
The Horn Mu–calculus

Witold Charatonik David McAllester Damian Niwiński
Andreas Podelski Igor Walukiewicz

Abstract

The Horn -calculus is a logic programming language al-
lowing arbitrary nesting of least and greatest fixed points.
The Horn -programs can naturally expresses safety and
liveness properties for reactive systems. We extend the set-
based analysis of classical logic programs by mapping ar-
bitrary -programs into “uniform” -programs. Our two
main results are that uniform -programs express regular
sets of trees and that emptiness for uniform -programs is
EXPTIME-complete. Hence we have a nontrivial decidable
relaxation for the Horn -calculus. In a different read-
ing, the results express a kind of robustness of the notion
of regularity: alternating Rabin tree automata preserve the
same expressiveness and algorithmic complexity if we ex-
tend them with pushdown transition rules (in the same way
Büchi extended word automata to canonical systems).

1 Introduction

Regularity is a fundamental property of sets of words and
trees. It forms the basis for the effectiveness of at least two
important methods for analyzing the behavior of programs:
set-based analysis and model-checking. The first method
specifies the analysis problem through a logical formula
with set-valued expressions (a set constraint) and computes
its solutions in the form of automata over finite trees. In the
second method, a property of ongoing behaviors of reactive
finite-state systems is modeled as a regular set of infinite
words or trees. As a fundamental first step towards the inte-
gration of the two methods, we investigate the fusion of the
corresponding formalisms defining regular sets of, respec-
tively, finite and infinite trees.

Max-Planck-Institut für Informatik
D-66123 Saarbrücken, witold;podelski @mpi-sb.mpg.de

on leave from Wroclaw University;
partially supported by Polish KBN grant 8T11C02913

AT&T Labs
Murray Hill NJ 07974, dmac@research.att.com

Institute of Informatics, Warsaw University
02-097 Warsaw, Poland, niwinski,igw @mimuw.edu.pl

visiting Max-Planck-Institut

The logical formulas used in set-based analysis yield a
syntactically rich formalism to define regular sets of trees;
they are conceptually close to the programs fromwhich they
are directly derived. This is particularly apparent in the
analysis of logic programs in [10], which uses a subclass
of logic programs called uniform programs. Uniform pro-
grams, which are sets of Horn clauses in a certain form,
subsume many other formalisms used in set-based analysis
(e.g., in [23, 15, 12, 7, 5]) modulo simple translations.
As shown in [12, 10], the sets of finite trees defined by

the least fixed point semantics of uniform programs are reg-
ular; the emptiness test is EXPTIME-complete. It is nat-
ural to ask whether also the greatest fixed point of a uni-
form program defines regular sets (of infinite trees). We
give a positive answer not only to this question but also
to its direct generalization to the full fixed point hierarchy:
the sets of infinite trees defined by arbitrarily nested least
and greatest fixed points of a uniform program are regu-
lar. Our first proof is not constructive; its purpose is to give
a direct explanation of the expressiveness issue. To deal
with algorithmic issues, we present a procedure that solves
the emptiness problem for a set of infinite trees defined
by a uniform program via arbitrarily nested fixed points in
single-exponential time. Thus, the problem is EXPTIME-
complete. A modified version of the algorithm transforms
a uniform program into an equivalent alternating Rabin au-
tomaton; this yields a second, technically involved proof of
the regularity.
A different reading of our results stems from the con-

nection between set constraints and Büchi’s canonical sys-
tems [3], which was observed first in [15]. Canonical sys-
tems may be viewed as a kind of pushdown automata whose
input string is the initial stack contents. In this view, stan-
dard non-deterministic automata (nfa’s) correspond to the
special case where only pop transitions are allowed. Uni-
form programs generalize canonical systems to acceptors
of infinite trees with alternation and with stacks containing
infinite trees1; they extend alternating Rabin automata in the
same sense that canonical systems extend nfa’s. Our result

1The tree-like stack distinguishes our notion of automaton of from the
ones studied in [22, 11] which have a standard stack (and also a less general
acceptance condition).

1

thus expresses a kind of robustness of the notion of regular-
ity wrt. expressiveness and algorithmic complexity under
this extension.
Finite automata with a stack have raised interest as a

kind of infinite reactive systems (then also called push-
down processes) for which various properties are decid-
able [18, 14, 13, 2, 4, 25, 9], and also in relation with dy-
namic logics (see, e.g., [11]). The decidability results seem
surprising; our results may add some intuition why they are
possible.
Our results have a promising potential for concrete ap-

plications to the set-based analysis of reactive programs and
to the verification of infinite reactive systems such as push-
down processes. Given any infinite reactive system speci-
fied by a logic program , we can derive a uniform program
that expresses the set-based abstraction (à la [12]) of .

Using our algorithm for the emptiness test, we can decide
whether satisfies any -calculus formula . Namely, the
product construction as in [1, 9] applied to and the Ra-
bin tree automaton expressing is a uniform program
with priorities (i.e., a pushdown Rabin automaton, instead
of a pushdown Büchi automaton as in [9]). We thus obtain
an algorithm for the abstract verification of the -calculus
formula for the original program . That is, for each in-
put variable of the program, we can compute a regular set
that conservatively approximates the set of all values that
can take in a correct input state (correct wrt.).
If we specify a pushdown process by a logic program,

we immediately obtain a uniform program; i.e., the ab-
stract verification described above yields a full test of the
-calculus property (in comparison, the method described
in [6] applies only to CTL properties). This holds still true if
we extend pushdown processes to the form that corresponds
exactly to uniform programs, i.e., with tree-like stacks, non-
deterministic guesses of stack contents and alternation.

