
Transition Invariants

Andreas Podelski Andrey Rybalchenko

Max-Planck-Institut für Informatik
Saarbrücken, Germany

Abstract

Proof rules for program verification rely on auxiliary
assertions. We propose a (sound and relatively complete)
proof rule whose auxiliary assertions are transition invari-
ants. A transition invariant of a program is a binary rela-
tion over program states that contains the transitive closure
of the transition relation of the program. A relation is dis-
junctively well-founded if it is a finite union of well-founded
relations. We characterize the validity of termination or an-
other liveness property by the existence of a disjunctively
well-founded transition invariant. The main contribution of
our proof rule lies in its potential for automation via ab-
stract interpretation.

1. Introduction

Temporal verification of concurrent programs is an ac-
tive research topic; for entry points to the literature see
e.g. [6, 9, 11, 13, 14, 15, 23]. In the unifying automata-
theoretic framework of [23], a temporal proof is reduced to
the proof of fair termination, which again can be done using
deductive proof rules, e.g. [11]. The application of these
proof rules requires the construction of auxiliary assertions.
This construction is generally considered hard to automate,
especially when ranking functions and well-founded (lexi-
cographic) orderings are involved.

We propose a proof rule whose auxiliary assertions are
transition invariants. We introduce the notion of a transi-
tion invariant as a binary relation over program states that
contains the transitive closure of the transition relation of
the program. We formulate an inductiveness principle for
transition invariants. This principle allows us to identify a
given relation as a transition invariant. We also introduce

This work was partly supported by the German Research Founda-
tion (DFG) as part of the Transregional Collaborative Research Center
“Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS) and by the German Federal Ministry of Education and Research
(BMBF) in the framework of the Verisoft project under grant 01 IS C38.

the notion of disjunctive well-foundedness as a property of
relations. We characterize the validity of a liveness property
by the existence of a disjunctively well-founded transition
invariant. This is the basis of the soundness and relative
completeness of the proof rule.

Applying our proof rule for verifying termination or an-
other liveness property of the program amounts to the fol-
lowing steps: the automata-theoretic construction of a new
program (the parallel composition of the original program
and a Büchi automaton as in [23]), the inductive proof of
the validity of the transition invariant for the new program,
and, finally, the test of its disjunctive well-foundedness.

Using transition invariants, we account for the Büchi ac-
ceptance condition (and hence, for fairness) in a direct way,
namely, by intersecting the transition invariant with a rela-
tion over the Büchi accepting states.

If the transition invariant is well-chosen, the test of
disjunctive well-foundedness amounts to testing well-
foundedness of transition relations of programs of a very
particular form: each program is one while loop whose
body is a simultaneous update statement. In the case of
concurrent programs with linear-arithmetic expressions we
obtain while loops for which efficient termination tests are
already known [17, 22].

The main contribution of our proof rule lies in its poten-
tial for automation. It is a starting point for the development
of automated verification methods for temporal properties
beyond safety of [concurrent] programs over infinite state
spaces. As detailed in Section 5, the inductiveness principle
allows one to compute the auxiliary assertions of the proof
rule. Namely, the transition invariants can be automatically
synthesized by computing abstractions of least fixed points
of an operator over the domain of relations. Methods to do
this correctly and efficiently are studied in the framework of
abstract interpretation [4]. Such methods have helped to re-
alize the potential of the inductive proof rules for (state) in-
variants [14] for the automation of the verification of safety
properties [1, 2, 3, 4, 5, 7, 8]. The realization of the analo-
gous potential for transition invariants is not in the scope of
this paper; see, however, [16].

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04) 
1043-6871/04 $ 20.00 IEEE 



Examples We write example programs in the program-
ming language SPL (Simple Programming Language [14]).
To simplify the presentation, we ignore idling transitions for
the presented concurrent programs. The depicted control-
flow graphs treat each straight-line code segment as a single
statement. For each of the example programs, we give a
(non-inductive) transition invariant, along with an informal
argument, in Sections 3 resp. 4; the corresponding formal
argument is based on a stronger inductive transition invari-
ant, which we present in Section 5.

