
Ordering Constraints over Feature Trees

Martin Müller1, Joachim Niehren1 and Andreas Podelski2

1 Universität des Saarlandes, mmueller,niehren @ps.uni-sb.de
2 Max-Planck-Institut für Informatik, podelski@mpi-sb.mpg.de

Saarbrücken, Germany

Abstract. Feature trees have been used to accommodate records in constraint
programming and record like structures in computational linguistics. Feature trees
model records, and feature constraints yield extensible and modular record de-
scriptions. We introduce the constraint system FT of ordering constraints in-
terpreted over feature trees. Under the view that feature trees represent symbolic
information, the relation corresponds to the information ordering (“carries less
information than”). We present a polynomial algorithm that decides the satisfi-
ability of conjunctions of positive and negative information ordering constraints
over feature trees. Our results include algorithms for the satisfiability problem
and the entailment problem of FT in time O n3 . We also show that FT has
the independence property and are thus able to handle negative conjuncts via
entailment. Furthermore, we reduce the satisfiability problem of Dörre’s weak-
subsumption constraints to the satisfiability problem of FT . This improves the
complexity bound for solving weak subsumption constraints from O n5 toO n3 .

Keywords: feature constraints, tree orderings, weak subsumption, satisfiability,
entailment, complexity.

1 Introduction

Feature constraints have been used for describing records in constraint programming
[2, 24, 23] and record like structures in computational linguistics [13, 12, 20, 18, 19].
Following [3, 5, 4] we consider feature constraints as predicate logic formulae that are
interpreted in the structure of feature trees.
A feature tree is a possibly infinite tree with unordered labeled edges and with pos-
sibly labeled nodes. Edge labels are functional; i.e., the labels of the edges departing
from the same node must be pairwise different. Under the view that feature trees repre-
sent symbolic information, the feature tree τ1 represents less information than the fea-
ture tree τ2 if τ1 has fewer edges and node
labels than τ2. The relation that we de-
fine corresponds to the information order-
ing in precisely this sense. Algebraically,
τ1 τ2 if there is a homomorphic embed-
ding from τ1 to τ2 (i.e., a mapping from nodes in τ1 to nodes in τ2 under which the node
labeling is invariant). An example is given in the picture.
We introduce the constraint system FT of information ordering constraints over fea-
ture trees. The system FT is obtained by adding ordering constraints to the constraint

system FT [3]. The syntax of FT constraints ϕ is defined by

ϕ :: x x x a x a x ϕ ϕ

where x and x are variables and a is a label. The semantics of FT is given by the
interpretation over feature trees where the symbol is interpreted as information or-
dering on feature trees. The semantics of x a y and a x are defined as in FT . For in-
stance, both trees depicted above are possible values for x in solutions of the constraint

x x x x .
It is clear that FT is more expressive than FT since the information ordering is an-
tisymmetric (i.e., x x x x x x is valid). As we show in the paper, FT is
strictly more expressive than FT . For instance, no constraint in FT can be equivalent to
x x . Also, we do not know of any formula over FT (even with existential quantifiers)
equivalent to x x1 x x2 x x x1 x x3 x ; this FT formula expresses that x1
is unifiable with both x2 and x3 (but does not imply unifiability of x2 and x3).
We show that the satisfiability problem of conjunctions of positive and negative FT
constraints ϕ ϕ1 ϕn is decidable in O n3 . This result includes a decision
procedure for the entailment problem of the form ϕ ϕ since a formulaϕ ϕ is valid
if and only if the formula ϕ ϕ is unsatisfiable. To establish our result, we prove that
FT has the fundamental independence property (similar to its relativesRT [6], FT [3],
and CFT [24]).
We reduce the satisfiability problem of Dörre’s weak-subsumption constraints [7] over
feature algebras linearly to the one in FT . Thereby, our algorithm improves on the best
known satisfiability test for weak subsumption constraints which uses finite automata
techniques and has an O n5 -complexity bound [7].
Plan of the Paper. Section 2 surveys related work. Section 3 defines FT . Section 4
presents the satisfiability test for FT constraints. Section 8 contains the completeness
proof. Section 5 presents the entailment test for FT constraints, and proves the inde-
pendence property ofFT . Section 6 defines weak subsumption constraints and reduces
their satisfiability problem to the one of FT constraints. Section 7 shows that FT is
strictly more expressive than FT .

2 Related Work

Ines Constraints. In previous work [17], we have introduced the constraint system
INES of inclusion constraints over non-empty sets of trees and a cubic satisfiability test.
The satisfiability test forFT is inspired by and subsumes the one for INES. However, the
entailment problems for FT and INES constraints are different. The entailment problem
of INES constraints is coNP-hard [16]. Intuitively, the entailment problem of FT is less
expressive than the one of INES because an FT constraint ϕ cannot uniquely describe a
single feature tree (in absence of arity constraints); in contrast, INES constraints (which
are inclusions between first-order terms with an implicit arity restriction) can uniquely
describe a constructor tree as a singleton set. For instance, the INES constraint x a
describes the singleton a . As a consequence, the entailment proposition x a a y
x y holds in INES. No similar entailment phenomenon exists for FT .

