulas overy representing the initial states of the system.

lerL

A states is a pair(¢,v) consisting of a locatiodd of - and a valuatiorv of all
variables over the set . We write 2, for the set of all variables valuationsand
3 =r xZ, forthe set of all states. A set of states is also callegigion. A valuation
over the set’ of dotted variables is denoted by

Note that a linear flow formulélow, can also be specified over and+’ (instead
of v andv ). Aformula flow,(xy,...,t,x],...,t") represents the flow of duratiah—t
in location ¢, where the values of the continuous variables change ftpm. t to
X,...,t

A trajectory T of a hybrid systenA is a function mapping time pointsin R* to
states inx such that the following conditions hold:
Letv be the real-valued componentoét time point.

1. If ©(0) has locatiory, thent(0) must satisfy the initial condition of that location,
formally

1(0) [= init, .
2. If v is differentiable at, and bottt(t) and the left-limit oft att,

lim T(t'),

t'—t_



have an equal locatiofy then the pairv,v) of variable valuation and valuation
of the first derivatives satisfies the invariant and the flowdition of location,
formally

(v,v) Einvg A flow, .

3. If the left-limit of T att has location? andt(t) has a different locatiow’, then
the real-valued component of the left-limit ofatt must satisfy the jump condi-
tion from location? to location?’,formally The values of the continuous variables
remain unchanged during a jump.

lim 1(t') = jump .

t—t_

The values of the continuous variables remain unchangedglajump.

Example:

We take a simplified model of a temperature controller withirdarnal engine which
we depict in Fig.2.

Xp<21 A Xe<55
41 i lp
Xp = —Xp Xp =100— Xp
Xe = —3X%e Xe = 2(150— Xe)
t=1 t=1
(Xp > 20 V Xe > 50) (Xp <25 A Xe < 80)
Xp>24V Xe>T5

Fig. 2. Temperature controller.

The temperature of a plant is controlled through a thernhostaich continuously
senses the temperature and turns a heater on and off. Tieendyas thregariables %,
Xe andt,

v o= {XP’Xevt} )

wherexp models the temperature of the plaxtmodels the temperature of the internal
engine and models the total elapse of time. The two states “on” and “offthe heater
correspond to the twimcations?; and/;, of the overall system,

L = {61,62} .

The temperature fall resp. rise is governed by differeetiglations. Namely, in location
{1, where the heater is off, the temperature falls accordirigegéiow condition flowy,.

flowy, (Xp, Xe, t, Xp, Xe, ) = (Xp=—Xp A Xe = —3x%e At =1)
In location?,, where the heater is on, the temperature rises as specifild iy, .

flowy, (Xp, Xe, t, Xp, Xe,t) = (Xp=100—Xp A Xe =2(150—x¢) A t=1)



The heater itself has an engine that may overheat. The hedtened off not only
when the plant gets too hot but also when the engine is ovesthied/e assume that a
ventilator aids cooling down the engine; that is it cools ddaster than it heats up. The
engine is overheated if its temperature exceeds 80 dedféeis, cooled down to 55
degrees, the heater can again be turned on.

The controller can switch the heater from “off” to “on” anddkgwhich corresponds
to switches between the modes for the overall system) airaptal thejump conditions
on the edges between the two modes.

jumpy, r, (Xp, Xe,t) = (Xp < 21 A Xe < 55)
jumpy, ¢, (Xp, Xe, t) = (Xp > 24 V Xe > 75)

The controllermustswitch the heater from “off” to “on” and thus trigger a switoh
the locationg; and/» before thenvariant conditionof the location/; is violated (i.e.
before the temperature of the plant is below 20 and the testyrer of the heater is
below 50).

invy, = (Xp>20V Xe >50)

Similarly, the controller must switch from “on” to “off” befre the temperature of the
plant is above 25 or the temperature of the heater is above 80.

invg, = (Xp <25 A X < 80)

4 Stability

In this section, we introduce our notion of stability andgstigate its expressiveness.