2 Programs, priorities, fixed points

We define a logic program to be a finite set of Horn clauses,
i.e., a set of expressions of the form where
is a first order atom, i.e., a predicate applied to first order
terms, and is a finite set of first order atoms. It is well
known that logic programs can be assigned both a least and
a greatest fixed point semantics. In this section we will use
an assignment of priorities to predicate symbols to define
a semantics that combines least and greatest fixed points.
First, however, it is useful to review the standard least and
greatest fixed point semantics of logic programs.
In greatest fixed point semantics one usually works with

infinite terms, e.g., the infinite term where
is a monadic function symbol. Throughout the remainder of
this paper we will use the phrase “ground term” to mean a
possibly infinite term which does not contain variables. A

ground atom is defined to be a predicate symbol of ar-
guments applied to (possibly infinite) ground terms. A
ground clause is an expression of the form where
is a ground atom and is a finite set of ground atoms.

We say that a ground clause is a ground instance
of a Horn clause if there exists a substitution
mapping variables to ground terms such that
is the result of replacing each variable in by

. Note that under these definitions a Horn clause con-
tains only finite terms while a ground instance of that clause
may contain infinite terms.
Consider a possibly infinite term such that each node

of is labeled with a ground atom denoted . Let
denote the set of nodes which are children of the node
and let denote the set of ground atoms of the form

for . Given a logic program we say that
is a -derivation if for each node in we have that

is a ground instance of a clause in .
For any logic program we define the greatest fixed point
meaning of , denoted , to be the set of all ground
atoms such that there exists a (possibly infinite) deriva-
tion tree whose root node is labeled with . We define the
least fixed point semantics of , denoted , to be the set
of ground atoms such that there exists a finite -derivation
whose root is labeled with . Note that if a program con-
tains a clause of the form (with an empty right hand
side) then contains infinite atoms — the least fixed
point semantics of over infinite atoms is different from
the least fixed point meaning of over only finite atoms.
However, for any finite signature finiteness is definable, i.e.,
one can write clauses defining a monadic predicate F such
that if and only if is a finite term. Since
finiteness is definable (under least fixed point semantics)
interpretation over infinite terms can simulate interpretation
over finite terms.

Priorities We now generalize the semantics to allow arbi-
trary nestings of greatest and least fixed points. We define
a Horn -program to be a logic program in which every
predicate symbol is associated with a non-negative inte-
ger called the priority of . We say that a priority
occurs in a program if it equals for some occur-
ring in . The priority of a ground atom is defined to be the
priority of the predicate used in that atom. If is a Horn
-program then a -derivation is defined as before. How-
ever, we now distinguish accepting from non-accepting -
derivations. Consider a -derivation and let be an infi-
nite sequence of nodes in such that is a
child of . We will call such a sequence an infinite path
in . Let be the set of priorities occurring infinitely
often on the path, i.e., the set of priorities such that there
are infinitely many where is the priority of . We
say that a path in is accepting if the largest element of

2

, is even. A -derivation is accepting if every infi-
nite path in is accepting. For any Horn -program we
define to be the set of ground atomic formulas such
that there exists an accepting -derivation where the root
node is labeled with .
Note that if all predicates have priority 0 then
. On the other hand, if all predicates have priority 1,

then . As an example of the added power of
mixed priorities consider the program consisting of the
following clauses where has priority 1 and has priority
2.

The acceptance condition implies that any infinite path in
an accepting derivation must have an infinite number of oc-
currences of the predicate . This implies that contains
all atoms of the form and where is an infinite
term constructed from the monadic functions and con-
taining an infinite number of occurrences of . Intuitively,
since the predicate has an odd index it must “terminate”
in the use of a higher priority predicate. Since the higher
priority has an even index it need not terminate and can
call itself — through terminating calls to — an infinite
number of times. This program expresses the statement that
from any point one will eventually encounter a — a kind
of liveness property. It is possible to show that this prop-
erty is not expressible under either purely least fixed point
or purely greatest fixed point semantics.
In the remainder of this paper the term “program” will

be used to mean Horn -program.

Fixed point semantics We now give an alternate charac-
terization of the semantics of a program in terms
of nested fixed point expressions. The fixed point charac-
terization of relates the parity condition (the definition
of acceptance) given above to more classical formulations
of fixed point logic. However, the fixed point characteriza-
tion is not used in the remainder of the paper and is only
provided here to strengthen the relationship with previous
formalisms.
First we define the familiar operator of logic pro-

gramming. We define a database to be a set of ground
atoms. For any database we define in the stan-
dard way to be the set of ground atoms such that there
exists a ground instance of a clause in such that

. For any databases and and non-negative pri-
ority we define to be the database such that

if either the priority of is different from
and or the priority of equals and .

We now define the operator such that equals
. The operator is analogous to except

that only updates predicates of priority . We now take
fixed points of the operators separately for each value

of . More specifically, for any integer we define
as follows. For negative we define to be . For
nonnegative and even we define to be the greatest

set such that . In fixed point
notation this can be written as

For nonnegative odd values of the definition of is anal-
ogous but using a least fixed point () instead of a least
fixed point (). The data base is the database in
which the meaning of predicates of priority greater than
is taken from A while the meaning of predicates of priority
no greater than is computed from their definition. Note
that predicates of even priority are given greatest fixed point
meanings while predicates of odd priority are given least
fixed point meanings. We will now prove the following the-
orem.