FeatureConstraints. The constraint systemCFT [24] extendsFT by arity constraints
of the form x f1 fn , saying that the denotation of x has subtrees exactly at the fea-
tures f1 through fn.CFT subsumes Colmerauer’s rational tree constraint system RT [6]
but provides finer-grained constraints. The system EF [25] extends CFT by feature
constraints x y z, providing for first-class features. Complete axiomatizations for FT
and CFT have been given in [5] and [4], respectively. The satisfiability of EF con-
straints is shown NP-hard in [25]. The system FT sort extends FT by allowing a
partial order on labels [15].
Subsumption Constraints. Subsumption is an ordering on the domain of feature alge-
bras. Subsumption constraints have been considered in the context of unification-based
grammars to model coordination phenomena in natural language [9, 7, 21]. There, one
wants to express that two feature structures representing different parts of speech share
common properties. For example, the analysis of “programming” and “linguistics” in
the phrase

Feature constraints for [NP programming] and [NP linguistics]

should share (but might refine differently) the information common to all noun phrases.
Since the satisfiability of subsumption constraints is undecidable [9], Dörre proposed
weak subsumption as an decidable approximation of subsumption. As we show, the
information ordering over feature trees (as investigated in this paper) coincides with the
weak subsumption ordering interpreted over (the algebra of) feature trees.
Independent Constraint Systems. A constraint system has the fundamental indepen-
dence property if negated conjuncts are independent from each other, or: its constraints
cannot express disjunctions (we will give a formal definition later). Apart from the men-
tioned tree constraint systems RT , FT , CFT [6, 1, 24, 3], constraint systems with the
independence property include linear equations over the real numbers [14], or infinite
boolean algebras with positive constraints [10].

3 Syntax and Semantics of FT

The constraint system FT is defined by a set of constraints together with an interpre-
tation over feature trees. We assume an infinite set of variables ranged over by x y z,
and an infinite set L of labels ranged over by a b.
Feature Trees. A path p is a finite sequence of labels. The empty path is denoted by ε
and the free-monoid concatenation of paths p and p as pp ; we have εp pε p.
Given paths p and q, p is called a prefix of p if p p p for some path p . A tree
domain is a non-empty prefix closed set of paths. A feature tree τ is a pair D L
consisting of a tree domain D and partial labeling function L : D L . Given a feature
tree τ, we write Dτ for its tree domain and Lτ for its labeling function. The set of all
feature trees is denoted by F . A feature tree is called finite if its tree domain is finite,
and infinite otherwise.
Syntax. An FT constraint ϕ is defined by the following abstract syntax.

ϕ :: x y a x x a y x y ϕ1 ϕ2

An FT constraint is a conjunction of basic constraints which are either inclusion
constraints x y, labeling constraints a x , selection constraints x a y, or compatibil-
ity constraints x y. Compatibility constraints are needed in our algorithm and can be
expressed by first-order formulae over inclusion constraints (see Proposition 1). We
identify FT constraints ϕ up to associativity and commutativity of conjunction, i.e.,
we view ϕ as a multiset of inclusion, labeling, selection, and compatibility constraints.
We write ϕ in ϕ if all conjuncts in ϕ are contained in ϕ . The size of a constraint ϕ is
defined as the number of label and variable occurrences in ϕ.
Semantics. We next define the structure F over feature trees in which we interpret
FT constraints. The signature of F contains the binary relation symbols and and
for every label a a unary relation symbol a and a binary relation symbol a . In F
these relation symbols are interpreted such:

τ1 τ2 iff Dτ1 Dτ2 and Lτ1 Lτ2
τ1 a τ2 iff Dτ2 p ap Dτ1 and Lτ2 p b ap b Lτ1
a τ iff ε a Lτ

τ1 τ2 iff Lτ1 Lτ2 is a partial function (on Dτ1 Dτ2)

Let Φ denote first-order formulae built from FT constraints with the usual first order
connectives. We call Φ satisfiable (valid) if Φ is satisfiable (valid) in the structure F .
We say that Φ entails Φ , written Φ Φ , if Φ Φ is valid, and that Φ is equivalent
to Φ if Φ1 Φ2 is valid. We denote withV Φ the set of variables occurring free inΦ
and with L Φ the set of labels occurring in Φ.

Proposition1. The formulae x y and z x z y z are equivalent in F .

Proof. Let σ be a variable assignment into F which also is a solution of the formula
z x z y z . Since Lσ x Lσ y Lσ z and Lσ z is a partial function, Lσ x Lσ y is
also a partial function.Hence σ is a solution of x y. Conversely, if σ is a solution of x y
then Lσ x Lσ y is a partial function. Thus, the pair τ de f Dσ x Dσ y Lσ x Lσ y
is a feature tree and the variable assignment σ defined by σ z τ and σ x σ x
for x z is a solution of x z y z.

