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Abstract

Set-based analysis of logic programs provides an accurate
method for descriptive type-checking of logic programs. The
key idea of this method is to upper approximate the least
model of the program by a regular set of trees. In 1991,
Frithwirth, Shapiro, Vardi and Yardeni raised the question
whether it can be more efficient to use the domain of sets of
paths instead, i.e., to approximate the least model by a regu-
lar set of words. We answer the question negatively by show-
ing that type-checking for path-based analysis is as hard as
the set-based one, that is DEXPTIME-complete. This re-
sult has consequences also in the areas of set constraints,
automata theory and model checking.

1 Introduction

Type-checking for path-based approximation.  De-
scriptive types for logic programs are defined as a conserva-
tive approximation of the least model of a program. Type
inference is performed automatically without any additional
information from the programmer. Such type information
can be then used for debugging of the program or for opti-
mizations during its compilation. The type-checking prob-
lem is to determine whether a ground atom belongs to such
conservative approximation. An atom belonging to the ap-
proximation is said to be well-typed, otherwise it is said to
be ill-typed. This view of typing is optimistic in the sense
that well-typed atoms may succeed for the program, whereas
ill-typed atoms certainly do not succeed.

In [11], Frithwirth, Shapiro, Vardi and Yardeni proposed
to represent those approximations, and thus types, as syn-
tactically restricted logic programs. These restrictions are
necessary for the decidability of the type-checking problem.
The type inference mechanism is then given by a syntactic
transformation of a logic program into a “simpler” one, so-
called proper unary-predicate program. The notion of types
it defines coincides with the one proposed by Heintze and
Jaffar in [14], called set-based analysis. The basis of this
analysis is to present types as sets of trees.

The program P below is a proper unary-predicate pro-
gram, and thus its set-based approximation is exact — it
coincides with the least model of the program.

p1(f(a,b))
p2(f(a,a))
p3(f(b,b))
q(z) + p1(z),p2(z)
q(z) + p1(z), ps(x)

On can notice that the ground atom pi(f(a,b)) is well-
typed wrt. P since it belongs to the least model of the pro-
gram. Moreover, for any ground term ¢, ¢(t) is ill-typed
since the denotation of the predicate ¢ in the program P is
empty.

Frihwirth, Shapiro, Vardi and Yardeni showed that the
type-checking problem for the set-based approximation (z.e.
the membership problem of a ground atom in the least
model of a proper unary-predicate program) is DEXPTIME-
complete.

There is another conservative approximation mentioned
in [11], namely the path-based approximation.’ Tt has al-
ready been considered in [10, 23] and is rephrased in [11]
in terms of program transformation. When set-based ap-
proximation is based on sets of trees, path-based approxi-
mation is based on sets of words: the key idea of the path-
based approximation is to view atoms (or sets of atoms)
as sets of paths (which are sets of words) occurring in
these atoms. Function symbols f of arity n strictly greater
than 1 are replaced by n unary function symbols f1,..., fr.
The term f(a,b) is then considered as the sets of paths
{f1(a), f2(b)} and the set of terms {f(a,b), f(b,b)} as the
set {fl (a)a fQ(b)a fl(b)}

The path-based approximation is presented in [11] in
terms of a transformation of a logic program into a unary
one, where both predicate and function symbols are at most
unary. This approximation is rougher than the set-based
one, as illustrated with the example below: from the pro-
gram P above, one obtains the following program mp, whose
semantics is the path-based approximation of P.

p1(fi(a)) p1(f2(b))
p2(f1(a)) p2(f2(a))
p3(f1(b)) p3(f2(b))
q(z) < pi(z), p2(z)
q(z) + p1(z), ps(x)

I The path-based approximation is often confused with the path-
closed one, for which the decidability of type checking is not known.
See Appendix for a discussion.



The type-checking problem is formulated here as the in-
clusion of the finite set of paths of a ground atom in the
path-based approximation of the program. For instance,
the least model of mp contains the two atoms ¢(fi(a)) and
q(f2(b)). Since the ground atom ¢(f(a,b)) which is ill-typed
for the (set-based approximation of) program P, is identified
with the set of paths {q(f1(a)),q(f2(b))}, it is well-typed for
the path-based approximation wp of P.