LOOPS Usually the termination argument for the program
LOOPS on Figure 1 is based on a lexicographic combination
of well-founded orderings.

,

,

,
,

Figure 1. Program LOOPS.

We observe that there are only two kinds of loops, those
that go through at least once and decrease the non-
negative integer , and those that go only through (and
not through ) and decrease the non-negative value .
Transition invariants allow one to use this observation for a
formal proof of termination.

CHOICE For the termination of the program CHOICE on
Figure 2, we observe that the execution of any fixed se-
quence of statements or decreases either of: , or

. Sections 2 and 3 show that this observation translates
to a formal termination argument. Section 5 shows how one
can formally justify this observation by an inductive proof.

ANY-DOWN The program ANY-DOWN on Figure 3 consists
of two concurrent processes. Each of the processes can be
scheduled to be executed by an external scheduler.

,
,

,
,

Figure 2. Program CHOICE.

,

,

,

Figure 3. Program ANY-DOWN.

The program is not terminating if we consider all possi-
ble scheduler behaviors. E.g., in the following infinite com-
putation of ANY-DOWN the process is never executed (a
program state is a tuple containing the location of , the
location of , the value of , and the value of ).

This computation is not fair because the process is never
executed although it is continuously enabled. If we assume
that the scheduling for each process is fair (see [11, 14] for
a detailed treatment of fairness assumptions), then the pro-
gram ANY-DOWN is terminating.

In Section 4 we show how we incorporate the fairness
assumption into a fairness proof.

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04) 
1043-6871/04 $ 20.00 IEEE 



CONC-WHILES A termination proof for the program
CONC-WHILES on Figure 4 requires a more complicated fair-
ness assumption (each of the processes must be scheduled
infinitely often, hence it is not possible that a process waits
forever).

,

,
,

,

,
,

Figure 4. Program CONC-WHILES.

Our formal proof in Section 4 will follow the intuition
that each infinite fair computation decreases the value of
as well as the value of infinitely often.

2. Transition Invariants

This section deals with properties of general binary rela-
tions. For concreteness we formulate the properties for the
transition relation of a program and its restriction to the set
of accessible states. We next formalize programs.

Program A program consists of:

: a set of states,

: a set of starting states, such that ,

: a transition relation, such that .

A computation is a maximal sequence of states
such that:

is a starting state, i.e., ,

for all (and , if the
sequence is of the finite length ).

The set of accessible states consists of all states that
appear in some computation.

A finite segment of a computation where
is called a computation segment.

Definition 1 (Transition Invariant)
A transition invariant is a superset of the transitive clo-
sure of the transition relation restricted to the accessible
states . Formally,

Thus, a transition invariant of the program is a relation on
the program states such that for every computation segment

the pair of states is an element of .
Note that the Cartesian product of the set of states with

itself, i.e. the relation , is a transition invariant of
the program. A superset of the transitive closure of the tran-
sition relation of the program is a transition invariant of the
program; the converse does not hold.

A state invariant is a superset of . Given the transi-
tion invariant and the set of starting states , the set

and

is a state invariant. Conversely, a transition invariant can be
strengthened by restricting it to a given state invariant.

A program is terminating if it does not have infinite com-
putations. This is equivalent to the fact that its transition
relation restricted to the accessible states, i.e.,

, is well-founded. We investigate the well-foundedness
of a transition relation through a weaker property of its tran-
sition invariant, introduced next.

Definition 2 (Disjunctive Well-foundedness)
A relation is disjunctively well-founded if it is a finite
union of well-founded relations.

Every well-founded relation is disjunctively well-founded.
The converse does not hold in the general case. E.g., the
relation ACK-REQ defined by

is disjunctively well-founded but not well-founded.
Given a disjunctively well-founded relation , the

implication:

is well-founded if

does not hold (for a counterexample, take and to be the
relation ACK-REQ). However, the implication:

is well-founded if

does hold, as we show below.