Theorem 1 where is the largest priority of
any predicate in .

This theorem is proved by formulating an appropriate in-
duction on the priority in the operators . More specif-
ically, for any program , integer , and database we
define a - - -derivation to be a tree where each node
is labeled with a ground atom and has children
and where for each node we either have that the prior-
ity of is greater than and or the priority
of is no greater than and is a
ground instance of a clause in . A - - -derivation tree
is called accepting if every infinite path in that tree is ac-
cepting, i.e., the largest priority occurring infinitely often
on that path is even. It is possible to show that
if and only if there exists an accepting - - -derivation of
. The claim is proved by induction on . See the proof of
Theorem 6.1 in [20] (or Theorem 3.2 in [21]) for a similar
argument. Theorem 1 follows by taking .
The case for negative is trivial — for negative we

have if and only if and there is a - -
-derivation of if and only if .

3 Uniform Programs

Let denote the set of terms such that .
A set of ground terms is said to be definable by a Horn -
program if it can be written as for some and . The
fact that the -level (all predicate have priority) corre-
sponds to classical logic programs which are known to be
r.e.-complete, immediately raises the concern that the lan-
guage is overly-expressive— there appears to be no hope of
computing properties of sets defined by Horn -programs.
Our main results say that the set-based relaxation for clas-
sical logic programs of [12, 10] can be generalized to a de-
cidable relaxation for Horn -programs.

3

We will call a program a relaxation of a program
if for any predicate symbol occurring
in . If we want to prove that some set is empty,
it suffices to construct a relaxation of and show that

is empty. To show that some set contains all
terms it suffices to show that the complement is empty.
For any Horn -program we now define the set-

based relaxation, denoted , as follows. For each clause
containing variables

, , the following clauses are included in .

...

Here is a fresh predicate symbol of priority 0 represent-
ing the “type” of the variable . The atom
is the result of replacing each occurrence of a variable
in by a fresh variable so that is
linear, i.e., no variable occurs more than once. The pred-
icate in the body of the last clause equals where
is the variable replaced by . For example, if con-

tains the clause then con-
tains the clauses , and

. It is easy to see
that any accepting -derivation can be converted to an ac-
cepting -derivation. Hence is a relaxation of . The
second main result of this paper states, in essence, that for
any set one can effectively determine, in single ex-
ponential time in the size of , whether the set is
empty.
A clause of the form

will be called a reduction clause. A clause of the form

will be called an expansion clause. A programwill be called
uniform if it consists entirely of reduction and expansion
clauses. Any pair of the form can be converted
in linear time into a pair where is uniform and

is empty if and only if is empty. Our sec-
ond main result can now be rephrased as the statement that
if is uniform then the emptiness of can be decided
in single exponential time.

Pushdown processes. Uniform programs can easily rep-
resent pushdown processes studied in, e.g., [14, 13, 2, 4,
25]. The clause expresses a pop transition

from state to state under the condition that the first letter
of the stack is ; the clause is an -transition
leaving the stack invariant; the clause is
a push transition.2 The computation trees (pushdown trees
of [25]) become derivation trees in our sense. The issue of
an input is absent in [25] (or, an input tree is always the
starting stack symbol). The uniform programs extend push-
down processes in several directions. They take nontrivial
inputs, permit free variables in bodies of clauses, and allow
functional symbols of arbitrary arity.

4 Regularity of Uniform Programs

A clause of the form

will be called an intersection clause. Any program consist-
ing of reduction, expansion, and intersection clauses can
be efficiently converted to a uniform program — intersec-
tion clauses can be represented by expansion and reduction
clauses. However, it is far less clear that expansion clauses
can be replaced by intersection clauses. A program con-
sisting entirely of reduction and intersection clauses will be
called an alternating automaton. A program consisting en-
tirely of reduction clauses will be called a nondeterministic
automaton.
It is straightforward to see that the above concept of non-

deterministic automaton coincides with a classical nonde-
terministic tree automaton with the parity acceptance con-
dition, as considered in [8]. These automata are known
to coincide in expressive power with Rabin automata and
Muller automata [17, 8]. Also, an alternating automaton in
our sense can be easily presented in the classical setting and
it is known that this class of automaton has the same expres-
sive power as the others — each of these kinds of automata
can express exactly the same class of languages of possibly
infinite terms. The languages in this class are called regu-
lar. Since uniform programs can express any set expressible
by an alternating automaton, uniform programs can express
any regular set. Our first main result is that the converse also
holds — uniform programs can express exactly the class of
regular sets.

Theorem 2 (Regularity) If is uniform then the set
is regular, i.e., recognizable by a Rabin automaton.

The proof gives a non-constructive method of convert-
ing a uniform program to an equivalent alternating automa-
ton. The fundamental intuition is that expansion clauses can
be “short-circuited” by intersection clauses. For example,

2These three kinds of clauses correspond to the three kinds of rules in
canonical systems, which Büchi called, respectively, contraction, neutra-
tion and expansion [3].

4

consider the expansion clause .
Suppose the program also contains the reduction clauses

and .
If one can determine that there exists a term such that

then from these clauses we can infer the short-
circuit intersection clause . Given
enough of these intersection clauses it is possible to enu-
merate all the ways of short circuiting the expansion clauses
and the expansion clauses become redundant.
In the case of purely least fixed point programs or purely

greatest fixed point programs this basic intuition can be used
as the foundation for a constructive algorithm for convert-
ing uniform programs to alternating automata. In the case
of the Horn -calculus things are more complex. One prob-
lem is that the meaning of Horn -programs is not invari-
ant under the addition of derived clauses. If the program
contains and the introduction
of the derived clause may allow derivation
trees which satisfy the parity condition by virtue of the fact
that uses of the predicate have been eliminated from cer-
tain derivation paths. It is possible, however, to formulate a
nonstandard notion of derived clause such that the program
remains invariant under the addition of derived clauses.
For each predicate occurring in and each priority

at least as large as the priority of we introduce a new pred-
icate with priority . We say that the intersection clause

is derivable from if every predicate in the
body is one of the newly introduced predicates and
there exists a derivation tree such that the root node of is
labeled with where is a fresh constant (not occurring
in), every infinite path in is accepting (the largest pri-
ority occurring infinitely often is even), and for every node
in either is a ground instance of a

clause in (as in normal -derivation) or is an atom
where contains where is largest priority

occurring on the path from the root to the node in the
tree . Now let consist of all the reduction clauses in
, plus all intersection clauses derivable from , plus all

clauses of the form . The program is an
alternating automaton and hence is a regular set for
any predicate occurring in . Furthermore, it possible to
show that for any predicate occurring in we have that

.
Although we have not shown how to construct the deriv-

able intersection clauses, we can bound the size of the re-
sulting alternating automaton . If is a number of pred-
icate letters used in and the maximum priority of these
predicates, then uses at most new predicates, but per-
haps new clauses. Note that we can further trans-
form into a nondeterministic automaton by the construc-
tion of [19] that depends exponentially only on the number
of states (that is, predicate letters in our setting). Thus we
can obtain a nondeterministic automaton of the size

equivalent to the program

5 The second main theorem

Theorem 1
If is uniform then the emptiness of can be deter-
mined in time.

Outline of the proof We do not know of any direct way
of constructing the set of derivable intersection clauses used
in the proof of Theorem 5. Instead, we will eliminate the
expansion clauses at the cost of expanding the term signa-
ture. The idea is to annotate a term with some hints pointing
to reduction rules that can be used instead of an expansion
rule. Two operators on terms will be in order: an operator

of annotating ordinary terms, and an operator of
deleting all annotations from an annotated term. We will
write an alternating program such that ,
whenever , and, if , for an anno-
tated term , then . This way the emptiness
problem for will be reduced to the emptiness prob-
lem for . The theorem will follow since will be an
alternating automaton of size polynomial in the size of .
In order to explain the construction and properties of the

alternating program , we find it convenient to use games
of possibly infinite duration between two players whom we
call Prover and Opponent. We first introduce a program
game in which winning strategies for Prover correspond to
derivations in . Then we define what we call a flow game
which can be viewed as an intermediate construction be-
tween and . The key technical property is that winning
strategies for both players can be transferred from program
game to flow game, so that the nonemptiness of is equiv-
alent to the existence of a winning strategy for Prover in
the flow game. Then we introduce the aforementioned an-
notated terms over an extended signature. These terms are
closely related to the flow game: the winning strategies for
Prover can be directly encoded by annotated terms. Con-
versely, from a suitably well formed annotated term, Prover
can always read some strategy (not necessarily winning).
Finally, we construct the alternating automaton which
accepts precisely those annotated terms which encode win-
ning strategies for Prover in the flow game. Thus, is
nonempty iff Prover can win the flow game. But the latter is
equivalent to the nonemptiness of , which completes the
proof.

Games We recall the concept of a game of possibly infi-
nite duration played by two players, Ms. 0 and Ms. 1, on
ranked graphs called arenas. An arena is a bipartite graph
whose nodes are partitioned into the sets and of po-
sitions of Ms. 0 and Ms. 1, respectively. There is also a
finitely valued function N called the priority

5

function [8, 16]. The players move a token alternately, so
that a play is recorded as a path in the arena. If a player
cannot move, the other player wins. If a play is infinite then
Ms. wins if the highest priority occurring infinitely often
during the play modulo 2 is . A strategy for Ms. tells
how to prolongate a finite path ending in by one edge.
Such a strategy is winning (for Ms.) if any maximal play
consistent with the strategy is won by Ms. .
It is known that any game of such form is determined,

i.e., at every position one of the players has a strategy to
win. Moreover, a winning strategy can be assumed posi-
tional (or memoryless), i.e., depending only on the last po-
sition of an actual play. Such a strategy for Ms. can be
presented as a partial function from to , defined for
all positions from which Ms. can win. (It does not depend
on the initial position of the play.)
We shall consider games related to a uniform program
in which one of the players called Prover wants to show

that a ground atom is accepted by .
In what follows we fix a uniform program with a prior-

ity function . Let stand for the set of predicate letters
appearing in . Let stand for the set of (possibly
infinite) ground terms over the function symbols appearing
in .
The first game is just rephrasing the semantics of pro-

grams with priorities in game theoretic terms.

Definition 2 (Program game) We define program game
by the following clauses.

The set of positions of Prover consists of atoms
for and a ground term.