4 Satisfiability Test

We present a set of axioms valid forFT and then interpret these axioms as an algorithm
that solves the satisfiability problem of FT . The axioms and the algorithm are inspired
by the ones for INES constraints presented in [17].
Table 1 contains five axiom schemes - that we regard as sets of axioms. The
union of these sets of axioms is denoted by , i.e., . For instance, an
axiom scheme x x represents the infinite set of axioms obtained by instantiation of the
meta variable x. An axiom is either a constraint ϕ, an implication between constraints
ϕ ϕ , or an implication ϕ false.

Proposition2. The structure F is a model of the axioms in .

x x and x y y z x z

x a x x y y a y x y

x y x y and x y y z x z and x y y x

x a x x y y a y x y

a x x y b y false for a b

Table 1. Satisfiability of FT Constraints.

Proof. By a routine check. For illustration, we prove the statement for the second rule
in , namely x y y y x y . The following implications hold:

x y y y x y z y z y z Proposition 1
z x z y z Transitivity
x y Proposition 1

The Algorithm . The set of axioms induces a fixed point algorithm that, given an
input constraint ϕ, iteratively adds logical consequences of ϕ to ϕ. (Observe that
actually only constraints of the form x y and x y are derived).More precisely, in every
step inputs a constraint ϕ and terminates with false or outputs a constraint ϕ ϕ .
Termination with false takes place if there exists ϕ in ϕ such that ϕ false .
Output of ϕ ϕ is possible if ϕ or there exists ϕ in ϕ with ϕ ϕ .

Example 1. Inconsistency can be due to incompatible upper bounds. Consider:

a x x z y z b y false for a b

We may add x z by 1, then z x via 3, then y x with 2, and finally terminate
with false via .

Example 2. We need for deriving the unsatisfiability of the constraint:

a x x a x x z y z y a y b y false for a b

Algorithm may add x y after several steps as shown in Example 1. Then it may
proceed with x y via and terminate with false via .

Termination. The fixed point algorithm terminates when reflexivity of inclusion
x x (1) is restricted to variables x V ϕ . Given a subset F of , a constraint ϕ is
called F-closed if algorithm under this restriction and w.r.t. the axioms in F cannot
proceed on ϕ. Note that false is not F-closed since it is not a constraint by definition.

Example 3. Our control takes care of termination in presence of cycles like x a x. For
instance, the following constraint is -closed.

x a x x y y a y x x y y x x y y x y y x

In particular, and do not loop through the cycle x a x infinitely often. This exam-
ple also illustrates why the fixed point algorithm would not be terminating if based in
the axiom x a x x y y y a y x y .

Proposition3. If ϕ is a constraint with m variables then algorithm with input ϕ
terminates under the above control in at most 2 m2 steps.

Proof. Since does not introduce new variables, it may add at mostm2 non-disjointness
constraints x y and m2 inclusions x y.

Proposition4. Every -closed constraint ϕ is satisfiable over FT .

Proof. See Section 8.

Theorem5. The satisfiability of FT constraints can be decided in time O n3 offline
and online see 11 where n is the constraint size.

Proof. Proposition 2 shows that ϕ is unsatisfiable if started with ϕ terminates with
false. Proposition 4 proves that ϕ is satisfiable if started with ϕ terminates with a
constraint. Since terminates for all input constraints under the above control (Prop. 3)
this yields a effective decision procedure. The main idea of the complexity proof is
that one needs at most O n2 steps (Prop. 3) each of which can be implemented in
timeO n . The implementation can be organized incrementally by exploiting that algo-
rithm leaves the order unspecified in which the axioms are applied. Hence, we obtain
that off-line and on-line complexity are the same. The implementation details and the
complexity proof are omitted here, since they are similar to those presented in [17].

5 Entailment, Independence, Negation

In this section, we give a cubic algorithm testing entailment ϕ ϕ between FT con-
straints ϕ and ϕ. We then prove the independence property of FT . Hence we can solve
conjunctions of positive and negative FT -constraints ϕ ϕ1 ϕn in time O n3 .
A basic constraint µ is a conjunction free constraint ϕ, i.e., given by the following
abstract syntax:

µ :: x y x y a x x a y

The entailment ϕ ϕ is equivalent to the fact that the entailment ϕ µ holds for all
basic constraints µ in ϕ.

Next we characterize entailment problems ϕ µ syntactically. We say that a con-
straint ϕ syntactically contains µ, written ϕ µ, if one of the following holds:

ϕ a x if exists x such that x x a x ϕ
ϕ x y if x y in ϕ or x y
ϕ x y if x y in ϕ or x y
ϕ x a y if exist x , y such that x a y in ϕ

and ϕ x x ϕ x x and ϕ y y ϕ y y

We say that a first-order formula Φ syntactically contains µ, Φ µ, if Φ ϕ Φ for
some ϕ and Φ such that ϕ µ.

Lemma 6. Given a -closed constraint ϕ, we can compute a representation of ϕ in
linear time that allows to test syntactic containment ϕ µ for all µ in time O 1 .

Proof. Simple.

