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ABSTRACT
Predicate abstraction is the basis of many program verifica-
tion tools. Until now, the only known way to overcome the
inherent limitation of predicate abstraction to safety prop-
erties was to manually annotate the finite-state abstraction
of a program. We extend predicate abstraction to transition
predicate abstraction. Transition predicate abstraction goes
beyond the idea of finite abstract-state programs (and check-
ing the absence of loops). Instead, our abstraction algorithm
transforms a program into a finite abstract-transition pro-
gram. Then, a second algorithm checks fair termination.
The two algorithms together yield an automated method
for the verification of liveness properties under full fairness
assumptions (justice and compassion). In summary, we ex-
hibit principles that extend the applicability of predicate
abstraction-based program verification to the full set of tem-
poral properties.
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D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs.
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1. INTRODUCTION
Since 1977, a high amount of research, both theoretical

and applied, has been invested in honing the tools for ab-
stract interpretation [10] for verifying safety and invariance
properties of programs. This effort has been a success. One
promising approach is predicate abstraction on which a num-
ber of academic and industrial tools are based [2, 6, 14, 15,
30].

What has been left open is how to obtain the same kind
of tools for the full set of temporal properties. So far, there
was no viable approach to the use of abstract interpretation
for analogous tools establishing liveness properties (under
fairness assumptions). This paper presents the first steps
towards such an approach. We believe that our work may
open the door to a series of activities for liveness, similar to
the one mentioned above for safety and invariance.

One basic idea of abstraction is to transform the program
to be checked into a more abstract one, one on which the
property still holds. When we are interested in termination
under fairness assumptions, we need to solve two problems:
the abstract program needs to preserve (1) the termination
property, and (2) the fairness assumptions. (Checking live-
ness can be reduced to fair termination, just as safety re-
duces to reachability.) In this paper, we show how to solve
these two problems. We propose a transformation of a pro-
gram into a node-labeled edge-labeled graph such that the
termination property can be retrieved from the node labels
and the fairness assumptions from the edge labels. (To avoid
the possibility of confusion, note that our method does not
check the absence of loops in the graph.) The transforma-
tion is based on transition predicate abstraction, an exten-
sion of predicate abstraction that we propose.

The different steps in our automated method for checking
a liveness property under fairness assumptions are:

• the reduction of the liveness property to fair termina-
tion (this reduction is standard, see e.g. [29]);

• the transition predicate abstraction-based transforma-
tion of the program P into a node-labeled edge-labeled
graph, the abstract-transition program P#;

• a number of termination checks that mark some nodes
of P# as ‘terminating’;

• an algorithm on the automaton underlying P# that
marks some nodes as ‘fair’;

• the method returns ‘property verified’ if each ‘fair’
node is marked ‘terminating’.
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Our conceptual contribution lies in the use of transition
predicates for automated liveness proofs. Our technical con-
tributions are the algorithm to retrieve fairness in the ab-
stract program P#, and the proof of the correctness of the
overall method. We use both relevant kinds of fairness,
which are justice and compassion (to model the assump-
tion that a transition is eventually taken if it is continually
resp. infinitely often enabled).

2. RELATEDWORK
Our work is most closely related to the work on predi-

cate abstraction; see e.g. [2, 6, 14, 15, 30]. The key idea of
predicate abstraction is to partition the state space of the
program into a finite set of equivalence classes using pred-
icates over states. The equivalence classes are treated as
the abstract states forming the nodes of a finite graph. A
safety property can then be checked on the abstract system.
Predicate abstraction can also provide a basis for the devel-
opment of testing methods by guiding the test generation,
e.g. [1].

Unfortunately, predicate abstraction is inherently limited
to safety properties. That is because every sufficiently long
computation of the program (with the length greater then
the number of abstract states) results in a computation of
the abstract system that contains a loop. I.e., termination
(as well as more general liveness properties) cannot be pre-
served by predicate abstraction.

local y : natural

!0 : while y > 0 do
»

!1 : y := y − 1
!2 : skip

–

!3 :

!0 !3

τ1 :
y > 0,

y′ = y−1

τ2 :
y = 0,
y′ = y

Figure 1: Terminating program LOOP.

