
Set�based Analysis of Reactive In�nite�state Systems

Witold Charatonik� Andreas Podelski

Max�Planck�Institut f�ur Informatik
Im Stadtwald� D������ Saarbr�ucken� Germany

fwitold�podelskig�mpi�sb�mpg�de

Abstract� We present an automated abstract veri	cation method for
in	nite�state systems speci	ed by logic programs
which are a uniform
and intermediate layer to which diverse formalisms such as transition sys�
tems� pushdown processes and while programs can be mapped��
We establish connections between logic program semantics and CTL
properties� set�based program analysis and pushdown processes� and also
between model checking and constraint solving� viz� theorem proving�
We show that set�based analysis can be used to compute supersets of
the values of program variables in the states that satisfy a given CTL
property�

� Introduction

Testing runtime properties of systems with in�nite state spaces is generally unde�
cidable� Therefore� the best one can hope for are semi�algorithms implementing
a test� or always terminating algorithms implementing a semi�test �which either
yields yes�don�t know answers or� dually� no�don�t know answers	� Based on the
idea that any automated method that sometimes detects programming errors is
useful� we investigate semi�tests in this paper�

One way to obtain a semi�test is to apply a test to a �nite approximation
of the in�nite system of interest� An essential part of an automated semi�test
computes the approximation from a �nite representation of the original system�
viz� a program� We will study representations of in�nite�state systems by logic

programs � Logic programs are a uniform and intermediate layer to which diverse
formalisms such as �nite�state transition systems� pushdown processes and while
programs can be mapped� The connection between transition systems and logic
via logic programs allows us to establish the correspondence between

� program semantics and temporal logic properties�
� abstraction and logical implication�
� the Cartesian abstraction of set�based analysis and pushdown processes�
� model�checking and �rst�order� resolution�based theorem proving�

Speci�cally� we consider the temporal logic CTL ��� �which allows one to express
safety� inevitability and other important behavioral properties excluding fairness

�
On leave from Wroc�law University� Partially supported by Polish KBN grant �T��C����	�

conditions	� For a �possibly in�nite�state	 transition system represented by a
logic program� the set of states satisfying a CTL property can be characterized
through the semantics of logic programs� see Theorem �� Section �

Now� static program analysis based on abstract interpretation �see� e�g�� ����	
may be used to compute a conservative approximation of a CTL property by
computing an abstraction of the logic program semantics� The soundness of
the abstract�veri�cation method thus obtained holds by the soundness of the
abstraction� This is in contrast with the work in� e�g�� ����������� where the test
of a CTL property is applied to an abstraction of the original system�

We use one particular form of static analysis called set�based analysis � Here�
the abstraction consists of mapping a set of tuples to the smallest Cartesian
product of sets containing it �e�g�� fha� �i� hb� �ig �� fa� bg�f�� �g	� The abstract
semantics computed by this analysis de�nes a Cartesian product of sets� each set
describes runtime values of a variable at a program point� This set is sometimes
called the type of the program variable� Now� if the concrete program semantics
is used to characterize the set of correct input states� the type of an input
variable denotes a conservative approximation of the set of all its values in correct
input states �where �correct� refers to states for which a given CTL property is
satis�ed	� see Theorem � Section ��

Logically� the set�based abstraction amounts to replacing a formula� say�
��x� y� with the free variables x and y� by the conjunction ��y �	�x� � ��x�	�y�
�which is logically implied by �	� Applying this replacement systematically to
a program P yields a new program P�� This program de�nes the degree of ab�
straction of CTL properties in set�based analysis
 the full test for the system
de�ned by P� is the semi�test for the system de�ned by P �

The system obtained by the set�based abstraction of a program P �de�ned
by the program P�	 is not �nite�state� Instead� it is a kind of pushdown process �
Pushdown processes have raised interest as a class of in�nite�state systems for
which temporal properties are decidable� The systems considered here extend
this class by adding parallel composition� tree�like stacks and non�deterministic
guesses of stack contents� The latter extension introduces a non�determinism of
in�nite branching degree� Since set�based analysis here adds no extra approxi�
mation� it yields a full test of CTL properties of pushdown processes even with
this extension� see Theorem �� Section ��

When we use set�based analysis as a veri�cation method� the constraint�
solving algorithms which form its computational heart �e�g�� ������������	 replace
the traditional �xpoint iteration of model checking� The constraints used here
can be represented by logic programs �see Section �	� Then� constraint�solving
�more precisely� testing emptiness of the solution of interest	 amounts to �rst�
order theorem proving based on resolution� We are currently working on making
the algorithm ��� for computing the greatest solution practical� One algorithm
for computing the least solution is already implemented in the saturation�based
theorem prover SPASS ����� due to speci�c theorem�proving techniques like pow�
erful redundancy criteria� one obtains an e�cient decision procedure for the
emptiness test� viz� model checking�

Related work� In ���� we present a direct application of the set�based analysis
of logic programs to error diagnosis in concurrent constraint programs� The error
can be de�ned as a special case of a CTL property for a transition system that
consists of non�ground derivations of logic programs�

Our direct inspiration for investigating transition systems speci�ed by ground

derivations of logic programs was the work on pushdown processes in ��������
Here� we extend the result in ��� about CTL model�checking in DEXPTIME to
a more general notion of pushdown processes�

Historically� our work started with the abstract debugging scheme of ���� The
invariant and intermittent assertions used there correspond to two special cases
of CTL properties� Here� we consider trees instead of numbers for the data
domain� an abstract domain of regular sets of trees instead of intervals� and
Cartesian instead of convex�hull approximation� Our characterization of CTL
properties can be extended to while programs over numeric data by using con�
straint logic programs �over numbers instead of trees	 as an intermediate layer�

In ����� Ramakrishna et al� present an implementation of a model checker
for the veri�cation of �nite�state systems speci�ed by DATALOG programs �i�e��
logic programs without function symbols	� The correctness of their implemen�
tation �in a logic programming language with tabling called XSB	 relies implic�
itly on the characterization of CTL properties that we formally prove for logic
programs with function symbols� In contrast to the work in ���� which applies
programming techniques that that are proper to logic programming languages�
we view logic programs rather as an automata�theoretic formalism�

Structure of the paper� Sections � to � are to give a �avor of our method�
which we present in technical terms in Sections to �� Section � explains our
view of logic programs as an intermediate layer for while programs� For every
while program with data structures modeled as trees �e�g�� lists	� we can �nd a
logic program that represents the same transition system� The purpose of Sec�
tion � is to give the intuition of our characterization of CTL properties �also to
readers who are not so familiar with logic programs	� We �rst show how one can
translate a �nite transition system to a simple logical formula such that a par�
ticular solution characterizes a CTL property� We then present the simple logic
program whose operational semantics is that transition system� and whose logi�
cal or denotational semantics is that solution� Section � explains our view of logic
programs as automata at hand of pushdown processes� Section formally intro�
duces the concepts that we used informally in the previous three sections� and
it presents the characterization of CTL properties for monolithic transition sys�
tems� Section � gives a self�contained account of set�based analysis and presents
the results about the conservative approximation of CTL properties that lead
to an abstract�veri�cation method� Section � gives an extension of these results
to multi�processor transition systems de�ned by logic programs with conjunc�
tion �which corresponds to parallel composition	� Basic Parallel Processes �see�
e�g�� ����	 are here a special case� Finally� in conclusion� we mention possible
directions for future work�

� While programs

We consider an imperative programming language with the two data construc�
tors cons and nil �integers etc� play the role of constant data constructors	�
For convenience� cons�x� y	 is written as �xjy�� cons�x�� cons�� � � � xn�nil	 � � �	 as
�x�� � � � � xn� and nil as � �� We also have the data destructors hd and t l� where
hd��xjy�	 � x and t l��xjy�	 � y� We will neither formally de�ne the language
nor present the translation of its programs to monolithic total logic programs�
Instead� we present two example programs which will illustrate that such a trans�
lation is possible in principle�

The �rst program consists of one instruction� a while loop� with the program
labels p and q before and after the instruction�

p
while x ��� nil do

i �� i��

x �� tl�x�
q

The program manipulates the two variables x and i� States are thus pairs hp� ei
formed by the program location p and the environment e which assigns values vx
and vi to the variables x and i� We write such a state as an atom p�vx� vi	� The
program induces an in�nite�state transition system� possible transitions are� for
example�

p��a� b�� �	 �� p��b�� �	�
p��b�� �	 �� p�� �� �	�
p�� �� �	 �� q�� �� �	�

Since the transition function must be total� we assume that there exist transitions
modeling an explicit exception handling� for example�

p��� i	 �� exception�

exception �� exception�

We translate the while loop above to the logic program below�

p��zjy�� i	 � p�y� i� �	

p�� �� i	 � q���� i	

p�a� i	 � exception �for each other data constructor a	

exception� exception

Each program location corresponds to a predicate whose arguments correspond
to the variables that are visible at that location� We express conditionals through
the heads of the clauses� For example� the �rst clause reads as the instruction

�at program location p� if the value of the program variable x is a nonempty list
whose tail is the value y� then go again to p with the value y for the variable x

and augment the value of the variable i by ��� Another� logical reading is
 �the

predicate p holds for the arguments cons�z� y	 and i if it holds for the arguments
y and y���� Yet another reading interprets p as a set of environments occuring at
the program point p
 the set p contains �at least	 all environments hcons�z� y	� ii
if it contains the environment hy� i � �i� formally

p 	 fhcons�z� y	� ii j hy� i � �i
 pg�

This reading is related to backward data�ow equations expressing weakest pre�
conditions� It is clear that forward data�ow equations �expressing strongest post�
conditions	 can be expressed by logic programs as well� The set�based analysis
of those logic programs is the set�based analysis of imperative programs in �����

Since our framework requires that the program is total� we add clauses in
order to model an exhaustive case statement �in a practical setting� such clauses
could be presented implicitly	� The transition systems induced by the while
program and the logic program coincide�

The CTL property EF �fq�v�x� v
�
i	 j trueg	 holds for all states from which

the location q can be reached� The values vx for the variable x in such states
with location p must be �nite lists� �This is precisely the output provided by
the method presented in this paper�	 That is� if the while loop is executed with
an initial value other than a �nite list for x� then it will not reach the program
point q �a fact which may be useful for debugging purposes	�

The CTL property EF �fq�v�x� v
�
i	 j trueg	 can be speci�ed via the intermit�

tent assertion �true	� at the program point p �see� e�g�� the abstract debugging

framework of ���	� Instead of true� one can have any other logical formula �

expressing a property of the values for x and i� Inserting the intermittent as�
sertion then corresponds to adding the clause q�x� i	 � � to the program that
translates the while program� This correspondence has a very precise sense
 an
initial state p�vx� vi	 satis�es the assertion if and only if the atom p�vx� vi	 lies
in the least model of the logic program with the added clause �see De�nition �
and Theorem �� Section 	� This is maybe a point which indicates the interest
of using the formalisms of using logic programs
 assertion are logical formulas�

The set of �nite lists can be presented as the least solution of the equation
l ist � cons�T� � l ist	 � nil over sets of trees� or of the logic program below�

l ist�cons�x� y		 � l ist�y	
l ist�nil	

The CTL property EG�fp�v�x� i
�
x	 j trueg	 holds for all states from which no other

program point than p is reached �in at least one execution sequence	� These are
exactly the states p�vx� ix	 where vx is an in�nite list �which models a circular
list	� The set of all in�nite lists is the greatest solution of the equation l ist �
cons�T� � l ist	 over sets of in�nite trees� or of the program below interpreted over
the domain of in�nite trees �again� this is also the result of the method outlined
in this paper	�

l ist�cons�x� y		 � l ist�y	

That is� if the while loop is executed with an initial value other than an in�nite
list for x� then a program location other than p will be reached or an exception
will be raised�

The next example is a program fragment �whose task is to reverse the list x	
containing a typographical error ���t l�x	�� instead of �t l�x	�	� Again� we note p
and q the program points before and after the while loop�

y ��
 �
p

while x ��� nil do

y ��
hd�x��y�

x ��
tl�x��
q

x��y
r

We construct the corresponding logic program�

init�x	 � p�x� � �	

p��xjx��� 	 � p��x��� �xjy�	

p�� �� y	 � q�� �� y	

q�x� y	 � r�y� y	

p�a� i	 � exception �for each other data constructor a	

exception� exception

Our method will derive that for any other initial value than the empty list for
the variable x the program location q can never be reached�

� Transition systems

Abstracting away from the �ne structure of states and of transitions� we may
present a reactive system with �nitely many states as a transition system

S � hS� �i

with the �nite set S of states and the non�deterministic transition function �

S � �S� The state q is a successor state of the state p if q
 ��p	� We translate S
into a formula PS of propositional logic� Here� for each state p� we have a symbol p
standing for a nullary predicate �or� a Boolean variable	�

PS �
�

p�S

�p�
�

q��
p�

q	 ��	

An interpretation of PS is presented as a set I S of states� I speci�es the set
of all atoms p that are valued true� A model �or� solution	 of PS is an interpreta�
tion under which the formula PS holds� Models are partially ordered by subset
inclusion� If we require� as usual� that � is total �i�e�� ��s	 �� � for all s
 S�
thus�every state has at least one successor	� then the least model of PS is the
empty set � and its greatest model is the set S of all atoms�

We now consider the safety property �P will never happen�� written
 AG�S�
P 	� or
 S �EF �P 	 in CTL notation� for some property P S� The set EF �P 	

of all states from which a state in P is reachable� is exactly the set of atoms in
the least model of the following formula�

PS � P �
�

p��P

�p�
�

q��
p�

q	 �
�

p�P

p ��	

The following explanation may help to understand this characterization of EF �P 	�
The formula PS�P entails p i� there exists a sequence of implications p� p� �
� � � � pn in PS and an implication pn � true� which is� pn is an element of P �
The least model of PS � P is the set of all entailed atoms ��all atoms that must
be true in any model�	�

Now consider the inevitability property �P will always �nally happen�� writ�
ten AF �P 	� or S �EG�S � P 		� The set EG�S � P 	 �of all states for which no
state in P is reached in at least one execution sequence	 is the set of atoms in
the greatest model of the following formula� �The notation P �� P must not be
confused with P � �S � P 	�	

PS �� P �
�

p ��P

�p�
�

q��
p�

q	 �
�

p�P

�p ��	

This may be explained as follows� The formula above entails �p �i�e�� it can
be valid only if the model does not contain p	 i� every maximal sequence of
implications of the form p � p� � p� � � � � in PS is �nite and terminates
with pn � false� Thus� an atom p is in the greatest model of PS �� P i� there
exists an in�nite sequence of implications avoiding false� which is� there exists
an in�nite sequence of transitions that starts in the state p and avoids the states
in P �

We recall that a state p satis�es the Until property E�S � P�	UP� if it has
an execution that reaches a state in P� while avoiding P� �where P� and P� are
disjoint sets of states	� Which is� by a reasoning similar to the one above� if p
lies in the least model of the following formula�

�PS �� P�	 � P� � �
�

p ��P�

�p�
�

q��
p�

q	 �
�

p�P�

�p 	 �
�

p�P�

p

We can thus state the following characterizations of CTL properties by least and
greatest models �written lm and gm	 of logical formulas�

EF �P 	 � lm�PS � P 	
EG�S � P 	 � gm�PS �� P 	

E�S � P�	UP� � lm��PS �� P�	 � P�	
��	

We only now come to the connection with logic programs� We will represent
the transition system S by the logic program below� which is simply a set of
implications �and which we also denote PS	� �As usual� we identify a conjunction
with the set of its conjuncts�	

PS � fp� q j q
 ��p	g

The logical formula PS in ��	 is usually called the Clark completion ��� of the
logic program above� We need to refer to the formula with equivalences when we
de�ne greatest models� to use implications is more convenient �and equivalent
wrt� least models	� The implications are a special case of Horn clauses � these are
traditionally written in the reverse direction�

We de�ne two forms of programs with oracles �see De�nition �� Section 	�
whose Clark completion is the corresponding logical formula de�ned in ��	 or ��	�
�The Clark completion contains the equivalence p� false if there are no clauses
for p�	

PS � P � PS � fp� true j p
 Pg

PS �� P � fp� q
 PS j p �
 Pg

Logic programs have an operational semantics� In the special case considered
here� a state p expresses the call of the procedure p� if p � q is a clause in
the program� the call can be executed by calling the procedure q �and hence�
q is a possible successor state	� The disjunction on the right�hand side of the
equivalences thus amounts to non�deterministic choice�

Finally� one can associate a �xpoint operator TP with a logic program P � In
the special case of programs over nullary predicates� it is de�ned as an operator
over subsets I of atoms p in the following way�

TP�I	 � fp j p� q
 P and q
 Ig

The following connection between the CTL operator EX � EXS associated
with the transition system S and the �xpoint operator TPS of the logic program
PS associated with S is fundamental for the approach of this paper�

EXS � TPS

The least �greatest� model of P and the least �greatest� �xpoint of TP always
coincide �essentially by de�nition	� This� together with the de�nitions of the
CTL operators EF � EG and EU through least and greatest �xpoints of EX �
yields another explanation of ��	�

� Pushdown processes

We can model a system consisting of �nite�state processes� one of which uses
a pushdown stack as a data structure� by a pushdown automaton� In order
to describe the ongoing behavior of such a system� we will consider input�less
pushdown automata without an acceptance condition� Formally� a pushdown
process is a tuple

A � hQ��� �� q�i

consisting of a �nite set of control states Q� the stack alphabet �� the non�
deterministic transition function

� �Q��	� �Q� f�g	
� �Q� f�g	� �Q��	

and the initial control state q�� The states in the corresponding transition system

SA � hQ���� �Ai

are pairs hq� wi consisting of the control state q
 Q and the stack contents
w
 �� �where w � � if the stack is empty	� The transitions either read one
symbol and remove it from the stack or add one�

�A�hq� wi	 � fhq�� w�i j w � a�w� where a
 �� hhq� ai� hq�� �ii
 � or

w� � a�w where a
 �� hhq� �i� hq�� aii
 �g

Given a pushdown process A� we de�ne the program PA below� We now view �

as a set of unary function symbols and � as a constant symbol� and we consider
terms over the signature � � f�g�

PA � fq�a�x		 � q��x	 j hhq� ai� hq�� �ii
 �g

� fq�x	 � q��a�x		 j hhq� �i� hq�� aii
 �g

A program with the �rst kind of clauses only corresponds to a word automaton�
A clause of the form q�a�x		 � q��x	 can be read as the instruction
 �in state q�
reading the word w � a�x	 with the �rst letter a and remaining su�x x� go
to state q� and read the su�x x�� q is a �nal state i� the program contains
a clause of the form q��	� Here� a word a�a� � � � an is represented as a unary
tree a��a��� � � an��	 � � �		�

The second kind of clause q�x	 � q��a�x		 can be read as the �push� instruc�
tion
 �in state q with stack contents w� go to state p� with stack contents a�w	�

The next remark is a consequence of the formal de�nition of the transition
system SP induced by a program P � which we defer to the next section�

Remark� The transition system SA of the pushdown process A and the tran�
sition system SPA induced by the program PA that corresponds to A coincide�

�

The assumption that the transitions modify the size of the stack by exactly one
symbol is not a proper restriction as long as acceptance is considered� If� how�
ever� we try to simulate the non�deterministic guessing of a new stack contents
via a sequence of transitions that each guess one symbol to be added� then the
necessary modi�cation of the transition relation of the pushdown process would
not leave the temporal properties invariant �because the guessing sequence can
be in�nite	� Thus� the following generalization seems to be a proper one�

De�nition � �Generalized pushdown processes�� A generalized pushdown
process is speci�ed by any monolithic total program over the signature consisting
of unary function symbols and one constant symbol�

We may restrict the syntax wlog� to three kinds of Horn clauses�

q�a�x		 � q��x	
q�x	 � q��a�x		
q�x	 � q��y	

Given the clause q�x	 � q��y	� every state of the form hq�� w�i with any stack
contents w� can be a successor state of the state hq� wi� Thus� we here have a
non�determinism of branching degree 	�

We will state already here the following theorem� which was shown in ���
for pushdown processes in the restricted sense� i�e�� without non�deterministic
guesses of stack contents �and hence� with a �nite degree of branching	�

Theorem �� Given a generalized pushdown process and a CTL property � with
regular atomic propositions� the set of all states satisfying � is again regular�
its representation in the form of a non�deterministic �nite automaton can be
computed in single�exponential time �in the number of states	�

Proof� The statement is an instance of Theorem �� �

� Monolithic programs

In a multi�processor transition system� the states have a structure and the tran�
sition function is de�ned by referring to that structure� we will consider such
systems and their modeling through general logic programs in Section �� In con�
trast� in a monolithic transition system� the transition function is de�ned directly
on the states �i�e�� as monolithic items	� We can model such a system by a logic
program P whose clauses� bodies contain exactly one atom� By extension� we
then say that P is a monolithic program� Thus� a monolithic program P is given
through implications of the form

p�t	 � p��t�	

where p and p� are predicates �di�erent from true	 and t and t� are terms over a
given signature � of function symbols� When we refer to the logical semantics
of P � we use the formula below �the Clark completion ���	�

P �
�

p

�x � p�x	 �
�

i

��x �x � ti � p�i�t
�
i		 	

Here� p ranges over the set Pred of all predicates de�ned by the program and
i ranges over a suitable index set Ip such that fp�ti	 � p��t�i	 j i
 Ipg are all
clauses with the predicate p in the head� As usual� ��x stands for the quanti��
cation of all variables in ti and t�i but x� For technical convenience� we assume
that all predicates are unary� the results can easily be extended to the case with�
out this restriction �for example� by extending the signature of function symbols
with symbols forming tuples	�

We note T� the set of trees �i�e�� ground terms	 over the signature �� We
use the same meta variables t� t�� etc� for terms and trees� Given the program P
de�ning the set of predicates Pred and the signature �� the Herbrand base BP
is the set of all ground atoms p�t	� which are applications of predicates to trees�
�Note that BP does not include the propositional constant true�	

BP � fp�t	 j p
 Pred� t
 T�g

A ground clause of P is an implication between ground atoms that is entailed
by P � thus� it is of the form p�
�t		 � p��
�t�		 where p�t	 � p��t�	 is a clause
of P and

 V ar � T� is a valuation �extended from variables to terms in the
canonical way	�

We will always assume that P is total� which means that for all ground
atoms p�t	 there exists a ground clause of P of the form p�t	 � p��t�	�

An interpretation I � which we present as a subset of the Herbrand base�
�i�e�� I BP	� interprets a predicate p as the set ft
 T� j p�t	
 Ig� A
model of the program P is an interpretation under which the formula P is
valid� Models are ordered by subset inclusion� The least model of P � lm�P	� and
the greatest model of P � gm�P	� always exist� The least �greatest� model of a
monolithic total program P is always the empty �universal� set� i�e�� lm�P	 � �
and gm�P	 � T�� The models of the programs that we will de�ne next turn out
to be more interesting� These programs consists of Horn clauses with additional
conjuncts �the �oracles�	� Note that ��p�t	 is equivalent to p�t	
 �BP �� 	� We
always use P � � for de�ning least models� and P �� � for de�ning greatest
models�

De�nition � �Programs with oracles�� Given a monolithic program P and
a subset � of the Herbrand base� we de�ne two kinds of programs with oracles�

P � � � P � fp�x	 � �p�x	 j p
 Predg

P �� � � fp�t	 � p��t�	 � ��p�t	 j p�t	 � p��t�	 is a clause in Pg

The operational semantics of P can be described as a transition system

SP � hBP � �Pi

whose states are the ground atoms �not � 	 including true	� and whose transition
function �P
 BP � �BP is de�ned as follows�

�P �p�t		 � fp��t�	 j p�t	 � p��t�	 is a ground clause of Pg

Since we have assumed that P is total� we have that �P�s	 �� � for all states s
��the transition function �P is total�	� The �xpoint semantics of P is given
through the TP operator on subsets of the Herbrand base�

TP�I	 � fp�t	 j p�t	 � p��t�	 is a ground clause of P and p��t�	
 Ig

We immediately note the connection with the inverse of the transition function
�as usual� ���P �P 	 � fs
 BP j �P�s	 Pg for subsets P of states	�

���P � TP

In order to de�ne the logic CTL over the transition system SP induced by the
program P � we �rst need to �x the set Prop of atomic propositions � As in the
�nite�state case� an atomic proposition � denotes a set of states� which we also
write as � � When dealing with algorithmic issues� we will require that � can be

�nitely represented� This is possible� for example� when we require that � is a
regular atomic proposition� which means that the set

�p � ft
 T� j p�t	
 �g

is a recognizable set of trees� for each predicate p�
Usually� the denotation of an atomic proposition is described via the detour

of a labeling function L
 S � �Prop� where � denotes the set fs
 S j �
 L�s	g�
In our setting� the labeling function L is implicit by L�s	 � f�
 Prop j s
 �g	�
The �nite representation of the sets �p for the atomic propositions occurring in
the CTL formula is part of the input� �It is not clear how L could be represented
�nitely otherwise�	

Given the set Prop of atomic propositions� the set of formulas of the logic
CTL and their meaning are de�ned as in the �nite�state case�

�

� � j �� j �� � �� j EX��	 j E���U��	 j A���U��	

In addition� we use the following abbreviations
 AX��	 � �EX���	� EF ��	 �
E�trueU�	� AF ��	 � A�trueU�	� EG��	 � �AF ���	� AG��	 � �EF ���	�

We write S� p j� � if the transition system S with the initial state p satis�es
the formula �� Given S� we simply write � for the set of all states for which the
formula � is satis�ed�

� � fs j S� s j� �g

Theorem 	 �CTL properties and program semantics�� Given the transi�
tion system SP corresponding to the monolithic program P � each set of states
denoted by a CTL formula � can be characterized in terms of subsets of the
Herbrand base de�ned through the semantics of programs with oracles� via the
following correspondences�

EX�P 	 � TP�P 	

AX�S � P 	 � S � TP�P 	

EF �P 	 � lm�P � P 	

AF �P 	 � S � gm�P �� P 	

E�S � P�	UP� � lm��P �� P�	 � P�	

A�S � P�	UP� � S � �gm�P �� �S � P�		 � lm��P �� P�	 � P�	�

These correspondences hold for all subsets of states P BP � which may be
de�ned by atomic propositions � or by CTL formulas�

Proof� The �rst two equalities hold by the de�nitions of EX � ���SP and TP � The
next two equalities follow by
 ��	 the de�nition of EF �EG� through the least
�greatest� �xpoint of EX� ��	 the correspondence between the semantics of logic
programs de�ned by the least �greatest� �xpoint and the least �greatest� model
�which extend to programs with oracles	� and ��	 the following identities between
�xpoint operators over properties P BP � for any given property P � BP �

�P� �P � � EX�P 		 � TP�P �

�P� ��S � P �	 � EX�P 		 � TP�� P �

The proof of the two remaining equalities uses two basic general facts about the
operational semantics and the model�theoretic semantics of a given logic pro�
gram P � A ground atom p�t	 has an execution in SP that leads to the atom true�
i�e�� p�t	
 EF �ftrueg	� if and only if p�t	
 lm�P	� it has a non�failing execution
in SP i�e�� p�t	
 EG�BP � ftrueg	 if and only if p�t	
 gm�P	� We apply these
two facts to programs with oracles instead of P �� We note that E�S�P�	UP� is
the set of all ground atoms p�t	 which have an execution that reaches a state in P�
while avoiding states in P�� i�e�� which reaches true in the program �P�� P�	�P��
Similarly� a state s is not in A�S � P�	UP� if it either has an execution that
never reaches a state in P�� i�e�� it has a non�terminating execution in the pro�
gram P �� �S � P�	� or it has an execution that reaches a state s� in P� while
avoiding states in P� �in the execution up to� and including s�	� i�e�� it has an
execution in the program �P �� P�	 � P�� �

� Set�based analysis

In set�based analysis� an abstract semantics of a program is represented as a
particular solution of a formula with set�valued variables �often called a set�
constraint	� The formula is syntactically inferred from the program� The values
in the solution are regular sets of trees� Thus� they can be represented through
non�deterministic tree automata� which have a linear emptiness test� The algo�
rithmic essence of set�based analysis is the solving of the set constraint� This
means to compute the particular solution that represents the set�based abstract
semantics� which again means to compute a non�deterministic tree automaton
that represents the solution�

We will give here an introduction to the set�based analysis of logic programs
with uniform programs �as in ����	� Uniform programs subsume several classes of
set constraints used in the set�based analysis of logic and imperative languages
�e�g�� in ������������	 modulo simple translations� Note that we can view any
logic program as a formula whose monadic predicate symbols stand for variables
ranging over sets of trees� and whose individual variables ranging over trees are
all quanti�ed� thus� its free variables are set�valued� We now need to consider
general logic programs� which are sets of Horn clauses p�t	 � p��t�	� � � ��pn�tn	
with any number n � � of body atoms� The de�nitions of the least �greatest�
model semantics and �xpoint semantics for monolithic programs in Section
carry over directly to the general case �with some extra notational burden	� We
will discuss the operational semantics in Section ��

A uniform program ���� consists of Horn clauses in one of the following two
forms� �In a linear term t� each variable occurs at most once�	

� p�t	 � p��x�	 � � � � � pk�xm	� where the term t is linear�

� q�x	 � p��t�	 � � � � � pm�tm	� where t�� � � � � tm are any terms over ��

� By our assumptions on monolithic total programs P� EF
ftrueg� � � because true
does not appear in the body of a clause in P� and EG
BP� � BP because the
transition function is total�

We derive a uniform program P� from any logic program P in the following way�
For every Horn clause

p�t	 � body

where the term t has the n variables x�� � � � � xn� we apply renamings xij to every
occurrence of xi in t in order to obtain a linear term !t� We introduce n new
predicate symbols pi� Then� P� contains the following n � � clauses for every
such Horn clause�

p�!t	 �
Vn
i��

V
j pi�xij	

p��x�	 � body
���

pn�xn	 � body

The program P� expresses exactly the so�called set�based abstraction of P de�
�ned in ���� in semantic terms� We can easily translate every uniform program
into one whose Horn clauses are in one of the following three forms�

� p�f�x�� � � � � xn		 � p��x�	 � � � � � pn�xn	
where n � � and x�� � � � � xn pairwise di�erent

� p�x	 � p��x	 � � � � � pm�x	

� p�x	 � p��t	

A nondeterministic tree automaton is a uniform program consisting of the �rst
kind of clauses only� Predicates correspond to states�

The second kind of rules introduces conjunctions of states� An alternating

tree automaton is a uniform program consisting of the �rst two kinds of clauses�
Note that this is a nice formalization of this concept� without the need to de�ne
complicated acceptance conditions�

Finally� the third kind of rule introduces a kind of push operation� The rule
p�x	 � p��f�x� y		 can be read as the instruction
 �in state p with stack con�
tents t �where t is a tree	� go to state p� with stack contents f�t� t�	 where t�

is any tree chosen non�deterministically� �which can be viewed as pushing the
context f��� t�	 onto the stack	�

The following facts hold for the interpretation of programs over �nite trees
and over in�nite trees� The �rst fact is obvious� the second and third are shown
in ������ �the second statement of Fact � follows from the form of uniform pro�
grams	� We call a model M BP regular if it can be de�ned as the least �or�
equivalently� as the greatest	 model of a tree automaton program� i�e�� if all sets
Mp � ft
 T� j p�t	
Mg are regular sets of trees �in the standard sense	�

Facts about set
based analysis�

�� The uniform program P� derived from the logic program P in the way de�
scribed above approximates P in the following sense�

lm�P	 lm�P�	

gm�P	 gm�P�	

�� The least �greatest� model of a uniform program P� is regular� i�e�� it can
represented by a non�deterministic tree automaton� which again can be rep�
resented as a program Psba �which we de�ne to be the output of the set�based
analysis	�

lm�P�	 � lm�Psba	

gm�P�	 � gm�Psba	

More speci�cally� if the predicate p is de�ned by clauses with the heads
p�tk�x�� � � � � xnk �	 with nk free variables� then there exist regular sets of trees
T k
� � � � � � T

k
nk

�for each k	 such that the set of all p�atoms in the least model
�greatest� is a union of Cartesian products in the following sense�

lm�P�	 �
�

p�Pred

�

k

p�tk�T k
� � � � � � T

k
nk

�	

�� The step P� �� Psba can be computed in single�exponential time� This is also
a lower bound for the case of an arbitrary signature� the best known lower
bound for the word case is PSPACE�

Theorem � �Conservative approximation of CTL properties�� Given a
transition system speci�ed by a monolithic program P � we can conservatively
approximate applications of CTL operators in the following sense�

EX�P 	 TP��P 	

AX�S � P 	 	 S � TP��P 	

EF �P 	 lm�P� � P 	

AF �P 	 	 S � gm�P� �� P 	

E�S � P�	UP� lm��P� �� P�	 � P�	

A�S � P�	UP� 	 S � �gm�P� �� �S � P�		 � lm��P �� P�	 � P�	�

Proof� We only need to put together Fact � and Theorem �� �

Theorem � �Set
based veri�cation of CTL properties�� Given a mono�
lithic uniform program P and a CTL property � with regular atomic proposi�
tions� the set of all states satisfying � is again regular� its representation through
a non�deterministic tree automaton can be computed in single�exponential time
�in the number of predicates of P	�

Proof� This follows by Facts � and � and Theorem �� �

Set
based abstract veri�cation and types� Theorem suggests the following
procedure� Given any monolithic program P and a CTL property � built up from
regular atomic propositions and the operator EX � EF � EG and EU � we compute
a superset �� of the set of all states satisfying � in single�exponential time� The

set �� consists of all states that satisfy � according to the set�based abstract
semantics of P ��

�� � fp�t	
 BP j SP� � p�t	 j� �g

By Fact �� we know that �� is a union of Cartesian products of regular sets of
trees�

�� �
�

p�Pred

�

k

p�tk�T k
� � � � � � T

k
nk

�	

We call the set Ti �
S
k T

k
i the type of the variable xi� for i � �� � � � � n� If the

value for xi in a ground instance s
 BP of the atom p�t	 does not lie in Ti� then
the state s does not satisfy ��

In summary� we obtain an abstract falsi�cation procedure for the ��CTL
fragment of CTL� and an abstract veri�cation procedure for the ��CTL fragment�

Set constraints� It is also possible to apply the two approaches in ���� and ����
of set�based analysis of logic programs with least �greatest� models� which infer
a de�nite �co�de�nite� set constraint from a logic program and then computes
its solution in single�exponential time ������� We have preferred the formalism
of uniform programs for the presentation in this paper because it allows us to
greatly simplify the presentation� there is not much di�erence technically� as we
will explain next�

The subclasses of those de�nite set constraints ���� that are used in the
analysis of logic programs can be �rst �attened into conjunctions of three kinds
of inclusions between set expressions� We present these below� together with
their translation into Horn clauses which have the same least solution� �The
operator f��
k� is the generalization of hd and t l for arbitrary function symbols f �

i�e� hd � cons��
�� and t l � cons��
���	

p 	 f�p�� � � � � pn	 � p�f�x�� � � � � xn		 � p��x�	� � � � � pn�xn	

p 	 p� � � � � � pn � p�x	 � p��x	� � � � � pn�x	

p 	 f��
k� �p
�	 � p�x	 � p��f�� � � � xk��� x� xk�� � � �		

Similarly� the subclasses of those co�de�nite set constraints ��� that are used in
the analysis of logic programs can be �rst �attened into conjunctions of three
kinds of inclusions such that every predicate p occurs at most once on the left�
hand side on an inclusion� Then� the greatest solution of the co�de�nite set con�
straint and the greatest model of the Clark completion of the program obtained