Since the path-based approximation of a unary logic pro-
gram coincides with the program itself, the type-checking
problem for the path-based approximation is equivalent to
the membership problem of a ground atom in the least model
of a unary logic program.

As path-based approximation is strictly “weaker” than
the set-based one, Frithwirth, Shapiro, Vardi and Yardeni
raised the question whether the type-checking problem for
the path-based approximation would be simpler than for the
set-based approximation. We answer negatively this ques-
tion by showing that the type-checking problem for the path-
based approximation is also DEXPTIME-complete.

Set constraints. Set constraints denote relations be-
tween sets of trees. Syntactically, they are conjunctions
of inclusions between expressions built over variables, con-
structors (constants and function symbols from a given al-
phabet) and a choice of set operators that defines the spe-
cific class of set constraints. Their main application domain
is set-based program analysis and type inference for func-
tional [20], imperative [17] and logic programming [14] lan-
guages, but they are also used in order-sorted languages and
in constraint logic programming. See [1, 16, 19] for overviews
of this area.

Definite set constraints were introduced by Heintze and
Jaffar in [13] and used in set-based program analysis. This
class is strictly less expressive than the general class of set
constraints (where all boolean set operators, that is, union,
intersection and complement, as well as function symbols of
arbitrary arity are allowed). In fact, it was observed in [7]
that definite set constraints are exactly as expressive as set
constraints with intersection as the only boolean operator,
and that the satisfiability problem for constraints in this
class is DEXPTIME-complete.

Unary set constraints were first introduced by Aiken,
Kozen, Vardi and Wimmers in [2]. This is a class of set
constraints that does not allow the use of function sym-
bols of arity greater than 1. Obviously, this class is also
strictly less expressive than the general one. It is shown
in [2] that the satisfiability problem for unary set constraints
is DEXPTIME-complete, as opposed to the NEXPTIME-
completeness of the non-unary case. The DEXPTIME-
hardness proof presented there depends essentially on the
complement operator, which is not allowed in definite con-
straints.

In both cases (definite or unary) the restriction in expres-
sivity decreases the complexity of the satisfiability problem
(see the right part of Figure 1). A similar decrease of com-
plexity (to PSPACE) was expected if one takes the both
restrictions at the same time. However, as we prove be-
low, this is not the case: the satisfiability problem for unary
definite set constraints is DEXPTIME-complete.

There are quite strong connections between definite or
unary set constraints and tree automata. In particular,
the DEXPTIME-hardness result for definite set constraints
works by an encoding of the intersection emptiness prob-

lem for tree automata. Unary set constraints are equiva-
lent to the existential fragment of the second-order theory
of n successors, and thus can be solved using tree-automata
techniques [22]. Since for many DEXPTIME-complete prob-
lems in the tree-automata theory (like intersection empti-
ness, language equivalence, universality) their corresponding
problems for string automata are PSPACE-complete, it was
expected that satisfiability of unary definite set constraints
should also be PSPACE-complete. Surprisingly, as we show
here, this problem is DEXPTIME-complete.

Automata theory. One can think of a nondetermin-
istic finite automaton (NFA) as a machine equipped with
a finite control and a stack, where the input word is writ-
ten on the stack and the automaton is allowed to do only
pop operations (it is not allowed to push anything on the
stack). Biichi [4] extended word automata to canonical sys-
tems, which may be viewed as finite automata with both
pop and push operations. It is well-known that the empti-
ness problem for such automata (often called pushdown pro-
cesses) is decidable in PTIME. Another possible extension
of finite automata is alternation. The emptiness problem
for alternating word automata is PSPACE-complete. A nat-
ural question that arises here is what happens if we add
both: alternation and push operations (see the left part of
Figure 1). As we show in this paper, already the mem-
bership problem (and thus, also emptiness) for such au-
tomata is DEXPTIME-hard (the membership in DEXPTIME
is easy by reduction to the tree case, so these problems are
DEXPTIME-complete). These are the first problems that we
are aware of that concern finite automata on words and are
DEXPTIME-complete. It is worth noting here that a similar
extension for alternating tree automata does not change the
complexity (DEXPTIME) of the emptiness problem [11, 9, 6].