The set of positions of Opponent consists of the
pairs where is a rule of and

is a substitution.

For every rule of , say
, there is an edge from to

if . From the position there are edges
to for .

and for .

The following is an easy consequence of definitions.

Proposition 3 Prover has a winning strategy from a posi-
tion iff the ground atom is accepted by .

We now define a game that can be viewed as an inter-
mediate step between the program and an alternating au-
tomaton we are going to construct in the next section.
It is motivated by the following situation that can occur
in a program game defined above. Suppose that Prover
wishes to prove , and to this end selects a rule ; in
other words, she moves from position to . Let

be an expansion rule, say . Then Opponent
has only one possibility, and from the subsequent position
Prover will have to prove . Note that the term
“expands” the term (i.e., is a subtree of). Such sit-
uation is avoided in flow game defined below. While using
rule , Prover may offer to Opponent several
possibilities, but none of them will expand the tree . (The
play always “flows down” in a tree.) Roughly speaking,
Prover will divide the job of showing into several
tasks, proving separately correctness of substitution , and
correctness of a pattern .
It will be now necessary to keep track of the highest pri-

ority seen so far in course of a play (unless reset). This value
will be essential for determining the priority of a position.
Therefore, the positions of Prover will be now decorated
by two parameters ranging over , denoted and

, respectively. Here and below we use for the
range of the function .

Definition 4 (Patterns) We extend the term signature by
the set of assumption constants of the form , for

. A pattern is a finite term over the new
signature. We use for the set of patterns.

Definition 5 (Flow game) For and as above we define
a flow game by the following
clauses.

The set of positions of Prover consists of triples
of the form , where is a term or a
pattern, and .

The set of positions of Opponent contains quadru-
ples of the form , where is a rule of
, , is a substitution of terms or pat-

terns for variables, and is a substitution of assump-
tion constants for variables. The set also contains a
distinguished position .

For every reduction rule , say
, there

is an edge from to
, where , for .

From the position , there are edges to
the positions , for

.

For every expansion rule , say ,
there is an edge from to any po-
sition , provided is a term, for

. From the position , there is
an edge to the position (note the
absence of max operator here!), and to the position

, for every such that
, for .

6

There is an edge from a position
to , provided . There is no
edge out from .

, and for
.

We will show that both games are equivalent in a strong
sense. In what follows, a finite path (in the game graph)
is called a -path if the highest priority encountered on the
path is .

Lemma 6 If Prover has a winning strategy in the game
from a position then she has a winning strat-

egy in the game from the position .

Proof
Let be a positional winning strategy in .
We will show how Prover can win from the position

in the game . We assume
that while playing in Prover simulates the actual play
by moving a token in the game graph of . We shall re-
fer to this sequence of moves in as to a simulating play.
Then Prover will be able to take advantage of strategy :
she will, in a sense, transfer it to . Moreover, the follow-
ing invariant will be kept during the play. Whenever Prover
has to move from some vertex then in the
simulating play in the game she is in a position such
that the following is satisfied.

The strategy is defined for the position .

If is a term then .

If is a pattern then there is a term and two substi-
tutions and
such that and . Moreover, for
every variable , if is defined and if there is a
-path consistent with from to then

, where is the subscript in
.

This invariant guarantees that whenever the play in
reaches a position , this position is
winning for Prover, i.e. there is an edge from there to

. (At position Opponent looses as
he cannot make any move.) Indeed, by the invariant, the
simulating play in is at this moment in a position
and the invariant is satisfied. In this case is just a vari-
able, say , , and . Clearly there is a

–path (of length) from to in . So, by the
invariant, . But, by definition
of the game , we have , and
consequently the position is winning
for Prover.

We now describe how Prover should play in start-
ing from the position . The simulating play in
starts from . Clearly these positions satisfy the in-

variant since is a term.
Next suppose that the plays are in positions

and in and , respectively. The
invariant guarantees that the value of is defined.
We will show how Prover should move in
keeping the invariant satisfied; she will use the value of

as an advice.
If is some position with a reduction rule,

then Prover moves in to the, uniquely deter-
mined, position with the same reduction rule. It has the
form

From there, Opponent can move to one of the positions
, for .

Now, the simulating play in should be updated accord-
ingly. Prover does it by simulating the move of Opponent
of choosing the position in . The pair of actual
positions becomes

and

It is not difficult to see that the invariant is satisfied.
The other case is when is a position with an ex-

pansion rule: . In this case Prover chooses
the position

(1)

Here and for . Additionally,
for containing all the pairs such that

there is a -path consistent with from to .
From the position (1) Opponent may choose to move

to the position . In this case, in
the game Prover simulates this choice of Opponent by
moving to . The obtained pair of positions is

and . To see that it satisfies
our invariant, take for , take for and take for in
the description of the invariant.
From the position (1), Opponent may also move to

for some ,
. In this case, we know that in the game there is a

-path consistent with from to .
This is because there is a -path from to
(it has length), and a -path from to . In

7

the game , Prover can simulate a part of the game lead-
ing to the position . We claim that the obtained two
positions:

and

satisfy the invariant. Indeed, if then the two ob-
tained positions satisfy the invariant as is
a term. If then we need to use our assumption.
Let be a term and and be the substitutions given
by the invariant for the positions and

. We want to show that this choice of substitutions
also works for the positions
and . We have and so indeed

and . Let be a variable such
that is defined and there is a -path consistent with
from to . Then there is a -

path consistent with from to . By our in-
variant for the positions and , we
know that . Since, by
definition of , , we have

, and we are done.
We have shown how Prover can play in keeping the

invariant satisfied. The above description can be easily for-
malized as a strategy function for Prover (it may not be
positional). The invariant guarantees that whenever a play
terminates, it is won by Prover. If a play is infinite, the
simulating play in is also infinite. Now, it follows from
the construction that the highest priority encountered be-
tween any two positions of the play in is the same as
the highest priority encountered between the corresponding
positions in simulating play. Since the latter is consistent
with the strategy (again, by invariant), it is winning for
Prover in , and so is the play in . !