� The set�based abstract semantics of P is given by the transition system SP� induced
by P�� Here� a state is a conjunction of atoms� Its successor states are obtained by the
simultaneous rewriting of all its atoms� We ignore the newly introduced predicates�
these can be eliminated easily�

by the translation given below coincide�

p f�p�� � � � � pn	 � p�f�x�� � � � � xn		 � p��x�	� � � � � pn�xn	

p p� � � � � � pn � p�x	 � p��x	 � � � � � p�x	 � pn�x	

p f��
k� �p
�	 � p�x	 � p��f�� � � � xk��� x� xk�� � � �		

In the case of unary function symbols� a translation in the other direction �i�e��
from uniform programs to de�nite �co�de�nite� set constraints with the same least
�greatest� model is possible� This means that the choice of either formalism for
the veri�cation of pushdown processes leads to a full test of the CTL property�
In order to translate� for example� the Horn clause p�x	 � q�f�x� y� y	� we need
a more re�ned notion of set constraints �see ����	�

� Parallel programs

In this section� we will consider transition systems speci�ed by parallel programs

that consist of Horn clauses of the form

p�t	 � p��t�	 � � � � � pn�tn	

with any number n � � of body atoms� Operationally� the conjunction of body
atoms corresponds to parallel composition� Thus� a parallel program de�nes a
concurrent system� which has� however� only a restricted way of communication
�in particular� there is no synchronization between parallelly composed atoms	�
The logic program P de�nes a fair transition system SP � hSP � �P i� The states
are the ground queries � which are nonempty conjunctions of ground atoms�

SP � fp��t�	 � � � � � pm�tm	 j m � � and p��t�	� � � � � pm�tm	
 BPg

The one�step transition relation �P is de�ned as usual for ground derivations
of logic programs or constraint logic programs �������� We identify conjunctions
modulo commutativity and associativity of conjunction� We give the de�nition
of �P in a form that relies on this convention �i�e�� every of the conjuncts forming
a state can be chosen to be the �rst in a representation of the state	�

�P �p��t�	 � � � � � pm�tm		

� p��t�	 � � � � � pi���ti��	 � body � pi��ti�	 � � � � � pm�tm	 j

i
 f�� � � � �mg� pi�ti	 � body is a ground clause of Pg

The fairness condition of the transition system is related to the fairness of the
selection rule which is usually associated with the execution of logic programs� It
says that in every execution sequence containing the state p��t�	� � � �� pm�tm	�
a ground clause with head pj�tj	 is eventually applied to yield a successor state
�for every j � �� � � � �m	�

We require that the program P is total �which is� there exists a ground clause
with the head p�t	 for every ground atom BP	� and thus obtain that �P
 S � �S

is totally de�ned �even if the fairness condition is taken into account	�
In order to de�ne the logic CTL over the transition system SP induced by the

parallel program P � we will �rst �x a restricted set Prop of atomic propositions �
These are of the form states�� 	 for some subset � of the Herbrand base� It is
de�ned as the set of the states whose conjuncts all lie in � �

states�� 	 � fp��t�	 � � � � � pm�tm	 j p��t�	� � � � � pm�tm	
 �g

De�nition �Restricted CTL formulas�� A restricted CTL formula �for a
given set of predicates Pred and a signature � de�ning the Herbrand base BP	
is a CTL formula such that either
 the atomic propositions P are of the form
P � states�� 	 where � BP and the quanti�ers are only among EX�EF �EG�
or
 the atomic propositions P are of the form P � BP � states�� 	 and the
quanti�ers are among AX�AF �AG�

Theorem � �CTL properties and semantics of parallel programs��
Given the fair transition system SP corresponding to the parallel program P �
each set of states � denoted by a restricted CTL formula � can be character�
ized in terms of subsets of the Herbrand base de�ned through the semantics
of programs with oracles� via the following correspondences �for all subsets of
states � BP	�

EF �states�� 		 � lm�P � � 	

AF �S � states�� 		 � S � gm�P �� � 	

EG�states�S � � 		 � gm�P �� � 	

AG�S � states�� 		 � S � lm�P �� � 	

Proof� The proof follows the lines of the proof of Theorem �� �

We can now rephrase Theorem for parallel programs and for restricted CTL
formulas with the CTL operators appearing in the statement above� Therefore�
we can apply �abstract� set�based veri�cation �in the sense of Theorem �	 also
to this setting�

Les us note that parallel programs over nullary predicates represent Basic

Parallel Processes �see� e�g�� ����	� We leave open the question of the connections
with other� in�nite�state concurrent systems�

	 Conclusion and future work

The use of logic programs as speci�cations of transition systems gives us a new
view on accurate and abstract veri�cation of CTL properties for �nite and in��
nite systems� The use of set�based analysis as a method to de�ne an approxima�
tion function gives a new view on pushdown processes �namely� as the target of

the approximation function	 and yields a notion of descriptive types of program
variables �wrt� a given CTL property	� The use of set�based analysis as an algo�
rithm to compute the conservative approximation of CTL properties gives a new
view of model checking of pushdown processes� namely as constraint�solving� viz�
theorem proving�

One obvious issue of further research is the extension of our method of ab�
stract veri�cation via set�based analysis to other temporal logics� The extension
to the alternation�free mu�calculus seems to be possible directly� The work in ���
is a �rst step for the extension to the full mu�calculus�

The applications of our method that we have presented in this paper indicate
its usefulness for the detection of �simple� programming errors� i�e�� for the
falsi�cation of programs with respect to behavioral properties� The method may�
however� also be useful for the veri�cation of parameterized systems� The idea
here is to use logic programs that �rst non�deterministically guess a parameter
�say� the length of the token ring in the example used in ����	 and then simulate
the corresponding system�

Computing the model of the program with oracles in the �nite�state case is
isomorphic to the �xpoint iteration which computes the application of a CTL
operator in standard model checking� Since nullary predicates amount to Boolean
variables� the programs �specifying the transition system and the de�ned CTL
property� respectively	 and the descriptions of sets of states are Boolean formulas�
It remains to be seen whether this observation may lead to a new view of the
use of BDD�s� Also� we need to explore the connection with work in ��� which
shows the equivalence of solving Boolean equation systems and model�checking
in the modal �calculus�

In the �nite�state case� programs with oracles are closely related to the prod�
uct construction of ���� It may be interesting to explore the connection with the
similar product construction of ���� in the in�nite�state case�

Acknowledgments� We thank Ahmed Bouajjani� Javier Esparza� David
McAllester� Damian Niwi"nski and Moshe Vardi for fruitful discussions and the
anonymous referees for useful remarks�

References

�� O� Bernholtz� M� Y� Vardi� and P� Wolper� An automata�theoretic approach to
branching�time model checking� In Computer Aided Veri�cation� Proc� �th Int�
Workshop� volume ��� of LNCS� pages �������� Stanford� California� June �����
Springer�Verlag� Full version available from authors�

�� A� Bouajjani� J� Esparza� and O� Maler� Reachability Analysis of Pushdown Au�
tomata Application to Model Checking� In CONCUR���� LNCS ����� �����

�� A� Bouajjani and O� Maler� Reachability Analysis of Pushdown Automata� In
In�nity���� tech� rep� MIP������ Univ� Passau� �����

�� F� Bourdoncle� Abstact debugging of higher�order imperative languages� In Pro	
ceedings of the SIGPLAN��
 Conference on Programming Language Design and
Implementation �PLDI��
�� LNCS� pages ������ ACM Press� �����

�� O� Burkart and B� Ste�en� Composition� Decomposition and Model�Checking of
Pushdown Processes� Nordic Journal of Computing� �� �����

�� W� Charatonik� D� McAllester� D� Niwi�nski� A� Podelski� and I� Walukiewicz�
The Horn mu�calculus� Submitted for publication� Available under www�mpi�
sb�mpg�de��podelski�papers�HornMuCalculus�ps� December �����

�� W� Charatonik� D� McAllester� and A� Podelski� Computing the greatest model of
the set�based abstraction of logic programs� Presented at the Dagstuhl Workshop
on Tree Automata� October �����

�� W� Charatonik and A� Podelski� Co�de	nite set constraints� In T� Nipkow� editor�
Proceedings of the �th International Conference on Rewriting Techniques and Ap	
plications� LNCS� Tsukuba� Japan� March�April ����� Springer�Verlag� To appear�

�� K� Clark� Negation as failure� In H� Gallaire and J� Minker� editors� Logic and
Databases� pages �������� Plenum Press� New York� NY� �����

��� E� Clarke� O� Grumberg� and D� Long� Model checking and abstraction� In Pro	
ceedings of the �th Annual Symposium on Principles of Programming Languages�
pages �������� ACM Press� �����

��� P� Cousot and R� Cousot� Inductive de	nitions� semantics and abstract interpre�
tation� In Proc� POPL ���� pages ������ ACM Press� �����

��� D� R� Dams� Abstract interpretation and partition re�nement for model checking�
PhD thesis� Eindhoven University of Technology� �����

��� P� Devienne� J��M� Talbot� and S� Tison� Solving classes of set constraints with tree
automata� In G� Smolka� editor� Proceedings of the Third International Conference
on Principles and Practice of Constraint Programming 	 CP��� volume ���� of
LNCS� pages ������ Springer�Verlag� October �����

��� P� Devienne� J��M� Talbot� and S� Tison� Solving classes of set constraints with tree
automata� In G� Smolka� editor� Proceedings of the Third International Conference
on Principles and Practice of Constraint Programming 	 CP��� volume ���� of
LNCS� Berlin� Germany� October ����� Springer�Verlag�

��� E� Emerson and E� Clarke� Using branching�time temporal logic to synthesize
synchronization skeletons� Science of Computer Programming� �
���������� �����

��� J� Esparza� Decidability of model checking for in	nite�state concurrent systems�
Acta Informatika� ��������� �����

��� T� Fr�uhwirth� E� Shapiro� M� Vardi� and E� Yardeni� Logic programs as types for
logic programs� In Sixth Annual IEEE Symposium on Logic in Computer Science�
pages �������� July �����

��� N� Heintze and J� Ja�ar� A decision procedure for a class of set constraints
ex�
tended abstract�� In Fifth Annual IEEE Symposium on Logic in Computer Science�
pages ������ �����

��� N� Heintze and J� Ja�ar� A 	nite presentation theorem for approximating logic
programs� In Seventeenth Annual ACM Symposium on Principles of Programming
Languages� pages �������� January �����

��� J� Ja�ar and M� J� Maher� Constraint Logic Programming A Survey� The Journal
of Logic Programming� ������������� May�July �����

��� N� D� Jones and S� S� Muchnick� Flow analysis and optimization of lisp�like struc�
tures� In Sixth Annual ACM Symposium on Principles of Programming Languages�
pages �������� January �����

��� J� W� Lloyd� Foundations of Logic Programming� Symbolic Computation� Springer�
Verlag� Berlin� Germany� second� extended edition� �����

��� C� Loiseaux� S�Graf� J� Sifakis� A� Bouajjani� and S� Bensalem� Property preserving
abstractions for the veri	cation of concurrent systems� Formal Methods in System
Design� �
�������� �����

��� D� E� Long� Model Checking� Abstraction� and Compositional Veri�cation� PhD
thesis� Carnegie Mellon University� �����

��� A� Mader� Veri�cation of Modal Properties Using Boolean Equation Systems�
Phd thesis� Technische Universit�at M�unchen� �����

��� A� Podelski� W� Charatonik� and M� M�uller� Set�based error diagnosis of concur�
rent constraint programs� Submitted for publication� Available under www�mpi�
sb�mpg�de��podelski�papers�diagnosis�ps� �����

��� Y� Ramakrishna� C� Ramakrishnan� I� Ramakrishnan� S� Smolka� T� Swift� and
D� Warren� E�cient model checking using tabled resolution� In Computer Aided
Veri�cation �CAV����� LNCS ����� Springer�Verlag� June �����

��� M� Y� Vardi� Veri	cation of concurrent programs The automata�theoretic frame�
work� In Proceedings of the Second Annual IEEE Symposium on Logic in Computer
Science� pages �������� Ithaca� ����� IEEE Computer Society Press�

��� I� Walukiewicz� Pushdown Processes Games and Model Checking� In CAV����
LNCS ����� �����

��� C� Weidenbach� Spass version ����� Journal of Automated Reasoning� ��
������
���� �����

