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Abstract

Model checking is an automated method to prove safety and liveness prop-
erties for finite systems. Software model checking uses predicate abstraction
to compute invariants and thus prove safety properties for infinite-state pro-
grams. We address the limitation of current software model checking meth-
ods to safety properties. Our results are a characterization of the validity of
a liveness property by the existence of transition invariants, and a method
that uses transition predicate abstraction to compute transition tnvariants
and thus prove liveness properties for infinite-state programs.
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1 Introduction

Software model checking is an approach for extending the applicability of
finite-state model checking to software systems with infinite state spaces
(see [1, 14, 15, 16, 18, 22, 27, 29, 35]). The extension works via an abstrac-
tion step, which is essentially the construction of a finite-state system.! The
finite-state abstraction step restricts the resulting method to safety proper-
ties. This is because it does in general not preserve liveness properties. For
intuition, we take termination as an example of a liveness property; a finite
system is terminating only if its execution traces do not contain loops; but
then, it can not simulate execution traces of unbounded length (say, of the
program while (i>0) {i:=i-1; }; see also [19, 24].) This paper addresses
the limitation of current software model checking methods to safety proper-
ties.

The terminology safety vs. liveness is standard to distinguish two kinds of
program properties in the scope of model checking. An example of a safety
property is (from the interface specification of an operating system kernel [1]):
each time a lock is acquired, it will get released before the end of the function
call. An example of a liveness property is: each time a lock is acquired, it
will get released. That is, a liveness property expresses a guarantee, without
fixing a time bound. Termination is the standard example of a liveness
property; its proof is required in the context of program correctness proofs
with interactive theorem provers. Formally, the difference signifies whether
the negation of the property can be reduced to reachability (of a ‘bad’ state)
or to the existence of an infinite trace (without a ‘good’ state). Thus, the
difference also signifies whether the property could in principle be checked
at runtime, or not.

In this paper, we give a characterization of the validity of a liveness prop-
erty via the existence of transition invariants. This leads to a deductive
proof schema, where a given transition invariant is checked for inductiveness
(i.e. closure under an operator that we introduce). Roughly, in its restric-
tion to termination, the schema replaces the well-foundedness argument for
a ranking relation by a weaker argument for the transition invariant. We
show that the schema is suitable for automatization. For this purpose, we
introduce transition predicate abstraction. This technique generalizes predi-
cate abstraction, the basic abstract interpretation technique of the existing
software model checking methods for safety properties. We use transition
predicate abstraction as the parameter in a general method to compute tran-

!The abstraction step is formalized as the definition of an over-approximating fixed
point operator over finitely many (in general infinite) sets of states in [10].



sition invariants, which again we can use to prove the liveness property of
the infinite-state program.

As with every automated method for an undecidable problem, the best we
can hope for is a semi-test (for safety but not for liveness, a semi-algorithm
is another option). That is, if the abstraction is too coarse, the computed
transition invariant is not ‘strong enough’ (in that case one refines the ab-
straction by adding more transition predicates). We can show, however, that
our method is complete wrt. a fixed abstraction. Finally, we determine the
complexity of the ‘abstract model checking problem for LTL’ (in the number
of transition predicates); it is PSPACE-complete. I.e., it has the same com-
plexity as in the special case of finite models (when each edge is expressed
by one transition predicate).

To explain the approach of this paper, we look at the role that invariants
play in the proof of a safety property. The safety property is translated
to the non-reachability of a ‘bad’ state from an initial state. Its proof is
phrased as the proof of a ‘strong enough’ invariant (an invariant is a state
assertion that holds for every reachable state; ‘strong enough’ means that it
does not hold for any bad state). The deductive proof schema consists of
showing the inductiveness of a ‘strong enough’ invariant (the inductiveness
is the closure under the successor operator post). The approach of this paper
is to introduce concepts analogous to [‘strong enough’; inductive] invariants
and show that they can be used to characterize the validity of a liveness
property.

Following the abstract interpretation framework [10], an inductive invari-
ant is obtained mechanically as the least fixed point of an abstraction of
the post operator over a subdomain of the domain of sets of states. The
subdomain consists of equivalence classes of states when predicate abstrac-
tion is used, as in software model checking (equivalent states satisfy the
same predicates). Accordingly, the approach of this paper is to introduce the
appropriate least fixed point operator and the appropriate domain and the
appropriate predicate abstraction and to use these ingredients of the abstract
interpretation framework to formulate algorithms computing transition in-
variants.

2 Examples

This section is informal. The formal exposition starts in the next section.

Termination We use the following simple program to illustrate the use of
transition invariants for termination.



int n,i,j,Aln];
i=n; 11: if (i>=0) j=0;
11: while (i>=0) {
j=0; 12: if (i-j>=1) {
12:  while (j<=i-1) { j=j+1;
if (A[j1>=A[j+1D) goto 12;
swap(A[j1,A[j+11); } else {
j=j+1; i=i-1;
} goto 11;
i=i-1; }
}

For legibility, we concentrate on the skeleton shown on the right, which
consists of the statements st1, st2, st3.

11: if (i>=0) { i:=i; j:=0; goto 12; } - stl
12: if (i-j>=1) { i:=1i; j:=j+1; goto 12; } - st2
12: if (i-j<1) { i:=i-1; j:=j; goto 11; } - st3

Each of the abstract statements below must be read as a one-line program.