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04) 
1043-6871/04 $ 20.00 IEEE 



Theorem 1 (Termination) The program is terminating
if and only if there exists a disjunctively well-founded tran-
sition invariant for .

Proof. if-direction: Assume, for a proof by contraposition,
that

def

is a disjunctively well-founded transition invariant for the
program , and that is not terminating. We show that
at least one sub-relation of the transition invariant is not
well-founded.

By the assumption that is not terminating, there exists
an infinite computation def .

We define a function that maps an ordered pair of in-
dices of the states in the computation to one of the sub-
relations in the transition invariant as follows.

For def such that

The function exists because is a transition invariant, and
thus we can arbitrarily choose one relation from the (finite)
set as the image of the pair . Note
that the range of the function is finite.

For the fixed computation , the function induces
an equivalence relation on pairs of positive integers (in
this proof we always consider pairs whose first element is
smaller than the second one).

def

The equivalence relation has finite index, since the range
of is finite.

By Ramsey’s theorem [18], there exists an infinite se-
quence of positive integers def such that all
pairs of elements in belong to the same equivalence class,
say with . That is, for all such
that we have . We fix and .

Let denote the relation . Since
for all , the function maps every pair

to for all . Hence, the infinite sequence
is induced by , i.e.,

for all

Hence, the sub-relation is not well-founded.

only if-direction: Assume that the program is terminat-
ing. We define the relation as the restriction of the transi-
tion relation to accessible states.

def

Clearly, is a transition invariant. Assume that def

is an infinite sequence of states such that
for all . Since the state is accessible,

and for all there is a non-empty computation seg-
ment leading from to (i.e. ), there
exists an infinite computation . This
fact is a contradiction to our assumption that is terminat-
ing. Hence, is (disjunctively) well-founded.

The relation ACK-REQ shows that we cannot drop the re-
quirement that not just the transition relation of a program,
but also its transitive closure must be contained in the dis-
junctively well-founded relation .

The next example shows that we cannot drop the finite-
ness requirement in the definition of disjunctive well-
foundedness. The following transition relation

def

has a transition invariant def that is the union
of well-founded relations , where

def for all

However, the relation is not well-founded.

3. Termination

Theorem 1 gives a (complete) characterization of pro-
gram termination by disjunctively well-founded transition
invariants.

We next present disjunctively well-founded transition in-
variants for the first resp. second program shown in the in-
troduction. Here, we only give informal arguments; in Sec-
tion 5 we will show how one can formally prove that the
relations are indeed transition invariants, and give the for-
mal argument in the form of (stronger) inductive transition
invariants.

LOOPS The union of the relations , and for
denoted by the following assertions

over the unprimed and primed program variables is a tran-
sition invariant for the program LOOPS; here is a variable
ranging over the set of location labels .

where

The intuitive argument that the union of the relations above
indeed identifies a transition invariant may go as follows.
We can distinguish three kinds of computation segments
that lead a state to a state . All pairs of states
in such that goes to via the location (and in par-
ticular the loops at ) are contained in the relation . All

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04) 
1043-6871/04 $ 20.00 IEEE 



pairs of states in such that goes to via the
location and not (and in particular the loops at ) are
contained in the relation . Every pair of states in that
has different location labels is contained in one of ’s.

Obviously, the relations and as well as the relations
’s are well-founded.

CHOICE The union the relations below is a transition in-
variant for the program CHOICE.

Again, the relations , , and are obviously well-
founded.

4. Liveness

We follow the automata-theoretic framework for the
temporal verification of concurrent programs [23]. This
framework allows us to assume that the temporal correct-
ness specification, viz. a liveness property and a fairness
assumption , are given by a (possibly infinite-state) au-
tomaton . The intuition is that the automaton ac-
cepts exactly the infinite -fair sequences of program states
that do not satisfy the property . We assume that the au-
tomaton is equipped with the Büchi acceptance con-
dition.

Automaton We consider an alphabet consisting
of the program states . The automaton

consists of:

: a (possibly infinite) set of states,

: the set of starting states, such that ,

: the transition relation. It is a set of triples
.

: the set of accepting states, such that .