It is easy to see that syntactic containment is semantically correct, i.e., ϕ µ implies
ϕ µ. For deciding entailment, we have to show that our notion of syntactic contain-
ment is semantically complete, i.e., if ϕ µ then ϕ µ (Proposition 13). The idea is to
construct a satisfiable extension of ϕ (its saturation) which syntactically and simultane-
ously contradicts all µ not syntactically contained by ϕ (Lemma 12).
Saturation is defined in terms of two operatorsΓ1 and Γ2 on constraints. The operator Γ2
is such that Γ2 ϕ contradicts all µ of the form x y, x y, and a x (i.e., no selection
constraints) which are not syntactically contained in ϕ (Lemma 10). The operator Γ1
serves for contradicting selection constraints. For instance, consider ϕ x a y where
ϕ x x y y. In this case, Γ1 ϕ enforces the existence of the feature a in the deno-
tation of x by adding to ϕ the constraint x a vxa for a fresh variable vxa. Now Γ2 Γ1 ϕ
is such that it contradicts either y vxa or vxa y. (see Example 4). In this sense, Γ1 is a
“preprocessor” for Γ2.

Definition 7. Let ϕ be a constraint, v1 and v2 distinct fresh variables, and l1 and l2
distinct labels. Furthermore, for every pair of variables x y V ϕ , and label every
label a L ϕ let lx and lxy be fresh labels and vxa a fresh variable. We define Γ1 ϕ
and Γ2 ϕ in dependence of v1 v2 lx lxy vx as follows:

Γ1 ϕ ϕ x a vxa x V ϕ a L ϕ

Γ2 ϕ ϕ x lx vx y y lx y ϕ x y x y V ϕ 1
x lxy v1 y lxy v2 ϕ x y x y V ϕ 2
x v1 x v2 for all labels a : ϕ a x x V ϕ 3

Example 4. Consider the constraint ϕ0 x a x y x which is -closed up to trivial
constraints and which does not entail x a y. In order to contradict x a y we compute
the -closure of Γ1 ϕ0 which is Γ1 ϕ0 x a x y x x a vxa y a vya vya vxa
vxa x x vxa y vxa and observe that it does not vxa y. By definition ofΓ2, Γ2 Γ1 ϕ
contradicts vxa y. Hence, Γ2 Γ1 ϕ also contradicts x a y.

Lemma 8. Let ϕ be an -closed (and hence satisfiable) constraint. Then Γ1 ϕ is sat-
isfiable and its closure Γ1 µ satisfies the following two properties for all basic con-
straints µ:

1. If ϕ µ and V µ V ϕ , then Γ1 ϕ µ.
2. If ϕ x a y then Γ1 ϕ y vxa or Γ1 ϕ vxa y.

Proof. The -closure Γ1 ϕ of Γ1 ϕ has the following form up-to trivial constraints
and symmetry of compatibility constraints.

Γ1 ϕ Γ1 ϕ vxa vya Φ x y a L ϕ 4 1
z vxa exists y :Φ z y y a y y x Φ x a 4 2
vxa z exist y y :Φ x y y a y y z Φ x a 4 3
vxa z exist y y :Φ x y y a y y z Φ x a 4 4
vxa z exist y y :Φ x y y a y y z Φ x a 4 5

(For instance note that vxa x x vxa in Γ1 ϕ if x a x in ϕ by clauses (4.2, 4.3) and
reflexivity). All constraints in Γ1 ϕ either belong to Γ1 ϕ or a derived from it by
axioms in . The -closedness of Γ1 ϕ can be proved by a somewhat tedious case
distinction. The same holds for the two additional properties of Γ1 ϕ claimed.

Lemma 9. If ϕ is -closed then Γ2 ϕ is satisfiable.

Proof. It is not difficult to show that the constraint part of Γ2 ϕ is -closed up to
trivial constraints (x x and x x) and symmetric compatibility constraints. The critical
bit is to check that the negated selection constraints added in clause 1 of Γ2 ϕ are
consistent. Let y y lx y in Γ2 ϕ . We must show that Γ2 ϕ y y lx y . Assume
the converse, Γ2 ϕ y y lx y . Then, by Corollary 27 in Section 8, there exist z and
z such that Γ2 ϕ z y z lx z . By definition of Γ2 ϕ we know that z x. However,
if Γ2 ϕ x y and hence (by definition of Γ2) ϕ x y holds, clause 1 does not apply.
Thus y y lx y cannot be contained in Γ2 ϕ , in contradiction to our assumption.

Lemma 10. Let ϕ be an FT -constraint and let µbe a basic constraint of the form x y,
x y, or a x (i.e., not a selection constraint). Then Γ2 ϕ µ if and only if ϕ µ.

Proof. By inspection of the definition of Γ2 ϕ . Clause 1 contradicts entailment of
x y by ϕ by forcing x to have a feature lx which ymust not have. Clause 2 contradicts
x y by forcing x and y to have a common feature lxy such that the subtrees of x and y
at lxy are incompatible. Clause 3 contradicts a x for any label by forcing x to be
unlabeled (i.e., compatible with at least two trees with distinct label).