11: if (true) {i:
12: if (true) {i:
11: if (i>=0) {i:
12: if (i>=0) {i:
12: if (i-j>=1) {i:

We notice that st1 is

=Any; j:=Any; goto 12; } - al
=Any; j:=Any; goto 11; } - a2
=i-Pos; j:=Any; goto 11; } - a3
=i-Pos; j:=Any; goto 12; } - a4
=i-Nat; j:=j+Pos; goto 12; } - ab

approximated by al, st2 by a5 and st3 by a2. In

fact, every sequence of program statements is approximated by one of al,
..., ab. This means that the set {al,...,ab} is a transition invariant in our

terminology.

For example, every sequence of program statements that leads from 12
to 12 is approximated by a4 if it passes through 11, and by a5 otherwise.
The following table assigns to each abstract statement the set of sequences
of program statements that it approximates. All non-assigned sequences are

not feasible.

al

st1(st2|st3st1)*

a2

(st2|st3stl)*st3

a3

st1(st2|st3stl)*st3

a4

(st2|st3stl)*st3sti(st2|st3stl)*

ab

st2t




According to our formal development in the following sections (see Theo-
rem 1), the transition invariant above is ‘strong enough’ to prove termination,
which means: each of its abstract statements, viewed in isolation as a one-line
program, is terminating.

To prove that a set of abstract statements is indeed a transition invariant,
we show that it is inductive or that it can be strengthened by an inductive
one. The inductiveness of the transition invariant means that each composi-
tion of an abstract statement with a program statement is approximated by
the transition invariant. This is in general weaker than requiring that each
composition of abstract statements must be approximated by the transition
invariant.

The  composition of the  abstract statement a1l  with
the  program  statement st3 yields the abstract statement
11: if (true) {i:=Any; j:=Any; goto 11; }, which is not approximated by
the transition invariant. Thus, the transition invariant is not inductive. We
strengthen it by the inductive transition invariant given below.

11: if (i>=0) { i:=i-Nat; j:=Any; goto 12; }
12: if (true) { i:=i-Pos; j:=Any; goto 1l1; }
11: if (i>=0) { i:=i-Pos; j:=Any; goto 11; }
12: if (i>=0) { i:=i-Pos; j:=Any; goto 12; }
12: if (i-j>=1) { i:=i-Nat; j:=j+Pos; goto 12; }

This transition invariant is computed by our method; it corresponds to the
output produced by our implementation.

Fairness We use the following simple program “Up-down” to illustrate the
use of transition invariants for fair termination.

int x=0, y=0;

10: while (x=0) yj+;m0: x=1;
11: while (y>0) yH—;ml:

12:

Termination is the inevitability of the location (12, m1). For formal reason,
the program has a self-loop in this location.

Termination can be proven only under the fairness assumption that the
process on the right-hand side will eventually move from mO to mi. This
assumption is encoded by the Biichi automaton below.

pc=m0

do Q1



The transition invariant that we compute for this problem contains 49
abstract statements. Below we give the two critical ones.

10_m0_qO0: if (true) { x:=Any;

y:=y+Pos; goto 10_m0_q0; } - al
11_mi_qi: if (y>0) { x:=Any;

y:=y-Pos; goto 11_ml_qgl; } - a2

The abstract statement al does not terminate. However, by the formal
theory that we establish, its termination is not needed because its executions
do not visit the Biichi accepting state ¢; infinitely often. This is where the
fairness assumption comes in; the loop in 10_m0 is not a fair execution. The
‘fair’ abstract statement a2 terminates.

3 Transition Invariants

Our formal exposition is based on command formulas.

Example 1 The command formula ¢ below represents the statement
if y>=0 then z=z+1;

of a program over variables  and y where 11 and 1y are the labels before and
after the statement.

def

c = pc=11 Ay>0A2d =x2+1Ay =yApd=1,
g;arrd act%n
In a command formula, the subformula over unprimed variables z1,...,x,

forms the guard (enabling condition). The remaining conjuncts form the
action (update of the variables). Usually, they are of the form z' = E, where
E is the update expression over unprimed variables (translating assignments
x := E).

From now on, we assume that the program is given as a set C' of command
formulas. The translation from programs to sets of command formulas is
standard for many programming languages, including concurrent ones.

A basic observation is that one can use command formulas of a more
general form than the one that corresponds to programs in order to denote
relations between states of a more general kind than the transition relations
denoted by programs. We will next introduce some notation and define how
general command formulas ¢ denote relations between states.

The n-tuple X = (x1,...,2,) consists of the variables appearing in the
program. Usually, one or many program counter variables (“pc”) appear



among the z;’s; they range over the program labels. The free variables of

a command formula ¢ are among the variables xzy, ..., x, and their primed
versions &, ..., x,,.
A state s is a valuation of the program variables z,...,z,. The set of

all states is denoted by S. The value of the program variable x in a state
s is s(x). A pair of program states s and s’ satisfies a command formula ¢,
formally (s, s") E ¢, if ¢ evaluates to true after interpreting z; by s(z;) and z}
by s'(x;) for all i. The transition relation denoted by the command formula
¢ is the set of all state pairs that satisfy ¢.

= £ {(s,8)] (5,8) F ¢}

Given the program in the form of the command formula ¢, the state s’ is
reachable from the state s in one execution step if s —,4 s’ (which means
that the pair (s,s’) satisfies ¢), and reachable in a non-empty sequence of
execution steps if s—,*s'. As usual, = denotes the transitive (but not
reflexive) closure of the relation —.