A run of the automaton on the word
is a sequence of the automaton states such that

and for all . The automaton
accepts a word if it has a run on such that
for infinitely many ’s we have .

Program The program satisfies the liveness
property under the fairness assumption if there ex-
ists no infinite computation of that satisfies the fairness
condition and falsifies the property , i.e., all computa-
tions of the program are rejected by the automaton

(computations are infinite words over the alphabet ; fi-
nite computations are added an idling transition for the last
state). We export the program computations to the automa-
ton by the parallel composition of the program and the
automaton, which we introduce next.

The program , which in fact is equipped with the
Büchi acceptance condition, is obtained by the synchronous
parallel composition of and . The set of states of

is the Cartesian product

def

The set of starting states is . The transition relation of
consists of pairs such that

and . The set of accepting states is the product

def

A computation of is fair if for
infinitely many ’s we have . The program

is correct with respect to the property under the fair-
ness condition if and only if all (infinite) computations
of are not fair (see Theorem 4.1 in [23]). The termi-
nology ‘ is fair terminating’ is short for ‘all (infinite)
computations of are not fair’.

The following theorem characterizes the validity of the
temporal property (under the fairness assumption )
through the existence of a disjunctively well-founded tran-
sition invariant for the program (with the set of
Büchi accepting states).

Theorem 2 (Liveness) The program satisfies the live-
ness property under the fairness assumption if and
only if there exists a transition invariant for such
that is disjunctively well-founded.

Proof. if-direction (sketch): Assume, for a proof by con-
traposition, that the finite union

def

such that is well-founded for all
, is a transition invariant for the program .

Furthermore, we assume that has an (infinite) fair
computation (i.e., is not fair terminating). We prove that
at least one relation is not well-founded.

By the assumption that is not fair terminating, there
exists an infinite fair computation def . Let def

be an infinite subsequence of such that
for all .

Now we can follow the lines of the if-part of the proof
of Theorem 1. We show that there exists an infinite sub-
sequence of and an index such that each

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04) 
1043-6871/04 $ 20.00 IEEE 



pair of consecutive states in the subsequence is an element
of the very same relation . Thus we obtain
a contradiction to the assumption that is
well-founded for all .

only if-direction: Assume that the program is fair ter-
minating (i.e., has no (infinite) fair computation). Let
denote the set of accessible states of . We define the
following relations on the accessible states of .

def

def

Clearly, the relation

def

is a transition invariant. Assume that def is
an infinite sequence of states such that
for all . Since the state is accessible, and for
all there is a non-empty computation segment lead-
ing from to (i.e. ) there exists an
infinite fair computation . This fact
is a contradiction to our assumption that is fair terminat-
ing. Hence, is well-founded. Clearly, the intersection

is empty. We conclude that the only-if
direction holds.

Examples We give a transition invariant for each of the
programs obtained by the parallel composition of
the program ANY-DOWN resp. CONC-WHILES with the Büchi
automaton that encodes the appropriate fairness as-
sumption (the liveness property is termination; the au-
tomaton accepts exactly the infinite -fair computa-
tions). We do not explicitely present and since
they can be easily derived.

ANY-DOWN Here, the Büchi automaton encodes the
fairness assumption “eventually the process leaves the
location ” which is expressed by the temporal logic for-
mula def . The union of the relations be-
low forms a transition invariant for . The two variables

and range over the location labels of the first resp.
second process. The variable ranges over the states
and of the Büchi automaton (where the state is
accepting).

where

The relation contains the pairs of states
from the transitive closure of the program that
are the initial and the final states of the loops starting in
the Büchi accepting state. These loops are induced by the
execution of the while-statement at the location . For the
while-statement at the location the initial-final state pairs
are elements of . The relations , , and where

contain pairs of states that have different
location labels wrt. either the Büchi automaton or one of the
processes.

The relations , , , and ’s are well-founded.
According to the formal argument of this section, the rela-
tion is not considered; the restriction of to the Büchi
accepting states is empty.

CONC-WHILES We encode the fairness assumption that no
process can wait forever (except in the final location) by the
temporal formula below.