One should not confuse the automata considered here
with alternating pushdown automata from [5, 18]. The dif-
ference is that alternating pushdown automata have not only
stack, but also input tape, which gives them much more
computational power: while alternating automata with push
operations recognize only regular languages, the class of
languages accepted by alternating pushdown automata is
U, DTIME(c").

Model checking. Bouajjani, Esparza and Maler in [3]
considered a problem of model checking for pushdown sys-
tems. They reduce this problem to a reachability problem
for what they call alternating pushdown systems and show
that this problem is decidable in DEXPTIME. These alter-
nating pushdown systems are exactly the above mentioned
finite automata extended with push operations and alterna-
tion. The problem whether a given alternating pushdown
systems accepts a given word is a particular case of the
reachability problem. This shows that the reachability al-
gorithm from [3] is optimal.

2 Preliminaries

Unary definite set constraints. The class of defi-
nite set constraints was the first class of set constraints for
which decidability was shown [13, 15]. It was introduced
by Heintze and Jaffar and is used for the type analysis of
Prolog programs [14, 12, 16]. The satisfiable constraints in
this class have a least solution (this fact is at the origin of
the attribute “definite”).
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Figure 1: Complexity for problems in automata theory and set constraints

Formally, we define the left and right set expressions and
unary definite set constraints by the following grammar?

le == x|c| fle)]| f'Ue) | leUle | lenle | T
re == x| c| f(re
sc == leCre | scAsc

where c and f range over constants and unary function sym-
bols from a given signature ¥, and x ranges over the set Var
of variables. Note that there is no complement operator
here.®

A solution of a set constraint is a valuation o : Var — 27=
that assigns to variables sets of ground terms over ¥. In
our case, since ¥ does not contain symbols of arity greater
than 1, Tx is set of strings rather than trees. A valuation «
is a solution of a set constraint, if for every conjunct le C re
we have a(le) C a(re), where

{a}
= {/(t) |t € aexp)}

a)
a(f (wp)) =
o(f '(ezp)) = {t| f(t) € alezp)}
alezpUezrp’) = a(ezp)U a(ezp’)
alezpnN ea:p'; = a(ezp) N a(ezp)

(T

The satisfiability problem for set constraints is the prob-
lem of deciding whether there exists a solution for a given
set constraint.

= TE

Alternating pushdown systems. Alternating push-
down systems were introduced by Bouajjani, Esparza and
Maler in [3] in a context of model-checking of pushdown
systems.

Formally, an alternating pushdown systems is a tuple
(Q,%, L, A), where @ is a finite set of states, ¥ is a finite
stack alphabet, 1 € ¥ is a bottom stack symbol, and A is

2This grammar comes directly from restricting definite set con-
straints as introduced by Heinze and Jaffar in [13] to the unary sig-
nature. However, using an observation from [7] we can remove union
and projection from the left-hand side or add intersection on the right-
hand side without changing the expressivity. In the unary case the
expressivity also does not change if we add projection on the right-
hand side.

30ne can express complement using union and intersection. Def-
inite set constraints are equally expressive as set constraints with
intersection as the only boolean set operator. In the unary case these
constraints are also equally expressive (by duality) to the set con-
straints with union as the only boolean set operator. Since we do not
have both union and intersection at the same time, we cannot express
complement.

a function that assigns to each element of () x ¥ a positive
(that is, negation-free) boolean formula over elements of @ x
3*. We assume that the symbol L can be neither put nor
removed from stack, that is, A assigns to elements from
Q x (X — {L1}) formulas over Q x (X — {L})* and to the
elements from @ x {1} formulas over @ x (¥ — {L})"L
For better readability we will assume that these boolean
formulas are in disjunctive normal form, which allows to
define A equivalently as a subset of the set of transition
rules (Q x ) x 29%", By convention, the formula true is
identified with the empty set. For example, instead of

A(g,a) = ((q1, w1) V (g2, w2)) A (g3, w3)

we write

(qua)u (q27w2)7 ((I3,7.U3)}>

{ <<(q’a’)7{{(q1)w1)7(anw3)}>a }CA

or simply (¢,a) = {(q1,w1), (g3, ws)}
(qv a) — {(q2,7.U2), (q3aw3)}

and instead of
A(g,a) = true

we write {((g,a),0)} C A or simply (g,a) — true .