Definition 1 (Stability). We call a hybrid systerstablewith respect to a given region
¢ if for every trajectoryt there exists a point of timg such that from then on, the
trajectory is always in the regiod.

VIt Vi>to: 1(t) €d

In the example of the heating system, the correctness fgyoperare interested in is
this: whatever the initial temperature of the plant is an@teker the initial temperature
of the heater is and whatever the exact time points are wheecahtroller switches the
heater from “off” to “on” and back, the temperature of therlill finally be between
20 and 25 degrees (and it may oscillate between these boWde€gan now formalize
this correctness property as the stability wrt. the regioas x, € [20,25].

We can express stability in temporal logic, in LTL or in CTIn CTL*, for example,
one would say thadll trajectoriesfinally globally are in the regiog.

A(FG) ¢

One might think of verifying stability by applying a CTimodel checker to a finite state
abstraction of the given hybrid system. However, thereterasabstraction techniques
that would preserve the stability property (except foritdicases).



The following CTL formula is stronger than, but not implied stability.
AF AG¢

The hybrid system below is stable with respect to the regien0. However, it does
not satisfyAF AG (x = 0); if the system stays in locatiofy forever, it always has the
option to switch to locatiod; where it would go outside the region= 0.

One might think of verifying stability wrtd by using fixpoint iteration in order to
compute the set of states satisfying the formullsG —-EF —¢, which is equivalent to
AF AG¢. The problem here would be to find practical approximatiatigques for
greatest fixpoint iteration which is needed for the compoitedf -EG.

We will now introduce yet another property that is strondeart stability (and
stronger tha\F AG¢). Our algorithm to prove stability is based on this property

Definition 2 (Strong Attractor). We call a regionp a strong attractoof a hybrid sys-
tem A if every trajectory of A will (1) finally reach the attractod and (2) once i it
will never leave the region again.

L Vi<to:T(t) ¢ ¢

ok {Vt >to: T(t) € ¢

Our terminology refers to the notion of attractor in the ttyaaf dynamical systems,
where thebasin of attractions a specified region (and not necessarily the whole state
space, as with strong attractors) and where trajectoréeseguired to converge towards
the given regiorp (and need not finally reaap).

The regionp = x < 0 is not a strong attractor for the hybrid system below, which
however, satisfies the temporal propekty AG ¢.

x<0 | o x>1 A
— 1 x=i x=—1
x<1 -

A hybrid system can be stable wrt. a region without having tegion as a strong
attractor. For example a slightly damped pendulum thatllates around the origin
with initial amplitudex = 100 is certainly stable wrk < 1, but the regionx < 1 is not
a strong attractor of the system. In fact, this system doesane any strong attractor
at all.



5 Algorithm

In this section we describe in detail our algorithm.

The input of the algorithm is a hybrid systefnand a regiorp. The output is a
“yes/don’t know” answer. If the the answer is “yes”, the gystA is stable wrtd. If the
algorithm answers “don’t know”, the system may be stablermstable.

Again, our algorithm doesn’t check directly whether thetsgsA is stable with
respect to the regiof, but it checks whethey is a strong attractor ok with the whole
state space as its basin of attraction, which implies stabil

The algorithm proceeds in four steps.

Step 1: Transformation A — A7

The first step of the algorithm is to transform the given hglsystem into a new one.
Program transformation has been used recently in progratysis for termination
proofs for finite state systems and infinite programs [4, 8}.the example of the heat-
ing system, Fig.3 shows the relevant part of the transforsystem.

Xp<21 A Xe<55

£uPP £uPP

1 . 2 .

Xe = 2(150—Xe) A X = 2(150—Xe)
t=1At/=1

(Xp <25 A Xe < 80)

Xe = —3Xe A X = —3Ne
t=1nt=1
(Xp > 20V Xe > 50)

Xp>24V Xe>T5

Xp>24V Xe > 75
flag:=1

Xp <21 A Xe <55
flag :=2

X, <21 A %<55
Elow
1
Xe=0 A X, = —3%e
t=0At'=1
(Xp > 20 V X > 50)

o
Xe =0 A Xo = 2(150— Xe)
/t':O/\t":l
(Xp <25 A X < 80)

X224V X >75

Fig. 3. Transformed system.