The corresponding Büchi automaton has the four states
, where the state is accepting.

The union of the following relations is a transition invari-
ant for .

where

where

where

The relations and capture loops that start in the Büchi
accepting state and contain execution steps of both pro-
cesses and . The loops that contain the executions
of only or only are captured by the relation . The
relations , , and with capture
computation segments that are not loops wrt. the location
labels of either the Büchi automaton or one of the processes.

The well-foundedness of the relations , , ,
and for is sufficient for proving the
fair termination property; the restriction of to the Büchi
accepting state is empty.

5. Inductiveness

In this section, we formulate a proof rule for verifying
liveness properties of concurrent programs. The proof rule
is based on inductive transition invariants.

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04) 
1043-6871/04 $ 20.00 IEEE 



Definition 3 (Inductive Relation) Given a program with
the transition relation , a binary relation on program
states is inductive if it contains the transition relation
and it is closed under the relational composition with .
Formally,

As usual, the composition operator denotes the relational
composition, i.e., for we have

def and

Replacing the inductiveness criterion above by
yields an equivalent criterion. Replacing it by

yields a slightly weaker
criterion. This may be useful in some situations.

Remark 1 An inductive relation for the program is a
transition invariant for .

Inductive relations are called inductive transition invari-
ants.

Note that a transition invariant , even if it is inductive,
is in general not closed under the composition with itself,
i.e., in general

In other words, a transition invariant, even if it is inductive,
need not be transitive.

We note in passing a simple but perhaps curious conse-
quence of Theorem 1 and Remark 1.

Corollary 1 (Compositionality) A finite union of well-
founded relations is well-founded if it is closed under re-
lational composition with itself.

Proof. Let the relation be the finite union of the well-
founded relations that is closed under the composition with
itself, i.e. .

By Remark 1, is an inductive transition invariant for
itself. Since is disjunctively well-founded, we have that

is well-founded by Theorem 1.

Proof Rule Theorem 2 and Remark 1 give rise to a proof
rule for the verification of liveness properties; see Figure 5.
Again, the formulation uses the automata-based framework
for verification of concurrent programs [23]. We obtain a
proof rule for termination by taking as the transition rela-
tion of the program , a relation and replacing

by in the premise P3.
In our examples we split the reasoning on disjunctive

well-foundedness and inductiveness. This can be seen as
using an alternative, equivalent formulation of the proof
rule: one takes two relations and such that satis-
fies the premise P3 and is a subset of that satisfies the

premises P1 and P2 (i.e., one identifies as as transition in-
variant by strengthening with the inductive relation ).
The two formulations are equivalent since the disjunctive
well-foundedness of a relation is inherited by its subset.

Program ,
liveness property ,
fairness assumption ,
Büchi automaton ,
parallel composition of and is program
with:

transition relation ,
states ,
accepting states ,

relation

P1:

P2:

P3: disjunctively

well-founded

satisfies under

Figure 5. Rule LIVENESS.

As already mentioned, a transition invariant can be
strengthened by restricting it to a given state invariant .
I.e., if is a transition invariant and is a state invariant,
then

def

is a (stronger) transition invariant.

Validation of the Premises of the Proof Rule We assume
that the transition relation is given as a union of relations,
say . This is usually the case for con-
current programs, where each program statement denotes a
transition (an assertion over unprimed and primed pro-
gram variables, as seen in the examples).

If is given as the union , then the
composition is the union of the relations for

and . Each relation is
again represented by an assertion over unprimed and primed
program variables.

Thus, the premises P1 and P2 can be established by en-
tailment checks between assertions.

The premise P3 can be established using traditional
methods for proving termination. In the extreme case, when

, i.e., the transition invariant or its partitioning are ill-
chosen, the reduction to the disjunctive well-foundedness

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04) 
1043-6871/04 $ 20.00 IEEE 



has not brought any simplification and is as hard as be-
fore the reduction. In the other cases, with a well-chosen
transition invariant and partitioning, the premise P3 can be
established by a number of pairwise independent ‘simple’
well-foundedness tests.