We illustrate the limitation on a very simple program
LOOP [16], shown on Figure 1 together with the (slightly
simplified) control-flow graph. The predicates y = 0 and
y > 0 split the data domain of the variable y into zero and
pos. The corresponding abstraction transforms the program
LOOP into the finite-state abstract program shown on Fig-
ure 2. That program contains a self-loop, i.e. is not ter-
minating. The abstract state S1 corresponds to the con-
junction at !0 ∧ y > 0 denoting the set of states where the
program counter has the value !0 and y is strictly positive.
If we split the abstract state S1 (by adding more predicates)
then at least one of the resulting abstract states will have a
self-loop, and so on.

In the augmented abstraction framework for proving live-
ness properties, the finite-state abstraction is annotated by

S1 :
at !0,
y > 0

τ1

S2 :
at !0,
y = 0

τ1

S3 :
at !3,
y = 0τ2

Figure 2: Non-terminating abstract-state program
for LOOP.

progress monitors or the like [16, 17, 22, 31]. The annota-
tion involves the manual construction of ranking functions
or other termination arguments. Until now, this has been
the only known way to overcome the inherit limitation of
predicate abstraction to safety properties. In contrast, the
method that we propose does not require the manual con-
struction of termination arguments.

In [24] we presented a proof rule for termination and live-
ness based on transition invariants. In this paper, we make
the first steps towards realizing its potential for automation.

We note a major difference in the notions of fairness used
here and in [24]. In [24], we used an automata-theoretic
notion of state-based fairness to formalize a uniform setting.
Here we use justice and compassion, two transition-based
notions of fairness. These are the two notions of fairness that
are relevant with concrete concurrent programs. It is widely
accepted that one needs a direct treatment of justice and
compassion since the translation to the automata-theoretic
notion is prohibitively expensive. As a consequence, the
notion of transition invariant in [24] is not applicable as such.
For intuition, an abstract program P# can be imagined as a
new notion of transition invariant, one that encodes justice
and compassion assumptions in a graph with labeled edges.

The abstract interpretation framework formalizes the con-
servative approximation of fixed point expressions [10].
For the verification of liveness properties denoted by fix-
points expressions, this approximation involves the under-
approximation of least fixpoints or (equivalently) the over-
approximation of greatest fixpoints. Although possible in
principle, the automation of the corresponding extrapola-
tion seems difficult, and practical techniques (analogous to
the extrapolation by intervals, convex hulls, Cartesian prod-
ucts, etc.) are not in sight (cf. [4, 12, 26, 28]).

One source of inspiration for the idea of abstracting re-
lations is the work on higher-order abstract interpretation
in [11]. Its instantiation to transition predicate abstraction
and its use for liveness with justice and compassion is proper
to this paper.

The termination analysis of [19] for functional programs is
based on the comparison of infinite paths in the control flow
graph and in ‘size-changing graphs’; that comparison can
be reduced to the language containment test of Büchi au-
tomata. Our work extends the termination principle in [19]
to a setting with parameterized abstraction, liveness, and
fairness.
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Verification diagrams are graphs that are useful to factor-
ize deductive proofs of temporal properties including live-
ness [5]. Their nodes denote sets of states (and not pairs
of states) and are hence close in spirit to abstract-state pro-
grams (and not to the abstract-transition programs). It may
be interesting to consider verification diagrams with nodes
denoting sets of pairs of states, and to come up with accord-
ing proof rules.

The predicate abstraction method of [9] constructs an
abstract-state system for which it can automatically trans-
fer some fairness requirements of the input program. The
method applies to liveness properties that can be proven
by considering only the transfered fairness, which strongly
depends on the precision of the abstraction. Our method ac-
counts for fairness requirements without abstracting them.

3. ABSTRACT-TRANSITION PROGRAMS

Informal Description. We propose to abstract relations
instead of sets of states, and to use transition predicate ab-
straction instead of predicate abstraction. Transition pred-
icates are binary relations over states (given e.g. by asser-
tions over unprimed and primed program variables).

Transition predicate abstraction goes beyond the idea of
abstracting a program by a finite abstract-state program. In-
stead, we abstract a program by a finite abstract-transition
program. An abstract transition is a binary relation rep-
resented by a conjunction of transition predicates. An
abstract-transition program is given by a finite directed
graph whose nodes are labeled by abstract transitions, and
whose edges are labeled by program statements, later for-
malized as transitions τ ∈ T .

T1:
at !0, at′ !0,

y > 0, y′ ≤ y − 1

τ1

τ1
T2: at !0, at′ !3

τ2

Figure 3: Abstract-transition program LOOP#.

On Figure 3, we see the abstract-transition program
LOOP#. One node is labeled by the abstract transition T1.
It corresponds to the conjunction of transition predicates

at !0 ∧ at′ !0 ∧ y > 0 ∧ y′ ≤ y − 1

denoting the set of all pairs of states (s, s′), both at the
program location !0. The value of y is strictly positive in
the state s, and changes to a strictly smaller value in s′. The
node labeled by T2 refers to states s and s′ at !0 and at !3
(with unspecified values for y), respectively.

The abstract-transition program LOOP# abstracts the
program LOOP. What does this mean?

We first recall the meaning of abstraction of a program by
an abstract-state program. If a state s has a transition to s′

under the execution of the program statement τ , then there
is an edge labeled by τ between two corresponding abstract
states S1 and S2 (i.e. s ∈ S1 and s′ ∈ S2).

The meaning of abstraction of a program by an abstract-
transition program is analogous. If a pair of states (s, s′)

can be ‘extended’ to the pair (s, s′′) by the execution of
the program statement τ (which is: s′ goes to s′′ under the
execution of the statement τ ), then there is an edge labeled
by τ between two corresponding abstract transition T1 and
T2 (which is: (s, s′) ∈ T1 and (s, s′′) ∈ T2).

Note that LOOP# only serves to demonstrate the con-
cept of abstract-transition programs. To illustrate how our
method works to verify termination and general liveness
properties, we will use concurrent programs with nested
loops. In fact, the program LOOP is an example of a sin-
gle while loop program. Our method calls (as a subroutine)
a termination check that exists for single while loop pro-
grams [8, 23, 27].

We now start the formal definitions.

Programs and Computations. Following [20], we abstract
away from the syntax of a concrete (concurrent) program-
ming language and represent a program P by a fair transi-
tion system

P = 〈Σ, Θ, T ,J , C〉

consisting of:

• Σ: the set of states,

• Θ: a set of initial states such that Θ ⊆ Σ,

• T : a finite set of transitions such that each transition
τ ∈ T is associated with a transition relation ρτ ,

ρτ ⊆ Σ× Σ

• J : a set of just transitions such that J ⊆ T ,

• C: a set of compassionate transitions such that C ⊆ T .

A computation σ is a sequence of states s1, s2, . . . , which is
either infinite or no more extendible, such that:

• s1 is a initial state, i.e. s1 ∈ Θ,

• for each i ≥ 1 there exists a transition τ ∈ T such that
si goes to si+1 under ρτ , formally

(si, si+1) ∈ ρτ .

We will define fairness requirements (justice and compas-
sion) in Sections 6 and 7, respectively.

We write example programs using the Simple Program-
ming Language SPL of [20]. The translation from SPL and
other (concurrent) programming languages into fair transi-
tion system is standard.

Transition Predicates. We now define the building blocks
for abstract-transition programs.

Definition 1 (Transition Predicate p).
A transition predicate p is a binary relation over states.

Usually, transition predicates are given by atomic assertions
over unprimed and primed program variables. We fix a tran-
sition predicate Id for the identity relation, formally

Id = {(s, s) | s ∈ Σ}.

From now on, the formal statements refer to a fixed finite
set of transition predicates P .

The predicates at ! and at′ ! are implicitly contained in
P , for all program locations !.
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Definition 2 (Abstract Transition T ).
An abstract transition T is a conjunction of transition pred-
icates. We write T #

P for the (finite) set of abstract transi-
tions. Formally,

T #
P = {p1 ∧ . . . ∧ pn | n ≥ 0 and p1, . . . , pn ∈ P}.