We will explain next the characteristics of the transforioatEach state of the new
system corresponds to a péirs) of statess ands’ of the original system. Whenever
the states' is reachable from the statein the original system, whergis a state just
after a discrete jump, then the state corresponding to tmg®4d) is reachable in the
new system. We refer to this propertyt@inary reachabilityi.e. a pair of statets, s) is
called binary reachable in a hybrid systémif there exists a trajectoryof A such that



1. sis a state o at time point: s=1(t);
2. ¢ is a state om at time point’: § = 1(t');
3. t<t.
Take the states= ({2; Xp =17.1, Xe =50, t =0.157) ands' = ({2; X, = 21.4, Xe =
60, t = 0.209). The states can reach the stag (both the temperature of the plant and
the engine increase in a time period of 5) in a trajectory efdhiginal system; the
trajectory starts in the initial stag = (¢1; Xp = 20, Xe = 80, t = 0). The state

(glow; Xp = :I_?:]_7 Xe = 50, t= 0157, le = 214, Xle = 607 t, = 0209)

of the new system corresponds to the pais’). We will now see that this state is
reachable (in the transformed system). The state

(EEPP; Xp:20, Xe:80,t:07 le:20, )(;‘:80, tl:o)

is an initial state of the transformed system; it correspandhe pai(sp, o). Looking
at Fig.3 we see that it can reach the state

(657%; xp = 17.1, Xe = 50, t = 0.157, X, = 17.1, X, = 50, t' = 0.157)

(namely, when the transformed system stays in the loc#tihfrom time point O to
time point 10). That state can jump (by taking a transiticio ithe lower half of the
system) to the state

(£5"; xp=17.1, Xe =50, t = 0.157, X, = 17.1, X, = 50, t' = 0.157) .

¢From now on (after a transition into the lower half of thetsgg, only the primed
variables keep changing. Looking at Fig.3 we see that thie stan reach (by staying
in the same location) the state that corresponds to the 4iy.

We will formalize next the program transformation. Givenybiid systemA we
assume that the set of locations ofA contains m element§ to ¢, and the sew
consists oh + 1 real-valued variables, namety to x, andt. The transformed system
A’T

AT =(7 v 'r,(jumpzé,)we% , (flowj Jer , (invj Jeer, , (init/ Jeer )
consists of the following components.

1. Variables: The setv ” of variables contains all variables of, and their primed
versions.

T
4 :{le"'7Xnat7Xllv"'7X:’Ut,}
!
=7 Uv

2. Locations: Each location of the original system is duplicated, i.eo@ation? of
the original system corresponds to two locatiéf®® and/°" in the transformed
system. We refer to the set of all locations fré{ff to /p}® as. “PP,

LUPP — [(4PP . pupP}



and to the set of locations frodf" to £ as. ",
L= {0,y

In addition, the transformed system has a locatiof Altogether, the set ” of
locations of the transformed system consists of the folhgvd@gomponents:

LT :{ginit} U £ YPP Llow .

. Initial conditions : Initially, each variable has the same value #sand the value
of t is equal to the value df; the system starts ifi"'t.

Y N — {(X]_?-.-)t,)ezq/'[ :Xl:Xll/\"'/\t:t,} , L=t
inity (xg,...,t") = {false , otherwise

. Jump conditions: There are two types of switches in the transformed systdra. T
first type occurs between two locations.ofPP or between two locations of '*",
respectively. A jump condition between locatiéff® and location;™ for the
variableg(xs,...,t,X;,...,t") conforms to the jump condition between the locations
¢ and¢; of the original systemA for the variables(xy,...,t). Analogously, a
jump condition between the locatiorf§" and E'fw of the transformed system
corresponds to the jump condition from locatignto ¢; of the original system
after replacing the variableg, .. .,t by their primed versions.