Note that all relations in the transition invariants of
the programs presented in this paper correspond to ‘sim-
ple while’ programs that consist of a single while loop with
only update statements in its body.

More generally, the relation is well-
founded if and only if the while loop

is terminating.
In the case of concurrent programs with linear-arithmetic

expressions, the well-foundedness test in the premise P3
amounts to the termination test of simple while programs,
for which an efficient test exists; see [17, 22].

In the special case of finite-state systems (a case that we
do not target), each ‘small’ termination problem is to check
whether a transition is a self-loop.

Inductive Transition Invariants for Examples Each of
the relations shown in Section 3 and 4 is not inductive
(i.e., the composition of one of the relations and one of
the program transitions is not a subset of ). We for-
mally identify each as a transition invariant by presenting
an inductive one that strengthens (i.e., is a subset of ).
We thus complete the termination resp. liveness proof ac-
cording to the proof rule.

LOOPS The union of the following relations is an induc-
tive transition invariant for the program LOOPS (in the ver-
sion according to the depicted control-flow graph).

The inductiveness can be easily verified. E.g., the compo-
sition of the relation below (which is the transition for the
straight-line code from the location to ; it is obtained
by composing the transition between the locations and
and the transition from to ),

with the first of the five relations above yields the relation
below, a relation that entails the fourth.

CHOICE The union of the relations below is an inductive
transition invariant for the program CHOICE.

ANY-DOWN We next present (the interesting part of) an
inductive transition invariant for the parallel composition

of the program ANY-DOWN with the Büchi automaton
that accepts exactly the infinite sequences of program

states that are fair, i.e., where the second process does not
wait forever. We do not present the relations where the val-
ues of one of the program counters are different before and
after the transition; we only present the relations that are
loops in the control flow graph for the program . Each
of the relations satisfy the conjunction of and

and ; we omit that conjunction in each
of the assertions below.

CONC-WHILES The transition invariant for contains
the following relations. We show only those that are loops
wrt. the location labels; again, we omitted the conjunction

in each assertion below.

Soundness and Completeness The separation of the tem-
poral reasoning from the reasoning about the auxiliary as-
sertions in the ‘relative’ completeness statement below is
common practice; see e.g. [13, 14].

Theorem 3 (Proof Rule LIVENESS) The rule LIVENESS is
sound, and complete relative to the first-order assertional
validity and the well-foundedness validity of the relations
that constitute the transition invariant.

Proof. The soundness of the rule follows directly from
Remark 1 and Theorem 2.

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04) 
1043-6871/04 $ 20.00 IEEE 



For proving the relative completeness, we observe that
the transition invariant constructed in the proof of Theo-
rem 2 is in fact inductive. In order to establish the complete-
ness relative to assertional provability, we need to show that
this inductive transition invariant is expressible by a first-
order assertion.

We need to construct the assertion over unprimed and
primed program variables that denotes a transition invari-
ant satisfying the premises of the rule LIVENESS. We omit
the construction, which follows the lines of the method for
constructing the assertion that denotes the set of all ac-
cessible states [14].

Automated Liveness Proofs Given a program with the
transition relation , we are interested in the subclass of its
inductive transition invariants.

We define the operator over relations by

def

We write and say that is an approximation of
, if holds for all relations .
The inductive transition invariants are (exactly the) least

fixed points above of operators such that .
There are many techniques based e.g. on widening or

predicate abstraction that have been applied with great suc-
cess to the automated construction of least fixed points of
approximation of the post operator [1, 2, 3, 4, 5, 7, 8]. Now
we can start to carry over the abstract interpretation tech-
niques in order to construct least fixed points of approxima-
tions of the operator . Thus, relations that satisfy the
premises P1 and P2 can be constructed automatically.

As already mentioned, the validation of the premise
P3 can be automated for interesting classes of concur-
rent programs over linear-arithmetic expressions (see [17]
and [22]). Automated checks for other classes of programs
are an open topic of research.