Alternatively, we may define an abstract transition to be
a conjunction in which every transition predicate appears
either positively or negated. In this case, abstract transi-
tions can be identified by bit-vectors. The difference is only
relevant for implementation issues.

An abstract-transition program uses abstract transitions
for its node labels.

Definition 3 (Abstract-Transition Program P#).
An abstract-transition program P# is a finite directed
rooted node-labeled edge-labeled graph

P# = 〈V, E, v0, LV , LE〉

where:

• V and E are the set of nodes resp. edges,

• v0 ∈ V is the root node,

• LV : V → T #
P and LV (v0) = Id,

i.e., every node v is labeled by an abstract transi-
tion LV (v) which we also write Tv,
the root node is labeled Id,

• LE : E → T ,
i.e., every edge (u, v) is labeled by a transition τ .

We illustrate the definition above on the abstract-transition
program LOOP#, shown on Figure 3.

V = {v0, T1, T2},

E = {(v0, T1), (T1, T1), (T1, T2)},

LV (v0) = Id

LV (T1) = at !0 ∧ at′ !0 ∧ y > 0 ∧ y′ ≤ y − 1

LV (T2) = at !0 ∧ at′ !3

LE(v0, T1) = LE(T1, T1) = τ1

LE(T1, T2) = τ2

We will often use the set V − of all non-root nodes (on
figures illustrating examples, we do not show v0).

V − = V \ {v0}

As usual, the symbol ◦ denotes the relational composition
operator.

R1 ◦ R2 = {(s, s′′) | exists s′ such that

(s, s′) ∈ R1 and (s′, s′′) ∈ R2}

We can now define the meaning of abstraction of a pro-
gram P by an abstract-transition program P#. Later on,
we present an algorithm for the transformation of a program
P into an abstract-transition program P#.

Definition 4 (Abstraction P - P#).
An abstract-transition program P# = 〈V, E, v0, LV , LE〉 is
an abstraction of the program P = 〈Σ,Θ, T ,J , C〉 if for all
nodes v1 labeled by, say, the abstract transition T1, and for
all transitions τ of the program P ,

if T1 contains a pair of states (s, s′) such that
s′ goes to some state s′′ under the transition τ ,
then

• there exists a non-root node v2 that is
labeled by an abstract transition T2

containing the pair (s, s′′), and

• there exists an edge from v1 to v2 labeled
by τ .

Formally:
v1 ∈ V , LV (v1) = T1, (s, s′) ∈ T1, (s′, s′′) ∈ ρτ implies the
existence of v2 ∈ V − and (v1, v2) ∈ E such that LE(v1, v2) =
τ and, for LV (v2) = T2, (s, s′′) ∈ T2.

Note that the target node v2 in the definition above must be
different from the root node v0. However, there may exist a
target node v2 labeled by Id .

In the rest of the paper, the notation P# always refers
to an abstract-transition program P# that is an abstraction
the program P , i.e. P - P#.

4. AUTOMATED ABSTRACTION P .→ P#

Given a finite set of transition predicates P , the algorithm
shown on Figure 4 takes a program P and returns a program
P# abstracting it, i.e. P - P#.

The algorithm constructs the nodes (and edges) of P# in
a breadth-first manner. The set of nodes whose successors
have not been yet explored are kept in the queue Q.

The set of transition predicates P defines a unique ‘best-
abstraction’ function α for the abstract domain T #

P . It maps
a binary relation T over states to the smallest abstract tran-
sition containing the relation T .

For example, if the set of transition predicates is

P = {x ≥ 0, x′ ≤ x − 1, x′ = x, x′ ≥ x + 1},

the relation

T = x > 0 ∧ x′ = x − 1

is abstracted to the abstract transition

α(T ) = x ≥ 0 ∧ x′ ≤ x − 1.

The algorithm implements the abstraction function α using
the following equality.