A transition formula ® is a set of command formulas. An example of a
transition formula is the program C. We use the terms disjunction and set
of command formulas interchangeably. The terminology and notation above
for command formulas extend canonically to sets.

Definition 1 Transition Invariant.

A transition invariant of a program C' is a transition formula U that holds of
every pair of states s and s’ such that s' is reachable from s in a non-empty
sequence of execution steps.

That is, the transition relation of a transition invariant ¥ contains the transi-
tive closure of the transition relation of the program C, formally —c" C —y.

Invariants We assume that the given program comes with a state formula
Init denoting the set of initial states. A state formula or state assertion
is a formula whose free variables are the program variables (including the
program counter pc); it denotes a set of states. An invariant Inv is a state
assertion that holds for every reachable state (reachable from an initial state).

We construct the formula Invg from a transition invariant ¥ as the dis-
junction of Init with the formula that denotes the set of direct successor
states of initial states of C' under statements in W (here [ X/X'] refers to the
renaming of the primed by the unprimed version of each program variable).

Inve & Init v (3X (Init A ¥))[X/X]



Remark 1 Given the transition invariant ¥ and the state formula Init de-
noting the set of initial states, the formula Invy is an invariant of the program.

Conversely, given an invariant Inv of the program C', the transition for-
mula InvAlnv[X’/X] is a transition invariant not for the program C' itself but
for the program Inv A C obtained by strengthening the guards with informa-

tion about reachable states. As usual, we extend conjunction to sets of for-

mulas in the canonical way, i.e., ®; A Dy def {1 Ap2 | ¢1 € Py and ¢y € Dy}.

Well-founded Command Formulas The command formula ¢ is well-
founded if the transition relation —, (strictly speaking, its inverse) is well-
founded, i.e., there is no infinite sequence of states {s;}°, such that each
consecutive pair of states satisfies the command formula, formally (s;, s;11) F
¢ for all 7. In terms of program executions this means that the one-line
program represented by the command formula is terminating whatever its
initial states are (i.e., if its initial condition is true).

Notation of Meta-Variables We use ¢ for general command formulas,
1 for those in transition invariants, ¢ for those in the program, and their
uppercase version to sets thereof, i.e., ® for general transition formulas, ¥
for transition invariants and C for the program.

4 Termination

The program is terminating if every execution starting in an initial state is
finite. This is a special case of an LTL property; technically this section is
subsumed by the next one. We single out termination because of its singular
importance. Its treatment is possible without introducing Biichi automata.

Theorem 1 (Transition Invariants and Termination) The  program
represented by the set of command formulas C' is terminating if there exists
a finite transition invariant U such that all command formulas in Invg A U
are well-founded.

Proof. Assume, for a proof by contraposition, that ¥ is a finite transition
invariant for C', and that C' is not terminating. We show that at least one
command formula in Invg A ¥ is not well-founded.

By the assumption that C' is not terminating, there exists an infinite

def . .
sequence of states m = {s:}$2, such that s; is an initial state and s; —, S;i11
for all 7, where ¢; € C.



We define a function f that maps an ordered pair of indices of elements
in the sequence 7 to one of the command formulas in the transition invariant

U as follows.

def

f(k,l) = ¢ eV, where (sg,s)F ¢

The function f exists because ¥ is a transition invariant for C', and thus we
can choose arbitrarily one command formula from the (finite) set {¢p € ¥ |
(sk,s1) E ¥} as the image of the pair (k,l). The range of the function f is
finite since W is finite.

L e

(G

Given 7, the function f induces an equivalence relation ~ on pairs of
positive integers (in this proof we always consider pairs whose first element
is smaller than the second one).

(kD) ~ (K1) % f(k,0) = fOR,T)

The equivalence relation ~ has finite index, since the range of f is finite.

By Ramsey’s theorem [28], there exists an infinite set of positive integers
K such that all pairs of elements in K belong to the same equivalence class,
say [(m,n)]. with m,n € K. That is, for all k,] € K such that k < [ we
have (k,1) ~ (m,n). We fix m and n.

Let {k;}22, be the ascending sequence of elements of K. Let the command
formula ¢ denote the command formula f(m,n). Since (k;, ki11) ~ (m,n),
the function f maps each pair (k;, kzﬁ) to 1.

e Spy ey Sp = Sp =L

t t !
(G (G

Hence, the infinite sequence {s,}2; is induced by 1.

Sk; —y¢ Sk forall 1 >1

i+19
Since we assume that s; is an initial state, every state sy, satisfies the invari-
ant Invy, and hence the infinite sequence is induced also by Invyg A . Hence,
the command formula Invg A ¢ is not well-founded. Therefore at least one
command formula in Invg A ¥ is not well-founded. [ The statement of the
theorem still holds when one replaces the invariant Invyg by any other finite
invariant.



The sufficient condition for program termination given in Theorem 1 has
three components: the ‘transitive closure’ property of transition invariants,
the finiteness and the ‘disjunctive well-foundedness’. The examples below
show that the first resp. the second component can not be omitted.?

Example 2 The transition formula ¥ = {c1, ¢} given by the two command
formulas ¢, = x> 0Nz < xandco = y > 0AY < y is finite
and ‘disjunctively well-founded’. The transition relation induced by ¥ s not
terminating, as can be seen from the infinite sequence (0,1),(1,0),(0,1),...
of states.