A configuration in a pushdown system (Q,%, L, A) is
a constant true or any pair (¢,w) where ¢ € Q and w €
(2 — {L})*L. Intuitively, in a configuration (q,aw) the
system chooses nondeterministically a transition (g,a) —
{(q1,w1),...,(gn,wn)} (or (g,a),— true; in this case it
moves to the configuration true) from A and splits into n
copies. Then, the i-th copy pops a from stack, pushes there
w; and moves to the state g;, that is, the i-th copy moves
from the configuration (q,aw) to (¢i, w;w). In a configura-
tion true the system remains forever.

The reachability relation = between configurations and
sets of configurations in a pushdown system is defined in-
ductively as follows.

° (q7aw) = {(q1,w1w),...,(qn,wnw)} for all (qva) -
{(qlawl)a"')(qnawn)} €A

e (g,aw) = {true} if (g,a) — true € A
e ¢ = {c} for all configurations c

e ifc= {c1,...,cx} and ¢; = C; for all 1 < ¢ < k then
c=>C1U...UCk



The reachability problem for alternating pushdown sys-
tems is the following problem. Given alternating pushdown
systems P, a configuration ¢ and [a regular] set of configu-
rations C, does c reach [a subset of] C in P?

A particular case of the reachability problem is the fol-
lowing acceptance problem. Given alternating pushdown
systems P and a configuration ¢, does c¢ reach {true} in
P? The main result of this paper is that the acceptance is
DEXPTIME-hard, which shows that the reachability cannot
be decided faster than in exponential time.*

Alternating Turing machines. Alternating Turing
machines (ATM) were introduced by Chandra, Kozen and
Stockmeyer in [5]. They generalize nondeterministic Turing
machines in the same way as alternating finite automata
generalize finite automata. Formally, an alternating Turing
machine M is a tuple (@, X, X, A, go,b, F,U), where

e () is a finite set of states,

Yn is a subset of X called the set of input symbols,

Y is a finite set of tape symbols,

A:Q x D — 29xx{leftright} i the transition function,

qo is the initial state of M,

e b is a symbol in ¥ called blank,

e F' C (@ is the set of final states, and
o U C Q is the set of universal states.

A configuration of M is a string of the form vqw where ¢ € @
and vw € ¥*. The position of ¢ in vqw marks the position
of the head of M on the tape containing the word vw (the
machine reads the first symbol of w).

A configuration of the form gow is called initial. A con-
figuration vqw is called final if ¢ € F, universal if ¢ € U,
and ezistential if ¢ ¢ U. A configuration ¢’ is a successor of
a non-final configuration ¢, in symbols ¢ - ¢', if ¢’ follows
from c in one step, according to the transition function A.

As an illustration, let us consider a configuration vbgaw
with v,w € £*, a,b € ¥ and q € Q. For a transition function
A associating the set {(q',a’, left), (¢"',a" , right)} with (g, a),
the two configurations vq'ba’w and vba' ¢ w are (the unique)
successors of vbgaw.

We say that a configuration c leads to acceptance if

e cis final, or

e cis existential and there exist a successor of ¢ that leads
to acceptance, or

e c is universal and every successor of ¢ leads to accep-
tance.

A word w is accepted by M if the initial configuration gow
leads to acceptance. Equivalently, a word w is accepted iff
there exists an accepting computation tree for M and w, that
is a tree whose nodes are labeled with configurations, such
that the root is labeled with the initial configuration; each

413] contains a misleading statement that the reachability problem
can be solved in time polynomial in the size of P and exponential
in the size of [the description of] C. As we show here, this is not
true in general (in the case of our acceptance problem the size of C
is constant). It holds for the restricted case considered in [3], where
the size of C is greater than the size of P.

intermediate node labeled with an existential configuration
has one child labeled with a successor configuration; each
intermediate node labeled with a universal configuration has
children labeled with all successor configurations; and all
leaves are labeled with final configurations.