6. Related Work

There is a large body of work on proof rules for liveness
properties of concurrent programs, see [6, 11, 13, 15]. They
all rely on auxiliary well-founded (lexicographic) orderings
for the transition relation, and not on independent orderings
for sub-relations, as in our approach.

The automata-theoretic approach for verification of con-
current programs [23] reduces the verification problem to
proving termination. It leaves open how to prove termina-
tion. We indicate one possible way.

A rank predicate [24] (a notion directly related to
progress measures [9]) proves fair termination of a program
if the rank does not increase in every computation step and

decreases in the accepting states. In a disjunctively well-
founded transition invariant a rank need not decrease in all
sub-relations if an accepting state is visited, i.e., the rank
of one sub-relation must decrease and all other ranks may
increase.

In [12], an axiomatic approach to prove total correct-
ness (safety property + termination) of sequential programs
uses assertions connecting the initial and final values of the
program variables. This must not be confused with transi-
tion invariants that capture all pairs of intermediate values
in computations of arbitrary length, possibly going through
loops.

It is interesting to compare our use of Ramsey’s theorem
in the proofs of Theorems 1 and 2 with its use in the theory
of (finite) Büchi automata (see e.g. [19, 21]). The equiva-
lence classes over computation segments in our proofs are
related to the state transformers in the transition monoid of
the Büchi automaton. In both uses of Ramsey’s theorem,
the sets of transformers are finite and thus induce an equiv-
alence relation of finite index (which is why Ramsey’s the-
orem can be applied). However, our proofs consider finite
sets of transformers over an infinite state space, as opposed
to transformers over a finite state space.

The termination analysis for functional programs in [10]
has been the starting point of our work. The analysis is
based on the comparison of infinite paths in the control flow
graph and in ‘size-change graphs’; that comparison can be
reduced to the inclusion test for Büchi automata. The tran-
sitive closure of a (finite) set of size-change graphs can be
seen as a graph representation of a special case of a transi-
tion invariant.

7. Conclusion

We have presented a (sound and relatively complete)
proof rule for the temporal verification of concurrent pro-
grams. In a well-chosen instantiation, this proof rule allows
one to decompose the verification problem into a number of
independent smaller verification problems: one for estab-
lishing a transition invariant, and the others for establishing
the disjunctive well-foundedness. The former is done in a
way that is reminiscent of establishing state invariants, us-
ing a familiar inductive reasoning. The other ones amount
to testing the termination of simple while loops.

Our conceptual contribution is the notion of a transition
invariant, and its usefulness in temporal proofs. This notion
is at the basis of our proof rule. In particular, it allows one
to account for Büchi accepting conditions (and hence for
fairness) in a direct way, namely by intersecting relations.

Our technical contribution is the characterization of the
validity of termination or another liveness property by the
existence of a disjunctively well-founded transition invari-
ant. The application of Ramsey’s theorem allows us to re-

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04) 
1043-6871/04 $ 20.00 IEEE 



place the argument that the transition relation is contained
in the (transitive) well-founded relation induced by a
ranking function (i.e., if ) by
the argument that the transitive closure of is contained in
a union of well-founded relations. I.e., we have

vs.

As outlined in Section 5, our proof rule is a starting
point for the development of automated verification meth-
ods for liveness properties of concurrent programs. This
development is not in the scope of this paper. In [16], we
have started one line of research based on predicate abstrac-
tion as used in the already existing tools for safety proper-
ties [1, 3, 8]; many different other ways are envisageable.

Another line of research are methods to reduce the size of
the transition invariants by encoding relevant specific kinds
of fairness, such as weak and strong fairness, in a more di-
rect way than encoding them in Büchi automata.

Acknowledgments This work started with discussions
with Neil Jones and Chin Soon Lee during their visit in
Saarbrücken in September 2002. We thank Patrick Cousot,
Kedar Namjoshi and Amir Pnueli for their remarks on rank-
ing functions and finite-state abstraction during VMCAI in
January 2003. We thank Amir Pnueli for comments and
suggestions, and for coining the term “disjunctive well-
foundedness”. We thank Bernd Finkbeiner and Konstantin
Korovin for comments and suggestions.