Example 3 The program given by the single command formula ¢ below
(translating “while (z>=0) z++;”) does not terminate for initial states

where x > 0.
def

c = z>0ANd =x+1
The transition formula ¥ below denotes a transition invariant for {c} that
consists of infinitely many well-founded command formulas (here Invg AV is

equivalent to W ).

v Y {r=kANz'>z|keN}

The strongest transition invariant (which denotes the transitive closure of
the transition relation of the program) can in general not be used for the
sufficient condition of termination (since it is infinite in general).

2To compare the standard approach to termination proof and our approach (in its
restriction to termination), we view a ranking function (defined by the expression e[X] in
the program variables) as a (transitive) ranking relation (the transition formula e[X'] <
e[X] in primed and unprimed program variables). The ranking relation approximates the
transition relation of the program (and also its transitive closure). Termination follows
from the well-foundedness of the ranking relation. By definition, a transition invariant
approximates the transitive closure of the transition relation of the program (in general, a
transition invariant is not transitive, even when it is inductive as defined in Definition 3).
Termination then follows already from the ‘disjunctive well-foundedness’ of the transition
invariant (by an argument that exploits the combinatorial property of Ramsey’s theorem).
Disjunctive well-foundedness is weaker than well-foundedness (take the disjunctively well-
founded relation given by ' < zVy' <y). Theorem 1 states a condition under which
disjunctive well-foundedness does imply well-foundedness. Namely, stated in terms of
relations r and R instead of transition formulas:
If R can be decomposed into a union of well-founded relations (R = R; U ... U R,,, and
Ry,..., R, are well-founded) and r* C R, then r (as well as r) is well-founded.



5 LTL

We follow the automata-theoretic approach to verification [34] (see [33] for
the generalization to infinite-state systems). We assume that the given LTL
(Linear Temporal Logic [25]) property ¢ is represented by a Biichi automaton
A, for its negation (more precisely, an LTL formula ¢ over the finite set
of atomic propositions AP is represented by a Biichi automaton A, that
accepts exactly the infinite sequences of program states that do not satisfy ¢).
We thus need not introduce the syntax of LTL. We use Biichi automata and
their synchronous parallel composition with programs in the usual way, with
the only difference that atomic propositions denote infinite sets of program
states (i.e., an atomic proposition is a formula in the program variables X).

The Biichi automaton A-, = (@, %, A, ginit, Acc) consists of the finite
set of states @, the finite alphabet ¥ = 247 the transition relation A C
Q x ¥ x Q, the initial state ¢;,;; € @, and the set of accepting states Acc C Q).

A run of A, on the infinite sequence oy, 09, ... is an infinite sequence of
states qi, ga, ... such that ¢; is ¢in; and (g;, 07, giv1) € A for all i > 1. The
run qi, g, - .. is accepting if an accepting state q,.. € Acc appears infinitely
often. An infinite sequence w = 01,09, ... is accepted by A, if there exists
an infinite run on w.

Let L : S — 247 be a labelling function on program states that provides
the set of all atomic propositions satisfied by the given program state. An
infinite sequence of program states si, So, ... satisfies -y if and only if the
infinite sequence of state labels L(s;), L(s2), ... is accepted by A_,.

The program C' satisfies the LTL property ¢ if there exists no infinite
sequence of program states that is a program trace of C' and satisfies -,
i.e., that is a accepting run of the synchronous parallel composition of C and
A, to be introduced next.

We introduce a new program variable, the program counter pc, ranging
over the set of automaton states (). A state of the product program is a
valuation over the tuple of program variables X and the variable pc,; we
write it as a pair (s, ¢) of states of C' and A_, respectively.

Definition 2 Synchronous Parallel Composition C'x A_,.
The synchronous parallel composition of the program C' and the Biichi au-
tomaton A-, (with transition relation A) is the transition formula

CxA., ) {eNcygogy | c€C and (q,0,q') € A},

10



where

def
o) = Pea=a Apch=¢' A NpA N\ .
pEo pEo

A run of C'x A, is an infinite sequence of state pairs (s1,¢1), (s2,¢2), - - -
that starts in initial states of C resp. A, and such that each consecutive pair
of state pairs satisfies the transition formula C'x A_,. The run is accepting
if an accepting state of A, appears infinitely often in the infinite sequence

41,42, - - --

Remark 2 The run si,So,... of the program C does not satisfy the LTL
property ¢ if and only if (s1,q1), (S2,q2), ... is an accepting run of C' x A_,.

In the statement below, we can use any other invariant instead of Invy (which
is the invariant obtained from a given transition invariant; see Remark 1).

Theorem 2 (Transition Invariants and LTL) The program C satisfies
the LTL property ¢ if there exists a finite transition invariant ¥ for CxA-,
such that each command formula of the form

InVlIl A PCa=CGacc N ,QZ}

is well-founded, where ¢ is a command formula in V and .. S an accepting
state of A-,.