Note that the acceptance condition for an ATM with
an empty set of universal states is the same as the usual
acceptance condition for Turing machines.

The proof of our main result is based on the result
from [5] saying that the class of problems that can be
solved in alternating polynomial space is the same as the
class of problems solvable in deterministic exponential time
(APSPACE=DEXPTIME)

Unary logic programs. We will use logic programs to
encode computations of alternating Turing machines. The
programs that we use are usual logic programs, with several
restrictions. The most important restriction is that all pred-
icate and all function symbols (except one constant symbol)
are unary. Less important is that we allow only one variable
and only flat terms (that is, terms of depth at most one) in
heads of clauses. Formally, let 3 be a set of function sym-
bols consisting of one constant symbol L and finitely many
unary symbols f,g,..., let Pred be a finite set of predicate
symbols, and let « be a variable. A unary logic program is
a finite set of clauses of the form

po(to) <= pi(t1),- .., pn(tn)

or po(to) < true, where po,...,pn € Pred, to,...,t, are
terms over ¥ U {z} with ¢o being flat, that is, to is either L
or z or f(z) for some f € ¥, with an additional restriction
that all clauses with po(L) in the head have true in the body.

A proof tree for a ground atom A and a logic program P
is a tree whose nodes are labeled with ground atoms, such
that the root is labeled with Aj; for each intermediate node
that is labeled with B and has children labeled By, ..., By,
the clause B < Bji,..., B, is a ground instance of a clause
in P; and all leaves are labeled true.

We say that an atom A belongs to the least model of a
program P if there exists a proof tree for A and P.

The membership problem for such programs is to decide,
whether a given ground atom p(t) belongs to the least model
of a given program P.

It is immediate to see that the membership problem for
unary logic programs reduces to the acceptance problem
for alternating pushdown systems. A unary logic program
over ¥ rewrites directly to an alternating pushdown system
(Pred,® — {1}, L, A), where A is obtained from the set of
clauses roughly by reversing the arrows and removing the
variable . The only detail here is that while rewriting a
clause of the form

s Pu(tn(2))

one should first replace it with the set of clauses

po(f(2)) = p1(t1(f(2))), - -, Paltn(f(2)))

for all unary f € X together with a clause po(Ll) <«
Pr(t1(L)), -, pa(tn(L):

It is quite easy to see that the membership problem
reduces to the satisfiability problem for unary definite set
constraints. To see this, fix a program P, and construct
the following set constraint ¢. The set variables that oc-
cur in ¢ are exactly these elements of Pred that occur in

po(z) + p1(ti(z)),...



P. For each clause p(t) < true the constraint ¢ contains
the inclusion ¢’ C p, where t' is the expression obtained
from ¢ by replacing the variable z with the symbol T. For
a given term ¢(x) let t~1 be a context obtained from #(-)
by reversing the order of symbols and adding to each sym-
bol the superscript -1, for example, if t(z) = f(g(h(x)))
then t™' = h™'(¢7*(f~*(-))). For each clause po(f(z)) +
p1(ti(z)),...,pn(tn(z)) in P the constraint ¢ contains the
inclusion f(t7'(p1) N ... N, (pn)) C po. For the clauses
po(z) < ... we just omit the symbol f on the left-hand side
of the corresponding inclusion.

It is quite obvious that the least model of the program
and the least solution of ¢ represent the same sets: a clause
po(to) < pi(t1),...,pn(tn) says that the set po contains
all the terms of the form ¢y if ¢; is a member of p; for all
i =1,...,n. Exactly the same condition is expressed by the
corresponding conjunct in . Now the answer to an instance
P, p(t) of the membership problem is ‘no’ if and only if the
constraint p ApNt C LApNt C f(L) is satisfiable. Note
that the two conjuncts pN¢t C L and pN¢ C f(L) express
simply that the set p N ¢ is empty.

It is not difficult to present reductions in the other direc-
tions, that is, for a given set constraint or a given pushdown
system one can find a corresponding unary logic program.
However, for the lower bounds for pushdown systems and set
constraints, these reductions are not relevant. The exponen-
tial upper bounds for these problems are proved in [3, 7].