α(T ) =
^

{p ∈ P | T ⊆ p}

Here, the assertions p and T define binary instead of unary
relations over states, and use primed and unprimed variables
instead of just unprimed variables. Everything else is as in
classical predicate abstraction. That is, a theorem prover is
called for each entailment test “T ⊆ p”. If n is the number
of predicates, then for each newly created node and each
transition τ we have n calls to the theorem prover. Thus,
the theoretical worst-case number of calls to the theorem
prover is the same as in classical predicate abstraction.

5. OVERALL METHOD
Our overall method to check a liveness property of a pro-

gram under fairness assumptions consists of the five steps
given in the introduction.
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input
P : program with finite set of transitions T
P : finite set of transition predicates

output

abstract-transition program P# with:
V : set of nodes labeled by abstract transitions
E: set of edges labeled by transitions τ

begin
Q := empty queue
α := λT.

V

{p ∈ P | T ⊆ p}
v0 := new node labeled by Id
V := {v0}
enqueue(Q, v0)
E := ∅
while Q not empty do

u := dequeue(Q)
foreach τ ∈ T do

T := α(Tu ◦ ρτ )
if T = ∅ then continue with next τ fi

if exists w ∈ V − such that T = Tw then
v := w

else
v := new node labeled by T
V := V ∪ {v}
enqueue(Q, v)

fi
(u, v) := new edge labeled by τ
E := E ∪ {(u, v)}

od
od

end.

Figure 4: Transition predicate abstraction P .→ P#.

We do not further elaborate the first step, the reduction of
the verification problem for general temporal properties to
the one for fair termination. This step is standard (cf. [29]),
analogous one for safety and reachability.

We have just presented the second step, the transition
predicate abstraction-based transformation of the program
P into a node-labeled edge-labeled graph, the abstract-
transition program P#. We now fix P#.

The third step checks, for each non-root node v of P#,
whether its label, the abstract transition Tv , is well-founded
(and then marks the node accordingly as ‘terminating’ or
not). In fact, our method can be parameterized by the
well-foundedness test we apply. Here, we assume that the
transition predicates are linear arithmetic formulas (with-
out disjunction). Then, we can apply one of the well-
foundedness tests described in [8, 23, 27]. For intuition,
the well-foundedness of a relation defined by a conjunctive
formula in primed and unprimed variables is the termina-
tion of a corresponding program that consists of a single
while loop. The loop body only contains a simultaneous
(possibly non-deterministic) update statement. For exam-
ple, x > 0∧x′ = x−1 corresponds to while(x>0){x:=x-1}.
From our experience, checking well-foundedness of abstract
transitions (termination of single while loops) can be done
very efficiently. E.g. our prototype implementation of [23]
handles over 500 single while loops in a couple of millisec-
onds.

The only missing link is the fourth step of our overall
method: an algorithm on the automaton underlying P#

that marks nodes as ‘fair’ resp. ‘unfair’. Before we give
the formal definition of each kind of fairness, justice resp.
compassion in Section 6 resp. Section 7, we outline the al-
gorithm.

The first part of the algorithm computes, for each node v,
a set abc(Lv) of transitions, i.e. abc(Lv) ⊆ T . The second
part checks a condition on abc(Lv). That condition is spe-
cific to the kind of fairness, namely (1) in Section 6 resp. (2)
in Section 7. The algorithm marks the node v according to
the outcome of the check.

In its fifth, final step our method returns ‘property veri-
fied’ if each ‘fair’ node is marked ‘terminating’. Hence, the
correctness of our overall method follows from Theorem 1
in Section 6 resp. Theorem 2 in Section 7, depending on the
kind of fairness.

Finite Automata. We observe that the graph of P# with-
out the node labels is the transition graph of a deterministic
finite automaton over the alphabet T . Each node v ∈ V de-
fines an automaton Av whose initial state is the root node
v0, and whose only final state is the node v.

Av = 〈T , V, δ, v0, {v}〉

The transition relation δ is the following.

δ = {(u, τ, v) | (u, v) ∈ E is an edge labeled by τ}

Let Lv be the language defined by the automaton Av. We
next formalize the fact that the language Lv covers all rele-
vant compositions of transition relations.