Proof. For a proof by contraposition, assume that W is a finite transition
invariant for C'x A_,, and that the program C' does not satisfy the LTL
property ¢. By Remark 2, there exists an accepting run (s1,q1), (S2,¢2), - - -
of C'x A, (starting in initial states of C resp. A-,) and an accepting state
Gace that appears in the sequence ¢, ga, . .. infinitely often, say at each index
in the infinite set of indices P.

def .
P :e {Z | q; = Qacc}

Since VU is a transition invariant, we can define a function f from the set of
ordered pairs of indices in P to the set of command formulas in ¥ as below.

fk, D) € eWw, where ((sp,qx), (s1,q)) F

By Ramsey’s theorem [28], there exists a command formula ¢ in ¥ and
an infinite set of indices K that is a subset of P, such that each pair of
consecutive indices in K is mapped to 1, formally f(k;, ki11) = ¢ where k;
and k;q in K for ¢ > 1.

11



In summary, each consecutive pair of state pairs ((Sk;, @, ), (Skis1> Qrivy))
satisfies the command formula ), each state pair satisfies the guard pc, =
ace, and, since the first element (s1,¢q;) of the infinite sequence is a pair of
initial states (of C' resp. A-,), every subsequent element and in particular
every element of the form (sy,,qx,) satisfies the invariant Invyg of C' x A_,.
This means, the infinite sequence ((Sg,, Gk, ), ((Skys @k,) - - - is induced by the
command formula Invg A pcy =gaec A 1. Which is, this command formula is
not well-founded. [J

6 Synthesis of Inductive Transition Invari-
ants via Transition Predicate Abstraction

We will develop a verification method for LTL properties via the automated
synthesis of inductive transition invariants by iteration of the best abstrac-
tion of a fixed point operator over an abstract domain defined by predicates.
This is akin to the automated synthesis of inductive invariants in the soft-
ware model checking method for safety properties; the difference is that the
fixed point operator is based on sequential composition of commands and
the predicates range over transitions instead of states. The program C' to
which we refer in this section is either the program whose termination we
want to check, or (more generally) its product with a Biichi automaton for
the negation of the LTL formula that we want to check.

Inductive Transition Invariants From now on, we use a given logical
consequence ordering = over transition formulas. If the transition relation
of one transition formula ®, is a consequence of another one @4, then its tran-
sition relation contains the other one (formally, if ®; = @5 then —4¢, C—yg,).
We do not require the converse. This means that = is a sound but not nec-
essarily complete implementation of the validity of implication (a sound and
complete implementation may be too inefficient or not even exist).

We define a composition operator o on command formulas that corre-
sponds to the composition of transition relations, i.e., =4 04, =—+4, © ¢,

$rody € IX" (51[X"/X']A $2[X"/X])

Here we replace each primed variable in ¢; and each unprimed variable in
@2 by the corresponding double-primed one. The composition of transition
formulas ®; o @, is the set of command formulas obtained by pairwise com-
position of those in ®; and ®,.

Pro®y = {p100¢y | 1 € Py and ¢, € Dy} (1)

12



The transition formula ® is a transition invariant for the program C' if the
formula @ is a consequence of the composition of every non-empty sequence
of command formulas in C' (the converse is not necessarily true since the
consequence relation |= is not necessarily complete).

cio...oc, E®, forall n>1 and ¢,...,¢, €C

Using the Kleene star operator for the iterative composition, we can write
the above sufficient condition for transition invariants as C' o C* = ®.

Definition 3 Induction.
The transition formula ® is inductive for the program C' if ® is a conse-
quence of C' and of ® composed with C'.

CVoolC E @

The condition in Definition 3 is weaker (not stronger) than ®o® = @, i.e., an
inductive transition formula is not necessarily closed under composition. By
the next statement, we have a sufficient condition for transition invariants
that it is effectively testable whenever [ is.

Remark 3 A transition formula is a transition invariant if it is inductive.

Deductive Proof Schema By Remark 3 and Theorem 1, in order to prove
that the program C' is terminating it is sufficient to provide a finite set of
well-founded command formulas and show that is inductive for C'.

Similarly, we derive an inductive proof scheme for LTL properties from
Remark 3 and and Theorem 2.

The deductive proof schema is complete in the sense of deductive com-
pleteness investigated e.g. in [19]. This is because the well-founded ranking
relation induced by a ranking function is a transition invariant which consists
of one well-founded command formula (see Footnote 2).

As with the proofs of safety properties, it is in general not possible to find
‘strong enough’ transition invariants automatically; thus, we design system-
atic methods that find transition invariants ‘in the best possible way’, in the
sense made precise in abstract interpretation [10].

Transition Predicates We will obtain inductive transition invariants as
least fixed points of abstractions of the concrete fixed point operator I’ that

we define as follows.

F(@®) ¥ docC

13



We can define the backward version by

B(®) ¥ {gAgle/X]|¢p € ®and ceC,

where ¢ is g A X'=e},

which does not require elimination of existentially quantified variables. Ev-
erything in the following also holds analogously for B. The least fixed points
of F' and B are equivalent; this is no longer the case when we abstract the
two fixed point operators. That is, in the application of our algorithms to
programs, the result returned may depend on the choice of the fixed point
operator, F' vs. B.

The (in general infinite) concrete domain D contains all transition for-
mulas (i.e., all sets of command formulas in the given formalism); its partial
ordering is the given consequence relation |=. The least fixed point of the
operator F' over the (upwards-complete) domain D always exists (it is possi-
bly an infinite set). It is the strongest (inductive) transition invariant of the
program.