3 The main result

In this section we present our main result, that is,
DEXPTIME-hardness of the membership problem for unary
logic programs. By the reductions presented above, it also
shows the DEXPTIME-hardness of the reachability problem
for alternating pushdown systems and of the satisfiability
problem for unary definite set constraints.

Fix an alternating Turing machine M =
(Q,%m,2, A, qo,0, F,U) working in polynomial space
and a word w. Let P be a polynomial such that M uses
at most P(|w|) tape cells, and let n = P(Jw|) + 2 (we will
use words of length n to encode configurations of M; for
this we need P(|w|) symbols to encode the tape content,
one symbol for the state and one symbol to separate the
current configuration from the next one).

We will write a unary logic program Py and ground goal
p(t), both of size polynomial in the size of M and w, such
that p(t) is a member of the least model of Py if and only
if M accepts w.

The main idea to recognize whether the initial con-
figuration leads to acceptance is to consider computation
paths. A computation path for M is a word of the form
woHw1F . .. wpF such that for all 4 < k, w;y1 is a successor
configuration of w;. Such a path leads to acceptance if its
last configuration wy does. The program below checks this
in the following way. If wy is a final configuration, nothing
has to be done. If wy is existential, the program nondeter-
ministically guesses a successor wy41 and recursively checks
that wo# ... wgt1# leads to acceptance. If wy is universal,
the same is checked for all possible successors w41

First we fix the signature that we use, namely the set
Yp =X UQU{#, L} We assume that neither # nor L is
a member of ¥ U Q. All symbols except L are unary, while
L is the only constant symbol.The symbol # will be used
to separate configurations from each other.

From now on we identify words from (¥ U Q U {#})"
with ground terms over ¥p. For example a word abgoc is
identified with the term c¢(go(b(a(L)))). Note that the term
representation of a word is reversed: adding a symbol at the
end of a word results in adding a symbol in the beginning
of the term.

Our program uses the following set of predicate symbols

Pred = {leads_to_acc, final}
U {Check,‘,,|0'627>—{J_}, i:O,...,n—l}
U {readsq. |a €3, g€ @}
U {succs |6 € Q x T x Q x X x {left, right}}
U {pushleft; | § € Q@ x & x Q x X x {left,right}}
U {transs |§ € Q@ x & x @ x = x {left, right}}
U  {pushright}.

Next we define the meaning of these predicates. The pred-
icate final holds for all words from (X — {L1})"¢¥X" where
q € F; in particular it holds for all words that encode com-
putation paths with the last configuration being final.

final(q(z)) « true forall g € F
final(a(z)) < final(z) foralae X

The predicate leads_to_acc is defined by the clause

leads_to_acc(#(z)) « final(z),

the clauses

leads_to_acc(#(z))  readsg,qa(x),suUCC(q,q,q',a’,m) (F(z))

for all existential ¢ € @, all a € ¥ and all {¢',a’,m) €
A(g,a), and the clauses

leads_to_acc(#(z)) ¢+ reads,(z),

SUCC(g,a,q' o’ m) (#(2))
(¢’ ,a’ ,m)EA(g,a)

for all universal ¢ € @ and all @ € X.

The predicate readsg,q(z) says that in the last configura-
tion in the path z, the machine M is in the state g, read-
ing the tape symbol a. Formally it holds for all words in
(BUQU{#})"qaX". It is defined by

readsg,q (b(z)) < readsqq(z) forallbe X

readsg,q (a(z)) < checko ().

For all i < n and all 0 € ¥p — {L} we have a predicate
check;,». The predicates check; , hold for_all terms encoding
the words in (BUQU{#})* o (ZUQU{#})'. These predicates
are defined by

check;t1,0(0'(z)) <+ check;q(z)
forall i >0, 0,0’ € Zp —{L} and
checko,s(o(z)) < true

forallc € ¥p — {1}

The predicate succs holds for words of the form uw#
such that w is a configuration whose successor by the tran-
sition § leads to acceptance. This predicate is defined by a
single clause

succs(z) — pushlefts(z).



transition (g, a, q'a’, right):

n—1
| [a]e] [#] «]d] |
transition (q,a,q'a’, left): "

n;l
| [o]aa] [#] ¢ [o]a] |
n—3

Figure 2: Transitions of a Turing machine

The predicate pushleft; holds for words of the form uw#w'’
such that w is a configuration whose successor uvw#w'w" by
the transition 6 leads to acceptance, where w' € ©*. Oper-
ationally, this predicate is responsible for guessing a correct
prefix of the successor configuration, up to the position of
the head of the machine. It is defined by

pushlefts(z) < pushleft;(a(z)), check,—1,o(z) for all a€X

pushlefts(z) < transs(z).

The predicate transs is defined depending on the move
of the head of the Turing machine, for § = {(q,a,q'a’, right)
by the clause

trans(g g q'a’ ighty () < pushright(¢’'(a'(z))),
checky—1,4(z), checky,—2,q ()

and for § = (g,a,q’'a’,left) by the clauses

transg q,q'a’ lefey (2) < pushright(a’(b(q'(z)))),
checky,_1,(z), checkn—2,4(z),
checkn—3,q0()

for all b € X.

The predicate pushright holds for words of the form
uw#w' such that w is a configuration whose successor
uw#H#w'w' leads to acceptance, where w'’ € ¥*. Opera-
tionally, this predicate is responsible for guessing a correct
suffix of the successor configuration. It is defined by

pushright(z) < pushright(a(z)), check,—1,q(z)
for all @ € ¥ and
pushright(z) «+ leads_to_acc(#(z)), check, _1,%(z).

This ends the construction of the program. We have the
following theorem (remember that we identify strings with
their term representation).

Theorem 1 The atom leads_to_acc(gowh™ (WD ~1wI4)  pe-
longs to the least model of the program above if and only
if the machine M accepts the word w.

Proof. It is enough to show that there exists a proof tree
for the atom Ieads_to_acc(qowbP(lwl)f‘“" #) and the program
above if and only if there exists an accepting computation
tree for the machine M and the word w.

Recall that n = P(|w|) 4 2, so the word gowb® (WD =lwlg
has the length exactly n.

We start with the ‘if’ direction. Suppose that M accepts
w. Take an accepting computation tree T¢ for M and w.
We will inductively build a proof tree Tp, such that for every
node labeled leads_to_acc(p) in T'p there will be a correspond-
ing node labeled ¢ in T¢, where p is a path leading to ¢ in
To. We start from the node leads_to_acc(gowb®” D =1wlay,

Suppose that we have constructed a partial proof tree
and take a node labeled leads_to_acc(p#) whose children are
not yet defined. If the last configuration ¢, of the path p
is final, we simply choose the clause leads_to_acc(#(z)) +
final(z) and follow the construction of the proof tree for the
call final(p). If ¢p is existential, then let ¢ be the config-
uration following ¢, in T¢, and let § = (g,a,q’,a’,m) be
the transition leading from ¢, to c¢. By choosing the clause
leads_to_acc(#(z)) < readsg,q(x),SUCC(q.q,q",a7,m) (F(2)) We
are sure that the goal readsy.(z) succeeds, and that the
goal succ(q.q.q'.a’,m) (#()), after following the nondetermin-
istic choices that correspond to the consecutive symbols in
the configuration of ¢ (so that all the check-predicates suc-
ceed), yields a goal leads_to_acc(p#c#) that corresponds to
the node labeled ¢ in T¢. If the configuration ¢, is universal,
then by following the clause

leads_to_acc(#(z)) ¢+ reads,(z),

/\ SUCC(g,a,¢' 0’ ,m) (#(T))

(¢',a’',m)€A(q,a)

and analogous construction we get an extension of the tree
to the nodes corresponding to all successors of ¢, in T¢.
Since T¢ is finite, our construction terminates giving a proof
tree for the atom leads_to_acc(gowb®” "D ~1"I4) which shows
that it belongs to the least model of the program.