. , N Jaump ) (Xe,....t) o, if L0 € tPP
(Jump;,Z’)(Xla---atvxl"'at) - {(jumg,é/)(xlly---;t,) , |f E,ZIELIOW

The second type of switches are nondeterministic jumpsitbtween the location
/"t and a location of. “PP, or between a location of “PP and a location of. "%,
A jump is always possible from the locatidii't to any location ofz “PP, if the
invariant condition of the target location is fulfilled.

(jumpznit’é,)(xl,...,t,x’l...,t’) = (invy )(Xq,...,t.x ...t if £ e PP

A jump from a locatior?;*” to a Iocation€'jOW is possible whenever the jump condi-

tion from¢; to ¢; is fulfilled in the original system. We use the variafikeg ¢ v ’
as a discrete variable that ranges over the $et . ,m} of indices of the locations
of the system. During the jump, the ind¢xf the target location is memorized in
the variableflag.

(jumpZupijOW)(xl,...,t,x’l...,t’) = (jumpy ) (x,...,t) A flag:=]

If there is no jump outgoing fromg possible in the original system, the jump con-
dition from ¢;*" to /1" in the transformed systemtgue.

Vi#i: (jumpyg)(x,....t) = false = (jumpgluppydow)(xl,...,t,x’l...,t’) = true

All other jump conditions aré&lse.



5. Flow conditions: First, in the locationg™™t no flow of the continuous variables
proceeds.

(flow )(xq,....t'%,....t) = A x=0, ife=¢"
xev
In each locatiort; " of - “PP, the flow of the variableg,, ... ,t in the transformed
system is the same as the flow>qf...,t in the original system; each variable
Xy,...,t" behaves exactly like its unprimed version, that is the flow/of.. t" is

equal to the flow of the original system after replacing thealdesx,...,t by
their primed versions, ... ,t".

(flow] )(xa,...,t' ) x1,....t") = flowy(xq,...,t) A flowy(xq,...,t"), if £€L"PP

In each location of. '°" the values of the variables, ...t are fixed, i.e. the flow
of them is constant. The variablgg ... ,t" keep on evolving as before.

(flow] )(xa,....t'%a,....t') = A x=0Aflow,(x3,....1"), iferec'™
xeV

6. Invariant conditions: For the locatior/'"'t, the invariant condition isrue.
(invz)(Xj_,...,t,X/l,...,t/) = true, if ¢ = ¢init

For a location/;™ in £ “PP (or ¢V in . '°¥, respectively), the invariant condition
overxy,...,t,x,...,t" is the same as the invariant condition of the original system
Afor ¢ overxy,...,t (orx,...,t', respectively).

o N finve(xq,.. ), ifle P
(mvf)(Xl""’t’xll""’t)_{inv[(x’l,...,t’) ifpe . low

Step 2: Reachability analysis

In the second step, our algorithm applies a procedure orrdnsformed system that
computes an overapproximation of the set of all reachablestof the transformed
system. The procedure is implemented by existing readhatuibls as Riaver [12],
d/dt[11] or HSolver [29]. As result we obtain a set of conistts, given by a disjunction
of conjunctions of linear inequalities in case ofi&¥ er . Each constraint is marked by
the location of the transformed system it is related to. i élkample of the heating
system, one constraint in the output ofi& er is e.g.

o flag =2, Xp > 20, —Xp > —21, Xe > 0, —X¢ > —55,
—Xp > —20, —%g > —80, —x+300(t' —t) > 245 t' —t > 1,
Xe— 140(t' —t) > —90, X, — 75(t'—t) > —75

In our notation, we identify a constraint with the relatidrat it denotes. We view
a unary relation over the variables” of the transformed system as a binary relation



over the values of the variables and their primed versions ' of the original system.
Each relation refers to pairs of valuatiafwsv’), where the pair of statd$/,v), (¢/,v))
is binary reachable in the original system for sofveand?’.

In the remainder of this paper we only talk about binary fefet over pairs of
valuations of the original system (and not about unary i@tatover valuations of the
transformed system) when we refer to relations in the oudptite reachability tool.