Following [10], we may define the abstract domain D# to be a finite subset
of D such that D¥ is a Moore family, i.e., D¥ contains the supremum of D
and is closed under conjunction. As a consequence (Theorem 5.1.0.3 in [10]),
every formula in D has a minimal consequence in D#. The abstract domain
D# determines the best abstraction function from D into D# by

a(®) = A\{¥eD* 0T} (2)

In the case of predicate abstraction, the abstract domain D# consists of the
finite formulas built up from a given finite subset of D of ‘atomic’ formu-
las. The atomic formulas define a finite number of transition predicates. In
contrast to predicates that are defined by formulas over unprimed program
variables and apply to states, the (more general) transition predicates are
defined by formulas over primed and unprimed variables and apply to tran-
sitions (i.e., pairs of states).

For example, given the transition predicates pc = 1;, pc’=1; (for each
label 1;), z > k, and Z < z+ k for z € {z,y} and k€ {-1,0,1}, the
abstraction of the command formula ¢ in Example 1 is

afc) = pc=LiAy>0Az' <z+1Ay <yApd=1,.

Given the abstract domain D#, the best abstraction of the fixed point
operator F' is the operator F'# defined below (for transition formulas ¥ in
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D#).3

FH0) € a(To0). (3)
The monotonicity of the fixed point operator F# is a direct consequence
of the monotonicity of the composition and the abstraction function. By
Tarski’s fixed point theorem, the least fixed point of F# exists. We denote
the least fixed point of F# above C by Ifp(F#,C). The fixed point Ifp(F#, C')

is computed in the usual fashion.

Ifp(F#,C) = W, V...V, where
U, = Hale)|ceC}
Uiyi = Haloc) |y e¥;and ce C}

U1 E ¥ V...V,

Here, we implicitly apply (1) and the additivity of the abstraction function c.
Since D* is finite, the fixed point computation terminates after finitely many
iterations.

Strengthening Transition Invariants Given an invariant Inv, we can
obtain a stronger transition invariant ¥ by using (an abstraction of) the
fixed point operator F' for the program {Inv A ¢ | ¢ € C'} where each guard
is strengthened by the invariant. The stronger transition invariant ¥ can in
turn be used to construct a stronger invariant Invy (see Remark 1).

LTL Software Model Checking The algorithm defined in Figure 1 is
a semi-test for the validity of an LTL property for a program. We call
it the ‘LTL software model checking algorithm’ because it uses the same
main ingredient of the already cited algorithms known under software model
checking for safety, namely fixed point iteration over an abstract domain
defined by predicates. The correctness of a semi-test is the soundness of its
definite answers.

Theorem 3 (Soundness) The LTL software model checking algorithm is
correct, i.e., if the algorithm returns “LTL Property Holds” then the input
LTL property ¢ holds for the input program C'.

3The associativity of the composition operator o is not preserved under predicate ab-
straction. Le., the abstract composition o# defined by 1 o# 1y = (i) o 1) is not
associative. In other words, the abstractions of the command formulas do not generate
a monoid. This is because we use the best possible abstractions. Similarly, the operator
F## defined by F##(¥) = ¥ o# o(C) is not the best abstraction of F.
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input
program C with initial states Init
transition predicates defining abstract domain D#
Biichi automaton A, with initial state g;n;; and
accepting states Acc
begin
C:=CxA,
Init := Init A pcy4 =qinst
a:=\0. A{V € D¥ | & = U}
F# .= \VU. a(¥ o C)
U = Ifp(F#,O)
Invg := Init vV (3X (Init A ¥))[X/X']
if foreach v in ¥ and gqq.. € Acc
well-founded(Invg A pcy =qaee A )
then
return(“LTL Property Holds”)
else
return(“Don’t Know”)
end.

Figure 1: LTL software model checking.

The program is given as a set C' of command formulas; its set of initial
states is denoted by the state formula Init; the abstract domain D# with
glb operator A is given through a finite set of transition predicates (D#
consists of all Boolean combinations of those predicates); the operator o
over transition formulas is sequential composition; the Biichi automaton

A, represents the negation of the LTL property ¢ to be checked; the
operator X is the synchronous parallel composition of a program and the

Biichi automaton.
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input
program C with initial states Init,
transition predicates defining abstract domain D#
begin
a:= 0. A\{V € D¥ | ® = U}
F# .= \U. a(¥ o O)
U = Ifp(F#, O)
Invg := Init V (3X (Init A ¥))[X/X']
if foreach 7 in ¥
well-founded(Invy A 1)
then
return(“Terminating”)
else
return(“Don’t Know”)
end.

Figure 2: Termination algorithm (special case of LTL algorithm)

Proof.  The correctness follows from the fact that a fixed point of an
abstraction of an operator is also a fixed point of that operator [10], the fact
that a fixed point of the composition operator F' is an inductive transition
formula, Remark 3 and Theorem 2. [

The algorithm in Figure 2 is a semi-test for termination. It is the special
case of the one in Figure 1 where the Biichi automaton consists of one state
(which is both initial and accepting, and which has a transition to itself). Its
correctness can be shown using Theorem 1 instead of Theorem 2.

The LTL algorithm (or its restriction to termination) cannot be complete
(result a definite answer always if the program is terminating) for decidability
reasons. Instead, we have a different kind of completeness.

Theorem 4 (Abstraction Completeness) If the abstract domain D%
contains a finite inductive transition invariant for the program C x A-, that
consists of well-founded command formulas, then the LTL software model
checking algorithm will succeed in proving the LTL property, i.e., it will re-
turn a definite answer (“LTL Property Holds”).