Lemma 7 If Opponent has a winning strategy in the game
from a position then Opponent has a win-

ning strategy in the game from the position
.

Proof
Let be a positional winning strategy for Opponent in

. We will show how Opponent can win from
the position in the game .
The argument will be analogous to the one in the previ-
ous lemma. We assume that while playing in Oppo-
nent additionally performs a sequence of moves in , sim-
ulating by this the actual play in . Again, we refer to
the path in created in that way as to a simulating play.
Moreover, whenever the plays simultaneously reach posi-
tions and in and , respectively
(these are positions of Prover), the following invariant will
hold.

The strategy is defined for all successor positions
of .

If is a term then .

If is a pattern then there exist a term , and two sub-
stitutions and ,
such that and . Moreover, for every
variable , if and
then there is no -path consistent with from
to .

This invariant guarantees that whenever the play in
reaches a position , Prover cannot
move to the position . Indeed, suppose that the
simulating play in reaches simultaneously a position
and the invariant is satisfied. In this case is just a vari-
able, say , and . Clearly there is a

–path (of length) from to in . By defini-
tion of the game , we have .
So, by the invariant, , and form the posi-
tion there is no edge to
in .
We now describe howOpponent should play in start-

ing from the position . The simulating play in
starts from . Clearly these positions satisfy the in-

variant.
Now suppose the plays are in positions

and in and , respectively. We will show how
Opponent should move in from the subsequent
positions, keeping the invariant satisfied.
Suppose Prover chooses a node with a reduction rule:

(2)

In this case Opponent updates the play in by simulating a
move of Prover of choosing the position

By the invariant, the strategy is defined for this position.
Let its value be . Opponent transfers this move
back to by moving from the position (2) to the position

. It is not difficult to
check that the obtained two positions satisfy the invariant.
The other case is when Prover chooses a node with an

expansion rule . In this case
Opponent updates the play in by simulating a move of
Prover to the position , where
and , for . Note that in Opponent has
now only one possibility, he should move to .
Suppose there is a variable with and

, such that there is a -path consistent with
from to . In this case Opponent chooses

8

position . Finally, he updates
the play in by simulating a sequence of moves leading to

. It can be checked that the invariant is satisfied.
If there is no variable with the property men-

tioned above, Opponent decides to move to the position
instead. Next, he updates the play

in by moving to the position . It follows from the
requirement on that the invariant is satisfied for ,

and .
The concluding argument is the same as in the previous

lemma. !

Annotated terms In this subsection we extend the term
signature and introduce the concept of annotated terms.
These terms can be seen as encodings of strategies for
Prover in the game . Then we present an alternating
automaton recognising those annotated terms that repre-
sent winning strategies. The results of the previous subsec-
tion will allow us to reduce the emptiness problem for to
the emptiness problem for .
For simplicity of notation we fix a variable together

with a sequence of reduction variables ,
and a sequence of expansion variables
We assume that and
. Without loss of generality we can assume that ev-
ery reduction rule in the program is of the form

(i.e., it uses an
initial segment of). Similarly we assume that every
expansion rule in is of the form where is
the distinguished variable, and the term using and some
initial segment of . We also assume that and

are finite and bounded by the size of .
Let be the number of triples of the form

, where and .
We call such triples indexed predicates. We let
range over indexed predicates.

Definition 8 (Annotated terms) An annotated term is a
(possibly infinite) term over the signature consisting of
functional symbols of the program and the following
symbols:

the symbol of arity ,

for every rule of a symbol
of arity greater by one than the number of expansion
variables in ,

for every rule
of , a constant ,

a binary operation , a constant and a constant
, for every . (These are used to

encode assumption constants as list of
constants.)

We define the deletion operator on annotated terms
by:

for

We think of annotated terms as of encodings of strate-
gies for Prover in the game . For every indexed
predicate Prover can read from a
term which move to make in the position

of . For this, Prover looks at the
hint (we assume a bijection between the ’s and num-
bers). She expects to find there a constant
or a term . These describe a move
Prover should make. To encode a strategy in this way, an
annotated term should be structured in a proper way. This
is captured by the notion of well formed annotated term.
An annotated term is well formed if it is of the form

and satisfies the following conditions.

where is a symbol from the
original signature and are well formed;
or , for
some

For every indexed predicate and
the corresponding argument of
one of the following holds:

– ;
is a rule of ; and

– ; is
a rule of ; are well formed; and

for some substitution
.

Intuitively, a well formed annotated term is an annotated
term that suggests only legal moves for Prover. It is not dif-
ficult to write a program consisting only of reduction and in-
tersection rules that accepts exactly well formed annotated
terms.
We now explain how strategies can be encoded into an-

notated terms. For the rest of this section, we fix a winning
positional strategy for Prover in the game . For every
ground term or pattern we define the annotated term .

where for
and, for every , the term on the

position corresponding to is:

9

if

if

and are all the variables other than in .

if is not defined then is any
term such that is well formed.