Step 3: Computation of a Lyapunov-like function

For the third step of the algorithm we consider the finite stiisof disjuncts in the
output of the reachability tool where the value of the vagdlag is equal to the index
of the location the relation is related to. These relati@fsnto pairs of valuation@, V')
such that the pair of staté;,v), (£,V')) is binary reachable in the original system for
the locatiory; whose index is equal to the value of the variatflag.

We prove for each single relatia@of C that its conjunction with the negation of the
region¢ and witht’ —t > o

CA -0 At —t>9)

is well-founded, wheré > 0 is arbitrarily small.Well-foundedneans that there is no
infinite sequence of stateg, s, S, . .. such that each pair of consecutive stds ;1)
satisfies the relation.

To show that a relation is well-founded, the algorithm agpla procedure that
automatically constructs byapunov-likefunction for the relation. By a Lyapunov-
like function we mean a function over the real-valued variables, such that (1)
r(X1,...,%n,t) > 0 for all (Xq,...,X,t), and (2)r(Xa,...,%n,t) <r(xy,...,x,,t") for all
(X1, .- %n,1,%], ..., Xy, t') that fulfill the considered constraint. For relations theg a
given by conjunctions of linear inequalities, the algaritcomputes a Lyapunov-like
function using RankFinder [31], a tool for synthesizingelim ranking functions [24, 5,
6].

In section 6, we will prove that this condition suffices to shthat every trajectory
of the original systemA inevitably reaches the regidn

For the sample formula above, we obtain the result “Ranking: [1,0,0]” which
means that the Lyapunov-like function
r(Xanevt) = XP
is a witness foinevitability of the evolution towardé.

Step 4: Invariance

In a final step our algorithm checks the entailment betweerstcaints in the form
below, wherec is a constraint given by the output of the reachability tooStep 2 of
the algorithm (the renaming of all variablesdirto their primed versions yieldj).

orc ¢
This check proves that the regigris an invariant of the system, i.e. each evolution of a

state in the region leads to another state that is in themegjain. For linear constraints
c the algorithm uses the linear constraint solver clp(Q,R] far this entailment check.



6 Correctness

In this section we investigate the correctness of the atgoriThe algorithm is sound
(its definite answers are correct) and not complete (it maymedon’'t know answers).

Soundnesd he hybrid system\ is stable wrtg if (1) every trajectory ofA must reach
the regiond after a amount of finite time, and (2) from then on it will neleave the
region again.

Assume that the sef contains all relationg in the output of the reachability
analysis for the transformed system (computed in Step 2eathorithm) where the
value of the variablélag is equal to the index of the location the relation is related
to. Again, these relations refer to pairs of valuatigns/’) such that the pair of states
((¢,v),(¢,Vv")) is binary reachable in the original system for the same ilonat We
must show that property (1) holds férif the conjunction of each relationin the set
C with the negation of the regiop and witht’ —t > & (for any arbitrary smalb > 0)

CA - At —t>9)

is well founded.

The well-known combinatorial argument used to show thatithindeed sufficient
(and that the algorithm is correct) is standard in the theéguchi automata and has
been used so far only for linear temporal properties of discsystems [28, 25, 26].

Theorem 1. Assume a hybrid system A and a solution of the reachabiliéyais for
the transformed systenf Asuch that the set C consists of all relations c of the solution
where the value of the variabfag is equal to the index of the location the relation is
related to.

The hybrid system A reaches a regipim every trajectory after a finite amount of
time if C is a finite set of relations where the conjunction aéterelation ¢ of C with
the negation of the regiop and witht —t > &

CA -0 At —t>9)
is well-founded for any arbitrary smafl > 0.

Proof. For a proof by contradiction we assume that each relatiord A (t' —t > 9),
for cin ¢, is well-founded buA does not reach the regidnin every trajectory. Let be
a trajectory of the systery that does not reaaf.
We consider aliscretizationof the trajectoryt by a time intervab > 0, that is the
infinite sequence
1(0),1(0),1(29),...