Proof. [Sketch] We use the characteristic property of best abstractions in

the same way as for the completeness of abstraction-based proofs for safety
properties (see [2, 9]). O
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In this section, we have constructed one particular abstraction, based on
transition predicates. Many more constructions are possible; see [10, 9]. The
correctness of the algorithm will hold for any sound abstraction F# of the
concrete composition operator F'.

Well-foundedness of Command Formulas The algorithms are
parametrized by a test of (a sufficient condition for) the well-foundedness
of the command formulas v in the abstract domains D#. This test returns
the value of the expression “well-founded(1))”.

In the implementation of the algorithm that we used for our examples,
the test is based on linear programming. It is a decision procedure for a class
of command formulas in linear arithmetic [26].

If the repetition o o.. .01 of any length is different from false, then the
command formula 1) translates a program that consists of one while loop.
We call it a simple while loop because its body consists of straight-line code
(without if-then-else branching). Given a class of programs we want to verify,
and given the corresponding abstract domain, the next step is to determine
good sufficient termination conditions for the corresponding class of simple
while loops.

Complexity We will next show that, in a complexity-theoretic sense, the
semi-test that we have given is not optimal for the problem that it ‘solves’.
First we formally define what problem that is. We introduce the problem to
decide, given a program and an abstraction (a set of transition predicates),
whether ‘the abstract program’ satisfies the LTL property. Formally, whether
the program has an inductive transition invariant, with well-founded com-
mand formulas, in the abstract domain defined by the transition predicates.
(This is in analogy with the setting of Boolean programs with predicate
abstraction in [1]: a Boolean program satisfies the given safety property if
and only if the program has an inductive invariant, without ‘bad’ states, in
the abstract domain defined by the predicates. We omit a formalization of
‘Boolean transition programs’; their operational semantics would be based
on sequential composition.)

We give an optimal algorithm and a lower bound and thus determine
the complexity of the decision problem in the size of the set of transition
predicates (which depend on the given program; the program is either the
one whose termination we want to check, or more generally its product with a
Biichi automaton for the negation of the LTL formula that we want to check;
the transition predicates include usually the formulas pc =1, and pc’ =1,
and pcy =¢ and pc/y = ¢ for program labels 1,, of the program and states ¢
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of the Biichi automaton).

Theorem 5 (Complexity of Abstract LTL Model Checking) Given
a fired program and a set of transition predicates, the problem to decide
whether the program has an inductive transition invariant with well-
founded command formulas in the abstract domain defined by the transition
predicates, s PSPACE-complete in the number of transition predicates.

Proof. [Sketch| For the upper bound, we use not fixed point iteration but a
non-deterministic algorithm that explores Ifp(F# C); again, as in the proof
of Theorem 4, we use the characteristic property of best abstractions in
the same way as for the completeness of abstraction-based proofs for safety
properties (see [2, 9]). The lower bound is obvious from the finite-state
case (the only values are the labels of concurrent programs; the strongest
transition invariant is inductive and finite, hence the well-foundedness of
its command formulas is a sufficient and necessary condition for program
correctness). [J

7 Related Work

Our use of Ramsey’s theorem in the proofs of Theorems 1 and 2 is reminiscent
of its use in Biichi’s theory of w-regular languages over a finite alphabet
(see [32]). This theory is the basis of the automata-theoretic approach to
LTL model checking [34]. The equivalence classes over segments correspond
to the transformer functions of the Biichi automaton. We, however, restrict
ourselves to finite sets of transformers over an infinite state space, as opposed
to restricting oneself to transformers over a finite state space (in both cases,
the sets of transformers are finite and thus induce an equivalence relation
of finite index, which is the raison d’étre of the finiteness restriction). As
a consequence, we infer the existence of an ultimately periodic sequence of
transformers (1 o ¥ or, in the notation of [32], [v]x - [w]x*), as opposed
to an ultimately periodic sequence of states. For a more subtle difference, in
our setting (see Footnote 3), the mapping of each finite segment of an infinite
trace to its equivalence class is not a monoid homomorphism.

In [23], Lee, Jones and Ben-Amram present a termination analysis for
functional programs; the analysis is based on the comparison of infinite paths
in the control flow graph and in ‘size-changing graphs’; that comparison can
be reduced to the inclusion test for Biichi automata. Our work takes what
we think is the essence in [23], formulates it in a logic-based setting combined
with abstract interpretation, connects it with predicate abstraction and ex-
plores how far one can get, pushing for greater generality. We use a different
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setting (imperative and concurrent instead of functional programs). That
taken aside, a bold way to state the contribution of our work in comparison
to theirs is that we go from termination to general LTL properties, and that
we go from one fixed abstraction to generic abstract domains (specified by
transition predicates). The specification of an abstract domain allows one
to fine-tune an abstraction to the property one tries to prove; in a way, this
possibility turns a program analysis into a verification method.

One can successively refine abstraction by adding more transition predi-
cates. For example, adding ' < x and then 2’ < x — 1 allows one to check
the termination of the program while (x>=0){x:=x+1; x:=x-2}.

One practical advantage of our logic-based setup over the graph-based
one of [23] is the possibility to take into account the specification of the
initial states of a program (without it, one checks a—too strong—condition
for termination, namely under the—too weak—assumption that every state
can be an initial state); we do so in Theorems 1 and 2 by adding an invariant
as a conjunct to each command formula in the transition invariant (e.g. the
invariant Invy derived from the transition invariant ).