Definition 11 Saturation. Let ϕ be an -closed constraint and Γ1 ϕ the -closure of
Γ1 ϕ which exists according to Lemma 8. The saturation of ϕ is the formula Sat ϕ
given by Sat ϕ Γ2 Γ1 ϕ .

Lemma 12. Let ϕ be an -closed constraint For all µ such that V µ V ϕ , ϕ µ
implies Sat ϕ µ.

Proof. Let Γ1 ϕ the -closure of Γ1 ϕ such that Sat ϕ Γ2 Γ1 ϕ . If ϕ µ then
Γ1 ϕ µ by Lemma 8.1. If µ is not a selection constraint, then Γ2 Γ1 ϕ µ
by Lemma 10. Otherwise, let µ x a y. Hence, Γ1 ϕ vxa y or Γ1 ϕ y vxa by
Lemma 8.2. By Lemma 10, either Γ2 Γ1 ϕ vxa y or Γ2 Γ1 ϕ y vxa holds.
In both cases, Γ2 Γ1 ϕ µ follows.

Proposition13. The notions of entailment and of syntactic containment coincide for
basic constraints: If ϕ is -closed and µ a basic constraint then ϕ µ iff ϕ µ.

Proof. We assume ϕ µand show ϕ µ. (The converse is correctness of syntactic con-
tainment.) IfV µ V ϕ then µ is of the form x x or x x such that ϕ µ. Otherwise,
V µ V ϕ . If ϕ µ, then Sat ϕ µ since Sat ϕ contains ϕ. Moreover, Sat ϕ is
satisfiable (Lemmas 8 and 9) such that Sat ϕ µ. Hence, ϕ µ by Lemma 12.

Theorem14 Entailment. Entailment problems of the form ϕ ϕ can be tested in
cubic time.

Proof. Let n be the size of ϕ ϕ. To decide ϕ ϕ, first test whether ϕ is satisfiable.
By Theorem 5 this can be done by computing the -closure ϕ̃ of ϕ in time O n3 . If
this test fails then the entailment test is trivial. Otherwise, from Lemma 12 we obtain
ϕ̃ µ if ϕ µ, and hence that ϕ̃ ϕ iff ϕ̃ µ for all µ in ϕ. There are O n such µ
and ϕ̃ is of size O n2 , hence, by Lemma 6, this is decidable in time O n . The overall
complexity sums up to O n3 .

Theorem15 Independence. The constraint system FT has the independence prop-
erty; i.e., for every n 1 and constraints ϕ ϕ1 ϕn:

if ϕ n
i 1ϕi then ϕ ϕi for some i 1 n

Proof. Assume ϕ n
i 1ϕi. If ϕ is unsatisfiable we are done. Also, if ϕ ϕi is non-

satisfiable for some j, then ϕ n
i 1ϕi iff ϕ n

i 1 i jϕi is. Now let ϕ and ϕ ϕi be
satisfiable for all i and let ϕ be -closed (wlog. by Prop. 2). If there exists i with ϕ µ
for all µ syntactically contained by ϕi, then ϕ ϕi and we are done. Otherwise, for all i
there exists µi such that ϕ µi. Lemma 12 yields Sat ϕ n

i 1 ϕi. Since Sat ϕ is
satisfiable (Lemma 8) and entails ϕ, this contradicts our assumption that ϕ n

i 1ϕi.

Corollary 16 Negation. The satisfiability of conjunctions of positive and negative FT
constraints ϕ ϕ1 ϕk can be tested in time O n3 where n is the size of the
given conjunction.

Proof. If ϕ is non-satisfiable then ϕ n
i 1 ϕi is trivially non-satisfiable. By Proposi-

tion 5, satisfiability of ϕ is decidable in time O n3 . Now assume ϕ to be satisfiable. By
the Independence Theorem 15, ϕ n

i 1 ϕi is nonsatisfiable if and only if ϕ ϕi for
some i. By Lemma 12 this is equivalent to the existence of i such that for all µ if ϕi µ
then ϕ µ. Overall, there are O n2 candidates µ to be tested for syntactic containment
and O n possible ϕi. By Lemma 6, ϕ µ can be tested in time O 1 such that the total
complexity sums up to time O n3 .

6 Weak Subsumption Constraints

We next introduce weak subsumption constraints that are used in computational lin-
guistics [7]. We show that their satisfiability problem is subsumed by the one for FT .
Syntax. We assume given a set C of constants c and a setD of features d. We consider
the set of labels L C D. A weak subsumption constraint η is a FT constraint of
the following form.

η :: c x x d y x y x y η η

Note that compatibility constraints do not occur in [7]. We add them here to simplify
our comparison.
Semantics. We interpret weak subsumption constraints over the whole class of feature
algebras with the induced weak subsumption ordering, which we will define below.
A feature algebraA over C andD consists of a set A that is called the domain ofA ,
a unary relation c A on A for every constant c C , and a binary relation d A on

A for every feature d D, which satisfy the following properties for all α α α
A , constants c c1 c2 C , and features d D:

1 if α d Aα and α d Aα then α α
2 if c1 α A and c2 α A then c1 c2

In the literature [22, 7] a slightly different notion of feature algebras with constants has
been considered. We will give a formal comparison between the two notions at the end
of the present section.