References

[1] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Au-
tomatic predicate abstraction of C programs. In Proc. of
PLDI’2001: Programming Language Design and Imple-
mentation, volume 36 of ACM SIGPLAN Notices, pages
203–213. ACM Press, 2001.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. A static analyzer
for large safety-critical software. In Proc. of PLDI’2003:
Programming Language Design and Implementation, pages
196–207. ACM Press, June 7–14 2003.

[3] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Mod-
ular verification of software components in C. In Proc. of
ICSE’2003: Int. Conf. on Software Engineering, pages 385–
395, 2003.

[4] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proc. of POPL’1977: Prin-
ciples of Programming Languages, pages 238–252. ACM
Press, 1977.

[5] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In Proc. of POPL’1979: Principles
of Programming Languages, pages 269–282. ACM Press,
1979.

[6] Y. Fang, N. Piterman, A. Pnueli, and L. D. Zuck. Liveness
with invisible ranking. In Steffen and Levi [20], pages 223–
238.

[7] S. Graf and H. Saı̈di. Construction of abstract state graphs
with PVS. In Proc. of CAV’1997: Computer Aided Verifica-
tion, volume 1254 of LNCS, pages 72–83. Springer, 1997.

[8] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
Abstraction. In Proc. of POPL’2002: Principles of Pro-
gramming Languages, pages 58–70. ACM Press, 2002.

[9] N. Klarlund. Progress measures and stack assertions for fair
termination. In Proc. of PODC’1992: Principles of Dis-
tributed Computing, pages 229–240. ACM Press, 1992.

[10] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The
size-change principle for program termination. In Proc. of
POPL’2001: Principles of Programming Languages, vol-
ume 36, 3 of ACM SIGPLAN Notices, pages 81–92. ACM
Press, 2001.

[11] D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, jus-
tice and fairness: The ethics of concurrent termination. In
Proc. of ICALP’1981: Int. Colloq. on Automata, Languages
and Programming, volume 115 of LNCS, pages 264–277.
Springer, 1981.

[12] Z. Manna and A. Pnueli. Axiomatic approach to total cor-
rectness of programs. Acta Informatica, (3):243–263, 1974.

[13] Z. Manna and A. Pnueli. Completing the temporal picture.
Theoretical Computer Science, 83(1):91–130, 1991.

[14] Z. Manna and A. Pnueli. Temporal verification of reactive
systems: Safety. Springer, 1995.

[15] Z. Manna and A. Pnueli. Temporal verification of reactive
systems: Progress. Draft, 1996.

[16] A. Podelski and A. Rybalchenko. Transition predicate ab-
straction. Draft. Available from the authors.

[17] A. Podelski and A. Rybalchenko. A complete method for
the synthesis of linear ranking functions. In Steffen and Levi
[20], pages 239–251.

[18] F. P. Ramsey. On a problem of formal logic. In Proc. London
Math. Soc., volume 30, pages 264–285, 1930.

[19] P. A. Sistla, M. Y. Vardi, and P. Wolper. The complementa-
tion problem for Büchi automata with applications to tempo-
ral logic. Theoretical Computer Science, 49(2–3):217–237,
1987.

[20] B. Steffen and G. Levi, editors. Proc. of VMCAI’2004: Ver-
ification, Model Checking, and Abstract Interpretation, vol-
ume 2937 of LNCS. Springer, 2004.

[21] W. Thomas. Automata on infinite objects. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Sematics, pages 133–
192. Elsevier and MIT Press, 1990.

[22] A. Tiwari. Termination of linear programs. In Proc. of
CAV’2004: Computer Aided Verification, 2004. To appear.

[23] M. Y. Vardi. Verification of concurrent programs — the
automata-theoretic framework. Annals of Pure and Applied
Logic, 51:79–98, 1991.

[24] M. Y. Vardi. Rank predicates vs. progress measures in
concurrent-program verification. Chicago Journal of The-
oretical Computer Science, 1996.

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04) 
1043-6871/04 $ 20.00 IEEE 