We are now going to construct a program . It is in-
tended to accept , for , precisely when
encodes some winning strategy for Prover from the position

in the game . The predicates of will
be indexed predicates and some additional predicates intro-
duced for technical reasons. These technical predicates will
have priority so we will be able to ignore them when de-
ciding whether a path of a derivation in is accepting or
not. This is why the nodes of a derivation labelled with
atoms containing indexed predicates are called real and the
other nodes are called bureaucratic.
The form of may seem slightly unusual but please

recall that we are allowed to use only reduction and in-
tersection rules. To understand the idea behind the con-
struction of it may be helpful to imagine a derivation
in of for some predicate and
some ground term such that is defined for the position

. We are after the following property of such a
derivation.

For every real node of the derivation, the
strategy is defined for .
Every path of the derivation from goes
through some bureaucratic nodes and either it
ends with an axiom or it reaches a real node

. We have that
is a successor of in

.

(3)

A derivation satisfying this property very closely matches
the strategy . In particular the derivation is accepting since
is winning.
We start the presentation of with definitions of aux-

iliary predicates (stands for “not assumed”)
for every , , and a
term occurring in the right hand side of some expansion rule

of (i.e., is a subterm of).
for

a symbol from the original signature

In the above, the predicate holds if is a
list and

. A predicate holds if there is
a substitution with such that and

(it holds also for some other terms but it is irrel-
evant for the proof). In short, says that
is not assumed for in .
For every indexed predicate we will

have in the following two rules with in the head

The predicate holds if is a list
and

. So the first rule says that a term is accepted
if what is to be proved about it is assumed in it. The second
rule says that holds if passes all the tests. Pred-
icate with different subscripts decides whether or
not to initiate checking of the predicate in the subscript (as
we describe below).
The rules for for each and

are.

for arbitrary

if

a symbol from the original signature

When we write above we mean
that stands on the position corresponding to
. We will use the same convention below. We also make
an extensive use of ellipsises to show which variables are
irrelevant.
The intention is that a predicate holds if

the rule on the position corresponding to is not a re-
duction rule or it is a reduction rule that does not assume
at the position . Otherwise must be of the form

and requires to hold
for an appropriate .
The rules for are.

for arbitrary

for arbitrary

The predicate holds if a reduction rule is sug-
gested in on the position corresponding to . Otherwise
there is an expansion rule at this position and the predicate
requires the proof of the main assumption of this rule.
The rules for for every and

10

are.

for arbitrary

for arbitrary

The predicate checks whether it is suggested in
to use an expansion rule and in this use is assumed
about . If it is so then it requires to hold for appropriate
. Otherwise it accepts.
The rules for for every ,

and are.

for arbitrary

for arbitrary

for arbitrary

The predicate checks whether it is suggested
in to use an expansion rule and in this use is as-
sumed about a term being substituted for . If it is so then
it requires to hold for appropriate and . Otherwise
it accepts.
Finally we need to define the priority of each predicate

in our program . We let and
for every other predicate.

To see how the program works, let us try to construct
a derivation of for some predicate

and some ground term such that is defined
for the position . In what follows we de-
note by .
First, suppose that

In this case the term has the form
with the term

on the position corresponding to being .
The predicate is true because is a
constant. For the same reasons all
and predicates are true. Also a
predicate holds if . Finally
each predicate requires the predicate

to hold. Hence in this
case the property (3) is satisfied.
The other case is when

Here we have that has the form
with the term being

. Predi-
cates hold because starts with
constant. The predicate requires the proof of

. A predicate is true
if for the subscript in ; otherwise

requires to be
proved. Similarly, a predicate is true if

for the subscript in ; otherwise
requires .

The above considerations show that the property (3)
holds. This property allows us to construct accepting
derivations as stated in the next lemma.

Lemma 9 If Prover has a winning strategy from
in then . !

Now let us consider the converse of this lemma. We call
a derivation minimal if it always chooses a rule with empty
body whenever it is possible and always chooses to prove

whenever the predicate holds. It is clear that
if there is an accepting derivation of an atom then there is a
minimal accepting derivation of this atom. It is also easy to
check that this derivation is unique.
A simple examination of the rules of shows a property

analogous to the property (3).

Lemma 10 Suppose for some triple
and some well formed annotated term .

Take the minimal accepting derivation of . Each path
of this derivation goes through bureaucratic nodes and ends
in an axiom or a real node. Let be all the
real nodes such that there is no real node between them and
the root. We have:

the node in the game
has a successor whose only successors are

for . !

Suppose . The above lemma allows us
to construct a strategy tree for Prover from the position

. This strategy is winning be-
cause every infinite path of the strategy tree corresponds to
a path of the minimal accepting derivation. We get

Lemma 11 If for and
a well formed annotated term then Prover has a winning
strategy from . !

Finally, let us add to rules of the form

11

for every predicate . The predicate holds
if is a well formed annotated term. As we have already
mentioned, it is easy to write a polynomial size alternating
automaton for . Now we are ready to prove the main
result.