Lemma 1.
Every word τ1 . . . τn over transitions in T lies in the lan-
guage Lv for a non-root node v, unless the composition of
the corresponding transition relations is empty. Formally,

ρτ1 ◦ . . . ◦ ρτn 1= ∅ =⇒ ∃v ∈ V −. τ1 . . . τn ∈ Lv.

Proof. By induction over n.

The set abc(Lv) consists of all letters appearing in some
word in Lv, i.e. of all transitions τ ∈ T labeling the edges
that constitute a path from the root node v0 to the node v.

abc(Lv) =
\

{M ⊆ T | Lv ⊆ M∗}

We compute abc(Lv) by traversing backwards the graph of
Av from the node v.

6. JUSTICE
Justice is a conditional fairness requirement [20]. It is

sensitive to the enabledness of transitions. A transition τ is
enabled on the state s if the set of states {s′ | (s, s′) ∈ ρτ}
is not empty. We write En(τ) for the set of states on which
the transition τ is enabled.

En(τ ) = {s | exists s′ ∈ Σ such that (s, s′) ∈ ρτ}

Justice requirement is represented by a set J of just tran-
sitions, J ⊆ T . Every just transition that is continually
enabled beyond a certain point must be taken infinitely of-
ten.

We make the following assumption on the transition rela-
tions of the program P .
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Assumption 1 (Transition Disjointness for J ).
Transition relation of each just transition is disjoint from
the transition relation of every other transition. Formally,

∀τ j ∈ J ∀τ ∈ T . τ j 1= τ =⇒ ρτj ∩ ρτ = ∅.

The assumption is not a proper restriction. In fact, it is au-
tomatically fulfilled by the transition relations of SPL pro-
grams. For every pair of transitions τ" and τm that belong
to different processes, we have the following transition rela-
tions.

ρτ! = at ! ∧ at′ !′ ∧ at m ∧ at′ m ∧ . . .

ρτm = at ! ∧ at′ ! ∧ at m ∧ at′ m′ ∧ . . .

Clearly, the relations ρτ! and ρτm are disjoint. Transitions
that belong to the same process are marked with different
labels, so their enabledness sets are disjoint.

We make the following assumption on the enabledness sets
of transition in the program P .

Assumption 2 (Enabledness for J ).
The enabledness set of each just transition is either disjoint
or coincides with the enabledness set of every other transi-
tion. Formally,

∀τ j ∈ J ∀τ ∈ T . τ j 1= τ =⇒

(En(τ j) ∩ En(τ ) = ∅ ∨

En(τ j) = En(τ )).

Assumption 2 is not a proper restriction either; for complete-
ness, we give the corresponding syntactic transformation in
the appendix.

We define an auxiliary predicate just(v, τ j) as follows.

just(v, τ j) = τ j ∈ abc(Lv) ∨

∃τ ∈ abc(Lv). En(τ) ∩ En(τ j) = ∅

Informally, just(v, τ j) holds if the transition τ j is either
taken or not continually enabled on some path from the root
to the node v. Such transitions contribute to the marking
of v as ‘fair’.

A node v ∈ V − is marked (justly) ‘fair’ if the predicate
just(v, τ j) holds for every just transition.

fairJ (v) = ∀τ j ∈ J . just(v, τ j) (1)

We say that a program justly terminates if it does not have
infinite computations that satisfy the justice requirement.

Theorem 1 (Just Termination).
The program P justly terminates if every non-root ‘fair’
marked node v of the abstract-transition program P# is la-
beled by a well-founded abstract transition Tv, formally

∀v ∈ V −. fairJ (v) =⇒ well-founded(Tv).

Proof. Assume that the program P does not justly ter-
minate. We show that there exists a non-root node v labeled
by a non-well-founded abstract transition Tv, and that for
every just transition τ j the predicate just(v, τ j) holds.

Let σ = s1, s2, . . . be an infinite computation induced by
the infinite sequence of transitions ξ = τ1, τ2, . . . , where for
all i ≥ 1 we have (si, si+1) ∈ ρτi , that satisfies the justice
requirement.

The computation σ partitions the set of just transitions
J into the sets J d(isabled) and J t(aken) as follows. A transi-
tion τ ∈ J is in the set J d if it is not continually enabled.
Otherwise, i.e., if τ is taken infinitely often, we have τ ∈ J t.