Now we prove the ‘only if’ direction. Suppose that
the goal leads_to_acc(gowb? D=1l 4) succeeds and take a
proof tree Tp for this atom. Consider two consecutive
calls leads_to_acc(p#ci#) and leads_to_acc(p#ci#ca#) in
this tree. Since the only way from a call to leads_to_acc to
another call to leads_to_acc goes via calls to pushleft (which
adds only symbols from ¥ to the argument), one call to
transs (which adds one symbol from @) and then via calls to
pushright (which adds only symbols from X), the word c2 be-
longs to the set ©*QX". Since the call check,_1,4 (p#ci1#cz)
succeeds, the word c2 has the length exactly n — 1 and thus
is an encoding of a configuration of M of the same length
as all other configurations that occur in Tp. Since all calls
to check-predicates from the predicates pushlefts, trans; and
pushright succeed, c2 is a successor configuration of c¢i, with
transition §. Hence, by removing from Tp all nodes that are



not labeled with the predicate leads_to_acc and by replac-
ing each label leads_to_acc(p#tc+#) by the label ¢ we obtain
a computation tree for M and wh?(*D~I1*I Now, remov-
ing unnecessary blank symbols gives a desired computation
tree, which shows that M accepts w. a

Corollary 2 The type-checking problem for path-based ap-
prozimation is DEXPTIME-complete.

Corollary 3 The satisfiability problem for unary definite
set constraints is DEXPTIME-complete.

Corollary 4 The membership and emptiness problems for
finite automata with alternation and push operations are
DEXPTIME-complete.

Corollary 5 The reachability problem for alternating push-
down systems DEXPTIME-complete. Moreover, it requires
time that is at least exponential in the size of the system.

The lower bounds for the corollaries above follow directly
from Theorem 1 and reductions presented at the end of Sec-
tion 2. For Corollary 4 one only has to note that the empti-
ness problem is at least as hard as the membership problem.
The upper bounds are proved in [11, 9, 6] (Corollaries 2
and 4), [7] (Corollary 3), and [3] (Corollaries 4 and 5).

4 Conclusion

We have proved that the type-checking problem for path-
based analysis of logic programs is DEXPTIME-complete.
This gives a negative answer to the long-standing question
whether the complexity of set-based analysis can be im-
proved by ignoring dependencies between arguments to all
function symbols. It remains to be seen if more efficient
implementations based on this restriction are possible for
practical applications, but at least we know that there is no
hope for asymptotically faster algorithms.

The result has also consequences in set constraints, au-
tomata theory and model checking. The perhaps most sur-
prising is the consequence in automata theory: we presented
probably the first natural problems concerning finite au-
tomata on words that are DEXPTIME-complete.

Appendix

As we already mentioned, path-based program analysis is
often confused with the path-closed one. The DEXPTIME-
hardness of the type-checking problem for path-closed ap-
proximation is known by the reduction of the emptiness
problem for intersection of path-closed languages [21], but
it is not known whether the problem is decidable at all.

Below we recall the basic idea of the path-closed analysis
and show a small example exhibiting the difference between
the three (set-based, path-closed and path-based) analyses.
A further discussion on set-based and path-closed analyses
can be found e.g. in [8].

A regular set of terms is called path-closed if it is recog-
nizable by a top-down deterministic tree automaton. This
is equivalent to other notions occurring in the literature:
path-closed sets are also called tuple-distributive, discrimi-
native or deterministic. The path-closure operator PC as-
signs to a given set S of ground terms the least path-closed
set that contain S. For example, PC({f(a,a), f(b,b)}) =

{f(a,a), f(b,0), f(a,b), f(b,a)}.

The path-closed approximation of a logic program P is
the least fixed point of the operator PC o T’» where T’p is
the immediate consequence operator for the program P. It
is not known whether this least fixed point is a decidable
set, it is also not known whether it is always a regular set.

Consider the following extension of the example from
Introduction.

r(z) < p3(z)

The table below shows the sets assigned to the predicates ¢
and r by the three analyses.

q T

set-based: 0 {f(a, b), f(a, a), f(b, b)}
path-closed: 0 {f(a,b), f(a,a), f(b,b), f(b,a)}
path-based: {f(a'ab)} {f(aab)af(aaa')af(ba b)af(baa')}
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