Theorem 12
For every predicate : is nonempty iff
is nonempty

Proof
If then by Lemma 6 there is a winning strategy
in the game from the position . From the
general theory of games [24, 26] it follows that there is a
positional winning strategy defined for this position. By
Lemma 9 . As is a well formed
annotated term we have .
If then is well formed and
. By Lemma 11 there is a winning strategy for Prover

from the position in . So there is no
winning strategy for Opponent from . By
Lemma 7 there is no winning strategy for Opponent from

in . By the determinacy of the game , there is
a strategy for Prover from this position. By Proposition 3,

. !

References

[1] O. Bernholtz, M. Y. Vardi, and P. Wolper. An automata-theoretic
approach to branching-time model checking. In Computer Aided
Verification, Proc. 6th Int. Workshop, volume 818 of LNCS, pages
142–155, Stanford, California, June 1994. Springer-Verlag. Full ver-
sion available from authors.

[2] A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of
Pushdown Automata: Application to Model Checking. In CON-
CUR’97. LNCS 1243, 1997.

[3] J. R. Büchi. Regular canonical systems. Archiv Mathematische Logik
und Grundlagenforschung, 6:91–111, 1964. Reprint in Saunders
Mac Lane, Dirk Siefkes, editors, The collected works of J. Richard
Büchi, Springer-Verlag, 1990.

[4] O. Burkart and B. Steffen. Composition, Decomposition and Model-
Checking of Pushdown Processes. Nordic Journal of Computing, 2,
1995.

[5] W. Charatonik and A. Podelski. Co-definite set constraints. In
T. Nipkow, editor, Proceedings of the 9th International Conference
on Rewriting Techniques and Applications, volume 1379 of LNCS,
pages 211–225. Springer-Verlag, 1998.

[6] W. Charatonik and A. Podelski. Set-based analysis of reactive
infinite-state systems. In B. Steffen, editor, Proceedings of the First
International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 1384 of LNCS, pages 358–375.
Springer-Verlag, 1998.

[7] P. Devienne, J.-M. Talbot, and S. Tison. Solving classes of set con-
straints with tree automata. In G. Smolka, editor, Proceedings of the
Third International Conference on Principles and Practice of Con-
straint Programming - CP97, volume 1330 of LNCS, pages 68–83.
Springer-Verlag, October 1997.

[8] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and de-
terminacy. In Proc. FOCS 91, 1991.

[9] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to
model checking pushdown systems. Electronic Notes in Theoretical
Computer Science 9, www.elsevier.nl/locate/entcs, 13 pages, 1997.

[10] T. Frühwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic programs
as types for logic programs. In Sixth Annual IEEE Symposium on
Logic in Computer Science, pages 300–309, July 1991.

[11] D. Harel and D. Raz. Deciding emptiness for stack automata on
infinite trees. Information and Computation (formerly Information
and Control), 113:278–299, 1994.

[12] N. Heintze and J. Jaffar. A finite presentation theorem for approx-
imating logic programs. In Seventeenth Annual ACM Symposium
on Principles of Programming Languages, pages 197–209, January
1990.

[13] Y. Hirschfeld, M. Jerrum, and F. Moller. A polynomial-time algo-
rithm for deciding equivalence of normed context-free processes. In
35th Annual Symposium on Foundations of Computer Science, pages
623–631. IEEE Computer Society Press, November 1994.

[14] H. Hüttel and C. Stirling. Actions speak louder than words: Proving
bisimilarity for context-free processes. In Proceedings, 6th Annual
Symposium on Logic in Computer Science, pages 376–386. IEEE
Computer Society Press, July 1991.

[15] N. D. Jones and S. S. Muchnick. Flow analysis and optimization of
lisp-like structures. In Sixth Annual ACM Symposium on Principles
of Programming Languages, pages 244–256, January 1979.

[16] R. McNaughton. Infinite games played on finite graphs. Annals of
Pure and Applied Logic, 65:149–184, 1993.

[17] A. W. Mostowski. Regular expressions for infinite trees and a stan-
dard form of automata. In A. Skowron, editor, Fifth Symposium on
Computation Theory, volume 208 of LNCS, pages 157–168, 1984.

[18] D. E. Muller and P. E. Schup. The theory of ends, pushdown au-
tomata, and second-order logic. Theoretical Comput. Sci., 37, 1985.

[19] D. E. Muller and P. E. Schupp. Simulating alternating tree automata
by nondeterministic automata: New results and new proofs of the
theorems of Rabin, McNaughton and Safra. Theoretical Comput.
Sci., 141:69–107, 1995.

[20] D. Niwiński. Fixed points vs. infinite generation. In LICS ’88, pages
402–409, 1988.

[21] D. Niwiński. Fixed points characterization of infinite behavior of
finite state systems. Theoret. Comput. Sci., 189:1–69, 1997.

[22] W. Peng and S. Purushothaman. Empty stack pushdown omega-tree
automata. In J.-C. Raoult, editor, Colloquium on Trees in Algebra
and Programming, volume 581 of LNCS, pages 248–264. Springer-
Verlag, February 1992.

[23] J. C. Reynolds. Automatic computation of data set definitions. In-
formation Processing, 68:456–461, 1969.

[24] W. Thomas. Languages, automata, and logic. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, volume 3.
1997.

[25] I. Walukiewicz. Pushdown processes: Games and model checking.
In CAV’96, volume 1102 of LNCS, pages 62–74, 1996.

[26] W. Zielonka. Infinite games on fintely coloured graphs with applica-
tions to automata on infinte trees. To appear in TCS, 1997.

12