Let L = l1, l2, . . . be an infinite ordered set of positions in
σ such that for all i ≥ 1 we have:

• Every transition from J d is not enabled on a state
lying between the positions li and li+1, formally

∀τ ∈ J d ∀i ≥ 1 ∃ li < p < li+1. sp 1∈ En(τ).

• Every transition from J t is taken on a state lying be-
tween the positions li and li+1, formally

∀τ ∈ J t ∀i ≥ 1 ∃ li < p < li+1. τp = τ.

Such a set L exists since σ satisfies the justice requirement.
For the fixed sequences ξ and L, we define a function f

that maps a pair of positions (k, l), where k < l, from L to
one of the nodes of the abstract-transition program P# in
the following way. We define f(k, l) to be the node v such
that the word τk . . . τl−1, which is a segment of ξ, is in the
language Lv. The function f exists, by Lemma 1.

The function f induces an equivalence relation ∼ on pairs
of elements of L.

(k, l) ∼ (k′, l′) if and only if f(k, l) = f(k′, l′)

Since the range of f is finite, the equivalence relation ∼ has
finite index.

By Ramsey’s theorem [25], there exists an infinite ordered
set of positions K = k1, k2, . . . , where ki ∈ L for all i ≥ 1,
that satisfies the following property. All pairs of elements
in K belong to the same equivalence class. That is, there
exists a non-root node v such that for all k, l ∈ K where
k < l we have f(k, l) = v. We fix the node v.

Since f(ki, ki+1) = v for all i ≥ 1, the infinite sequence
sk1 , sk2 , . . . is induced by the relation Tv .

(ski , ski+1
) ∈ Tv for all i ≥ 1

We conclude that the abstract transition Tv is not well-
founded.

We show that each transition τ j ∈ J t is contained in the
set of transitions abc(Lv). By the choice of the set L and
taking into consideration that the set K is a subset of L, for
each i ≥ 1 there exist positions a and b in L such that a < b,
la = ki, and lb = ki+1. Furthermore, we have

τ j ∈ {τla , . . . , τlb−1}.

Since the word τki . . . τki+1−1 is in the language Lv, we con-
clude τ j ∈ abc(Lv).

We show that for every τd ∈ J d there exists a transition
τ ∈ abc(Lv) such that En(τ) ∩ En(τd) = ∅. By the choice
of L, there exists a position p in σ between the positions
ki and ki+1 such that the transition τd is not enabled on
the state sp. Thus, the transition from the state sp to its
successor state is induced by a transition τ 1= τd. We have
τ ∈ abc(Lv). By Assumption 2, the sets En(τd) and En(τ )
are disjoint.

We now illustrate an application of Theorem 1 for proving
just termination of example programs.
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local x, y : integer where x = 1, y = 1

P1 ::

2

6

6

4

!0 : while x = 1 do
!1 : y := y + 1

!2 : while y > 0 do
!3 : y := y − 1

3

7

7

5

‖ P2 ::

»

m0 : x := 0
m1 :

–

!0 !2

m0 m1

x = 1,
x′ = x, y′ = y + 1

x 1= 1,
x′ = x, y′ = y

y > 0,
x′ = x, y′ = y − 1

x′ = 0, y′ = y

Figure 5: Program ANY-DOWN.

ANY-DOWN. We show the program ANY-DOWN on Fig-
ure 5. We obtain the control-flow graph shown on Figure 6
by taking the asynchronous parallel composition of the pro-
cesses. Every transition is just.

J = {τ1, . . . , τ4}

We compute the abstract-transition program ANY-

DOWN#, shown on Figure 7, by taking the following set
of transition predicates.

P = {x = 0, x = 1, y > 0, y′ ≤ y − 1}

The abstract transition T1 is the only one that is not well-
founded. From the graph of ANY-DOWN#, we obtain the
following set abc(L1).

abc(L1) = {τ1}

Since the enabledness condition of the transition τ1 coin-
cides with the enabledness condition of the transition τ4,
the predicate just(1, τ4) does not hold. Hence, the non-well-
foundedness of T1 is not required for the just termination
of ANY-DOWN. Since all other abstract transitions are well-
founded, by Theorem 1, we conclude the ANY-DOWN justly
terminates.