The sequence is infinite, but we have only finitely many larai Hence, at least one
location, say, appears infinitely often in the sequence. This means thatanebuild
an infinite subsequenag, 11,12, ... of the sequence(0),1(3),1(20),..., such that all
states on the subsequence have the same lodation

We now use the assumption tltais a finite union of relations, say

C=cU...Uc



such that for each relatior) of c its conjunction with the negation of the regi¢rand
witht’' —t >
CiAhA (' —t> D)

is well-founded.

We define a functiog with finite range that maps an ordered pair of indices of the
sequenceo,T1,To,... to the indexj of the relationc; that contains the corresponding
pair of states.

gkl = j if (u) € ¢

Furthermore the functiog induces an equivalence relatienon pairs of indices of the
sequenceg,T1,T2,. ...

(klvll) ~ (kzvlz) g% g(klvll) = g(kZa |2>

The index of~ is finite since the range df is finite. By Ramsey’s Theorem [28],
there exists an infinite set of indic&ssuch that all pairs fronK belong to the same
equivalence class. Thus, there existandn in K, with m < n, such that for everitand

I in K, with k <1, we have(k,1) ~ (m,n). Letky, ko, ... be the ascending sequence of
elements oK. Hence, for the infinite sequentg, 1y, , ... we have

(Tk,Tk,y) €Cj foralli>1

By our assumption that does not reacly, each statey, is not in the regiorp, which
yields that
(T, Thuq) € CjAG forall i>1

Because we have chosen a discretization by d, this is a contradiction to the well-
foundedness af; A—¢p A (' —t > ). O

Incompletenesd he algorithm may fail to prove the stability of a correcttgys (and
return a don’t know answer) for one of the following threes@as.

First, the output of the existing reachability tools (that wse in Step 2 of our
algorithm) is only an overapproximation of the set of allaleable states (and not the
set itself) due to the fact that reachability in general idesidable.

The second point is the incompleteness of general welldedness tests (used in
Step 3 of the algorithm). Complete tests exist only in sons&ricted cases (e.g. in the
form of termination checkers for small classes of progra?ds 33]).

The third source of incompleteness is that the algorithneclkchghether a regiog
is a strong attractor of the system, which is only a sufficirinot necessary condition
for stability wrt. ¢; see Section 4.

7 Conclusion and Future Work

Previous notions of stability refer to a single equilibripmint. We have introduced a
new notion of stability that refers to a region instead. Foms cases of hybrid systems,
this gives the appropriate formalization of their corrests We have situated our notion
in the landscape of related properties in control theoryrandel checking.



Verification methods for non-reachability properties (oogerties that can be re-
duced to non-reachability) for hybrid systems have beesengively studied by both
computer scientists and control theorists [32, 10, 34,Ba2id have lead to popular
verification systems such asHRver [12], HSolver [29], d/dt [11] and CheckMate [7].

There are many methods for the verification of hybrid systBmaon-reachability
properties or properties that can be reduced to non-reditiatability does not be-
long to them. We have given an algorithm to verify stabilitpperties (in the new sense)
for general hybrid systems. The algorithm is parametetigettie constraint solver that
it calls as a subroutine in each of its different steps. Usilegnstraint solver for linear
constraints, we obtain a specific algorithm for linear hgltsystems.

The crucial step of the algorithm is the computation of byrreachability (a precise
enough approximation of the binary reachability relatidrijanks to a source-to-source
transformation, this step can be implemented using anheffshelf tool for (unary)
reachability. Future work consists of evaluating existfognew) reachability tools in
our context, where we use them not for safety but for stabilit

In preliminary experiments, we have run the different steps number of exam-
ples (using RAaver [12] and RankFinder [31]), including the example of thatirey
system. The experiments indicate a promising potentialiofethod.

Out of the three sources of incompleteness of our algoritmmare inherent due to
recursion-theoretic properties. The question is whethethird source of incomplete-
ness can be circumvented by an alternative to our presenitd®fiof strong attractors
and ways to compute them.
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