Proposition17. The structure F over L is a feature algebra over C and D.

Proof. The above properties follow from the axioms in and the antisymmetry of the
information ordering in FT (x y y x x y).

Given a feature algebra A , we define the weak subsumption ordering A as follows. A
simulation for A is a binary relation Δ on the domain of A that satisfies the following
properties for all elements α1, α2, α1, α2 of A’s domain:

1 if α1Δα2 c1 α1 A and c2 α2 A then c1 c2
2 if α1Δα2 α1 d Aα1 and α2 d Aα2 then α1Δα2

The weak subsumption ordering A of A is the greatest simulation relation for A . The
weak subsumption relation on A induces a compatibility relation A :

α1 Aα2 iff exists α such that α1 Aα and α2 Aα

A feature algebra A induces a structure with the same signature as F , in which is
interpreted as weak subsumption ordering A , as A , c as c A , and d as d A .

Proposition18 Dörre [8]. The structure F coincides with the structure induced by the
feature algebra defined by F .

Proof. It is sufficient to prove that the weak subsumption relation of the feature algebra
defined by F coincides with the information ordering on F . The proof in the case for
feature algebras with constants can be found in [8] on page 24 (Satz 6 and Satz 7).
There the algebra of feature trees has been called algebra of path functions. A direct
proof (additional 5 lines) is omitted for lack of space.

Theorem19. A weak subsumption constraint η is satisfiable over F if and only if η
is satisfiable over the structure induced by some feature algebra A .

Proof. If η is satisfiable then it is satisfiable over the structure induced by the feature
algebra defined by F . Conversely, every structure induced by a feature algebra is a
model of the axioms in . Thus, if η is satisfiable over one such structure then it is
equivalent to an -closed constraint (and not false) and hence satisfiable over F .

Alternative Notions of Feature Algebras. In the literature [22, 7] a restricted notion
of feature algebra has been considered that we call feature algebra with constants in the
sequel. The focus on feature algebras with constants leads to a restricted satisfiability
problem. This shows that the presented results properly extend the results in [7].
A feature algebra with constants is a feature algebra with the additional property that

if c α A then not α d Aα (1)

In order to handle the new property we consider the following mapping of weak sub-
sumption constraints over C and D to weak subsumption constraints over C
and D where is a new constant not contained in C .

c x y x y c y x d y x d y
x y x y x y x y η η η η

Proposition20. A constraint η is satisfiable in some feature algebra if and only if η
is satisfiable in some feature algebra with constants.

Proof. If η is satisfiable over a feature algebra A with constants C and features D
then η is satisfiable over the feature algebra F with labels C D. Given a

solution σ of η over A a solution σ of η over F can be defined as follows:

Dσ x p exists α in domain of A: σ x p Aα and p D

Lσ x p c exists α in domain of A : σ x p Aα and c α A

Conversely, let η be satisfiable in a feature algebra A . Then η is satisfiable in F by
Theorem 19. We consider the following feature algebra with constants F and show
that η is satisfiable over F . The constants and features of F are C andD ,
respectively. The domain of F contains all feature trees τ without labeled internal
nodes where a labeled internal node of τ is a path p such that p Dτ, exists c with
p c Lτ, but not exists d with pd Dτ. The selection and labeling relations of F
are those of FT restricted to trees without internal labels. Obviously, F satisfies all
three axioms of a feature algebra with constants. Now let σ be an A-solution of η. Then
the variable assignment σ mapping x on σ x as given below is an F -solution of η .

Dσ x Dσ x p exists a L : p a Lσ x
Lσ x p a p a Lσ x

7 Expressiveness

We show that FT is strictly more expressive than FT but that FT cannot express an
arity constraint. An FT constraint η is of the form x y, a x , x a y, or η η , and an
arity constraint of the form x a1 an . An arity constraint x a1 an holds if x
denotes a tree with subtrees at exactly a1 through an.

Proposition21. There is no FT constraint which expresses that a variable x denotes
the empty feature tree, i.e., if a b then there is no constraint equivalent to

x y z x y x z a y b z

Proof. If ϕ were such a FT constraint, then ϕ as well as its finite -closure would
entail x y for all variables y. This contradicts Proposition 13 for all those y such that
y V ϕ and x y (because if ϕ x y then x y or x y V ϕ). Such a variable y
exists since V ϕ is finite.

Lemma 22. Let η be an FT constraint. Then η x y if and only if η y x.

Proof. The FT constraint η is equivalent to the FT constraint ϕ obtained from η by
replacing all equalities x y by inequalities x y y x. Hence, x y in ϕ iff y x in ϕ,
and since algorithm preserves this invariant it also holds for the -closure of ϕ. The
claim follows from Proposition 13.

Proposition23. If x y then there is no FT constraint η equivalent to x y.

Proof. This follows immediately from Lemma 22 and Proposition 13.

8 Completeness of the Satisfiability Test

Proposition 4. Every -closed constraint ϕ is satisfiable over FT .