In [7, 8], Colon and Sipma give methods to prove termination that are
highly successful in practice. The methods are based on linear arithmetic, as
opposed to being parametrized by theorem provers. They work by isolating
strongly connected components in the control flow graph of a program and
by computing ranking functions for each one of them. No composition of
program statements is considered, i.e., the program while (x>=0) {x=x+1;
x=x-2; } cannot be proven terminating.

In [33], Vardi provides an automata-theoretic framework for verification
of concurrent systems by appying infinite automata. The system satisfies is
correct if its parallel composition with the automaton that accepts compu-
tations violating the property does not have infinite computations. Our LTL
checking setup follows this framework.

In [19], Kesten, Pnueli and Vardi ‘augment’ finite-state abstractions with
progress monitors to verify liveness properties. They were perhaps the first
to point out finite-state abstractions as such are not sufficient for automated
liveness proofs. The progress monitors incarnate ranking functions that have
to be provided manually. Ranking functions are to liveness what invariants
are to safety; in automated methods for safety, invariants are synthesized.

Previous approaches to automated liveness checking for infinite-state sys-
tems are based on the iteration of fixpoint operators over sets of states.
When they account for fairness assumptions (as e.g. [31]), they need to under-
approximate sets of states, which seems hard. Without fairness assumptions,
liveness proofs for concurrent systems are in general flawed (for example, the
non-starvation proofs for integer-valued communication protocols in [5, 11]
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are based on models where no processor is allowed to idle).

We are not aware of previous formalizations of transition invariants. The
notion has appeared implicitely in special instances. For example, the meta-
transitions of Boigelot and Wolper e.g. in [3] are (in fact, the strongest)
transition invariants for simple loops. They may be useful for showing the
well-foundedness of command formulas in transition invariants, as the work
in [4] already indicates. The modifies clauses used by Rustan Leino and
Kuncak e.g. in [20]; the clause modifies x expresses the the conjunction of
y' =y for all other variable y different from z is a transition invariant.

8 Conclusion, Future Work

Verifying liveness properties of software will always be a hard problem; any
automated method will work at most in examples where no ingeniousness
or creativity is required. We have presented a formal framework that may
serve as a starting point for designing automated methods in a certain style.
Namely, it suggets using least fixed point iteration in combination with ab-
stract interpretation techniques and in particular transition predicate ab-
straction. l.e., this style relies on the same basis as the methods known under
software model checking, which have demonstrated their strong potential in
automated tools for verifying safety properties of software systems.

It is not at all obvious, however, whether the success of the software model
checking method will extend from safety to liveness. We cannot predict
whether one can achieve scalability. We still have to develop techniques for
constructing abstract domains that are as rich for transition formulas as for
state formulas. These techniques need to balance the cost for computing the
abstraction with the cost for the test of well-foundedness (see also below).

We have done some preliminary practical experiments with a prototypi-
cal implementation in Sicstus Prolog [21] with a constraint solver for linear
arithmetic (clpqr [17]); we use the CMU BDD package for the efficient im-
plementation of the fixpoint test. We used our tool to prove non-starvation
for the 2-process version of the bakery protocol. Non-starvation expresses
that each time a process requests a resource it will finally access it. Its proof
requires fairness assumptions (each process must make progress, at certain
program locations). We express the fairness assumptions in the LTL formula
“if fair then non-starvation” and use the tool LTL2BA [12] to translate its
negation into a Biichi automaton. We then compute transition invariants
for the ‘synchronous parallel composition’ of the protocol and the Biichi au-
tomaton, in the ‘forward’ (F') and the ‘backward’ (B) way. We give some
measurements in Table 1. The experiments indicate that the size of the
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time | command formulas
Program | S | P | (ms) | total | loop | fair
Bakery(B) | 218 1740 | 815 | 17 8
Bakery(F') | 218 | 0 | 4480 | 815 | 17 8

jen

Table 1: Transition invariants in numbers.

B and F stands for the backward and forward fixed point operators; S is
the number of guarded commands in the composition of the protocol with
the Biichi automaton for the negation of the LTL property “if fair then non-
starvation”; P denotes the number of transition predicates in the abstract
domain (excluding the ones for the program counters); the three numbers
total, loops and acc-loops refer to the total number of command formulas
in the transition invariants, the ones that correspond to loops in the control
flow graph (the others are trivially terminating) and the ones that start from
Biichi accepting locations (i.e. correspond to fair execution paths), respec-
tively.

transition invariants gets too large when one encodes fairness assumptions
by Biichi automata. We work on more direct ways to encode relevant specific
kinds of fairness such as weak fairness.

Predicate abstraction is a way to delegate the creativity part of the syn-
thesis of invariants to the choice of a set of predicates and defer the te-
diousness to the computation over an exponentially large abstract domain.
The method becomes fully automated (and then the semi-test loses its ter-
mination guarantee) if combined with an automated procedure for counter-
example guided abstraction refinement [6, 1, 16, 2]. In our experiments, we
have generated the transition predicates using such a procedure (which we
did not describe since it is quite analogous to the one for state predicates
in [2]). Future work includes the investigation of efficient specialized proce-
dures and their fundamental properties as in [13, 2].

The interest of transition invariants goes beyond liveness checking. It
may be relevant for interprocedural safety checking, since the synthesis of
transition invariants generalizes the functional approach to program analysis
of Sharir/Pnueli [30].
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