The proof is based on the notion of path reachability and covers the rest of the sec-
tion. We proceed as follows. We first define path reachability, then give two Lemmas,
and finally compose the proof of Proposition 4 from these Lemmas.
For all paths p and constraint ϕ, we define a binary relation ϕ

p, where x
ϕ
p y reads as

“y is reachable from x over path p in ϕ”:

x ϕ
ε y if y x in ϕ

x ϕ
a y if x a y in ϕ

x ϕ
pq y if x

ϕ
p z and z

ϕ
q y

Define relationships x ϕ
p a meaning that ”a can be reached from x over path p in ϕ”:

x ϕ
p a if x

ϕ
p y and a y in ϕ

For example, if ϕ is the constraint x y a y x a u x b z z a x b z then the
following reachability propositions hold: y ϕ

ε x, x
ϕ
b z, x

ϕ
ba y, x

ϕ
ba x, etc., as well

as x ϕ
ε a, x

ϕ
b b, x

ϕ
ba a, etc.

Definition 24 Path Consistency. We call a constraintϕ path consistent if the following
two conditions hold for all x, y, p, a, and b.

1. If x ϕ
p a, x x, and x ϕ

p b then a b.

2. If x ϕ
p a, x y, and y ϕ

p b then a b.

Lemma 25. Every - -closed and path consistent constraint is satisfiable.

Proof. Let ϕ be - -closed and path consistent. We define the variable assignment
ϕ into feature trees as follows:

D
ϕ x p x ϕ

p y and L
ϕ x p a x ϕ

p a

The path consistency of ϕ condition 1 implies that L
ϕ x is a partial function. Thus

ϕ x is a feature tree. We now verify that ϕ is a solution of ϕ.

– Let x y in ϕ. For all x , if y ϕ
p x then x

ϕ
p x by the definition of path reachability.

Thus, D
ϕ y D

ϕ x . For all a if y
ϕ
p a then x

ϕ
p a by the definition of path

reachability. Thus, L
ϕ y L

ϕ x , i.e., ϕ y ϕ x .
– Consider x a y in ϕ. We have to prove for all p, z, and b the equivalences

x ϕ
ap z iff y ϕ

p z and x ϕ
ap b iff y ϕ

p b

The first equivalence is equivalent to D
ϕ y p ap D

ϕ x and the second
one to L

ϕ y p b ap b L
ϕ x . We start proving the first equivalence.

If y ϕ
p z then x

ϕ
ap z since x a y in ϕ. Suppose x

ϕ
ap z. By definition of path

reachability there exists x and y such that

x ϕ
ε x x a y y ϕ

p z

The -closedness of ϕ and x ϕ
ε x imply x x in ϕ. The -closedness ensures

y y in ϕ such that y ϕ
p z holds. We now prove the second equivalence above. If

x ϕ
ap b then there exists z such that x

ϕ
ap z and b z . The first equivalence implies

y ϕ
p z and thus y

ϕ
p b. The converse is simple.

– Let a x in ϕ. Reflexivity (1-closedness) implies x x in ϕ. Thus x ϕ
ε a such

that ε a Lx.
– Let x y in ϕ. We have to show that the set L

ϕ x L
ϕ y is partial function. If

p a L
ϕ x and p b L

ϕ y then x
ϕ
p a and y

ϕ
p b. The path consistency

of ϕ condition 2 implies a b.

Lemma 26. Every -closed constraint is path consistent.

Proof. Let ϕ be -closed. Condition 1 of Definition 24 follows from condi-
tion 2 of Definition 24 and 1-closedness. The proof of condition 2 is by induction
on paths p. We assume x, y, a, and b such that x ϕ

p a, x y in ϕ, and x ϕ
p b. If p ε,

then there exist n m 0, x1 xn, y1 ym such that:

x x1 xn 1 xn a xn in ϕ
y y1 ym 1 ym b ym in ϕ

-closedness implies that xn ym in ϕ (2 yields x y1 in ϕ, , x ym in ϕ. There-
fore ym x in ϕ by 3-closedness, and hence ym x1 in ϕ, , ym xn in ϕ by 2-
closedness.) Hence, -closedness implies a b.
In the case p a q, then there exists there exist x , y , x̃, ỹ with:

x ϕ
ε x x a x̃ in ϕ x̃ ϕ

p a
y ϕ

ε y y a ỹ in ϕ ỹ ϕ
p b

Since x x in ϕ we have x y in ϕ by -closedness (as above). Thus, -closedness
implies x̃ ỹ in ϕ such that a b holds by induction hypothesis.

Proof of Proposition 4. If ϕ is -closed then ϕ is path consistent by Lemma 26 and
thus satisfiable by Lemma 25.

Corollary27. Let ϕ be an -closed constraint. Then ϕ y x a y if and only if there
are variables x and y such that ϕ x a y and ϕ x x.

Proof. Assume ϕ x a y x x. Then it holds for the minimal solution ϕ of an
-closed constraint that a L ϕ y . Hence ϕ y x a y . .

Acknowledgments. We would like to thank Jochen Dörre, Gert Smolka, and Ralf
Treinen for discussions on the topic of this paper. We would also like to acknowledge
many helpful remarks of the referees. The research reported in this paper has been
supported by the the Esprit Working Group CCL II (EP 22457) the SFB 378 at the
Universität des Saarlandes.

References

1. H. Aı̈t-Kaci and A. Podelski. Entailment and Disentailment of Order-Sorted Feature Con-
straints. In A. Voronkov, editor, 4th International Conference on Logic Programming and
Automated Reasoning, LNAI 698, pp. 1–18. Springer, 1993.

2. H. Aı̈t-Kaci and A. Podelski. Towards a Meaning of Life. The Journal of Logic Program-
ming, 16(3 and 4):195–234, July, Aug. 1993.

3. H. Aı̈t-Kaci, A. Podelski, and G. Smolka. A feature-based constraint system for logic pro-
gramming with entailment. Theoretical Computer Science, 122(1–2):263–283, Jan. 1994.

4. R. Backofen. A Complete Axiomatization of a Theory with Feature and Arity Constraints.
The Journal of Logic Programming, 1995. Special Issue on Computational Linguistics and
Logic Programming.

5. R. Backofen and G. Smolka. A complete and recursive feature theory. Theoretical Com-
puter Science, 146(1–2):243–268, July 1995.

6. A. Colmerauer. Equations and Inequations on Finite and Infinite Trees. In 2nd Future Gen-
eration Computer Systems, pages 85–99, 1984.

7. J. Dörre. Feature-Logic with Weak Subsumption Constraints. In Constraints, Languages,
and Computation, chapter 7, pages 187–203. Academic Press, 1994.

8. J. Dörre. Feature-Logik und Semiunifikation. Dissertationen zur Künstlichen Intelligenz,
Band 128. Infix-Verlag, St. Augustin, 1996.

9. J. Dörre and W. C. Rounds. On Subsumption and Semiunification in Feature Algebras.
In 5th IEEE Symposium on Logic in Computer Science, pages 300–310. IEEE Computer
Science Press, 1990.

10. R. Helm, K. Marriott, and M. Odersky. Constraint-based Query Optimization for Spatial
Databases. In 10th Annual IEEE Symposium on the Principles of Database Systems, pages
181–191, May 1991.

11. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic Pro-
gramming, 19/20:503–582, May-July 1994.

12. R. M. Kaplan and J. Bresnan. Lexical-Functional Grammar: A Formal System for Gram-
matical Representation. pages 173–381. MIT Press, Cambridge, MA, 1982.

13. M. Kay. Functional Grammar. In C. Chiarello et al., editor, Proc. of the 5th Annual Meeting
of the Berkeley Linguistics Society, pages 142–158, 1979.

14. J. Lassez and K. McAloon. Applications of a Canonical Form for Generalized Linear Con-
straints. In 5th Future Generation Computer Systems, pages 703–710, Dec. 1988.

15. M. Müller. Ordering Constraints over Feature Trees with Ordered Sorts. In P. Lopez,
S. Manandhar, and W. Nutt, eds., Computational Logic and Natural Language Understand-
ing, Lecture Notes in Artificial Intelligence, to appear, 1997.

16. M. Müller and J. Niehren. Entailment for Set Constraints is not Feasible. Techni-
cal report, Programming Systems Lab, Universität des Saarlandes, 1997. Available at
http://www.ps.uni-sb.de/ mmueller/papers/conp97.html.

17. M. Müller, J. Niehren, and A. Podelski. Inclusion Constraints over Non-Empty Sets of
Trees. In International Joint Conference on Theory and Practice of Software Development
(TAPSOFT), LNCS, Springer, 1997.

18. C. Pollard and I. Sag. Head-Driven Phrase Structure Grammar. Studies in Contemporary
Linguistics. Cambridge University Press, Cambridge, England, 1994.

19. W. C. Rounds. Feature Logics. In J. v. Benthem and A. ter Meulen, editors, Handbook of
Logic and Language. Elsevier Science Publishers B.V. (North Holland), 1997.

20. S. Shieber. An Introduction to Unification-based Approaches to Grammar. CSLI Lecture
Notes No. 4. Center for the Study of Language and Information, 1986.

21. S. Shieber. Parsing and Type Inference for Natural and Computer Languages. SRI Interna-
tionax[l Technical Note 460, Stanford University, Mar. 1989.

22. G. Smolka. Feature constraint logics for unification grammars. Journal of Logic Program-
ming, 12:51–87, 1992.

23. G. Smolka. The Oz Programming Model. In J. van Leeuwen, editor, Computer Science
Today, LNCS, vol. 1000, pages 324–343. Springer-Verlag, Berlin, Germany, 1995.

24. G. Smolka and R. Treinen. Records for Logic Programming. The Journal of Logic Pro-
gramming, 18(3):229–258, Apr. 1994.

25. R. Treinen. Feature constraints with first-class features. Mathematical Foundations of Com-
puter Science, LNCS, vol. 711, pages 734–743, Springer-Verlag, 1993.