ANY-WHILE. We make the program ANY-DOWN more in-
teresting by adding a loop in the second process. The result-
ing program ANY-WHILE and the control-flow graph for the
parallel composition of its processes are shown on Figures 8
and resp. 9. Every transition is just.

J = {τ1, . . . , τ6}

!0, m0 !0, m1

!2, m1

τ1 :
x = 1, x′ = x,

y′ = y + 1

τ4 :
x = 1, x′ = 0,

y′ = y

τ2 :
x = 0, x′ = 0,

y′ = y

τ3 :
x = 0, x′ = x,

y > 0, y′ = y − 1

Figure 6: Control-flow graph for the parallel com-
position of processes P1 and P2 in ANY-DOWN.

T1 :
at !0, at m0,
at′ !0, at′ m0

x = 1

τ1

τ1 T2 :
at !0, at m1,
at′ !2, at′ m1

x = 0

τ2

τ3

T3 :

at !2, at m1,
at′ !2, at′ m1

x = 0, y > 0,
y′ ≤ y − 1

τ3

τ3

T4 :
at !0, at m0,
at′ !0, at′ m1

x = 1

τ4

τ4

T5 :
at !0, at m0,
at′ !2, at′ m1

x = 1
τ2

τ3

Figure 7: Abstract-transition program ANY-

DOWN#.
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local x, y : integer where x = 1, y = 1

P1 ::

2

6

6

4

!0 : while x = 1 do
!1 : y := y + 1

!2 : while y > 0 do
!3 : y := y − 1

3

7

7

5

‖ P2 ::

»

m0 : while y > 0 do
m1 : x := 0

–

!0 !2

m0

x = 1,
x′ = x, y′ = y + 1

x 1= 1,
x′ = x, y′ = y

y > 0,
x′ = x, y′ = y − 1

y > 0,
x′ = 0, y′ = y

Figure 8: Program ANY-WHILE.

!0, m0

!2, m0

τ1 :
x = 1, x′ = x,

y > 0,
y′ = y + 1

τ4 : x = 1, x′ = 0,
y > 0, y′ = y

τ5 : x = 0, x′ = 0,
y > 0, y′ = y

τ2 : x = 0, x′ = x,
y > 0, y′ = y

τ3 :
x = 0, x′ = x,

y > 0,
y′ = y − 1

τ6 : x = 0, x′ = 0,
y > 0, y′ = y

Figure 9: Control-flow graph for the parallel com-
position of the processes P1 and P2 in ANY-WHILE.

T7 :

at !0, at m0,
at′ !0, at′ m0

x = 1, x′ = 0,
y > 0

T10 :

at !0, at m0,
at′ !2, at′ m0

x = 1, x′ = 0,
y > 0

T1 :

at !0, at m0,
at′ !0, at′ m0

x = 1, x′ = x,
y > 0

T11 :

at !0, at m0,
at′ !2, at′ m0

x = 1, x′ = 0,
y > 0, y′ ≤ y − 1

T9 :

at !0, at m0,
at′ !2, at′ m0

x = 1, x′ = 0,
y > 0, y′ = y

T4 :

at !0, at m0,
at′ !0, at′ m0

x = 1, x′ = 0,
y > 0, y′ = y

τ1
τ1

τ4

τ5

τ2

τ3

τ2

τ6

τ3, τ6

τ5
τ4

τ3, τ6

T5 :

at !0, at m0,
at′ !0, at′ m0

x = 0, x′ = x,
y > 0, y′ = y

T2 :

at !0, at m0,
at′ !2, at′ m0

x = 0, x′ = x,
y > 0, y′ = y

T8 :

at !0, at m0,
at′ !2, at′ m0

x = 0, x′ = x,
y > 0, y′ ≤ y − 1

τ5
τ5

τ2

τ2
τ6

τ3

τ3, τ6

T3 :

at !2, at m0,
at′ !2, at′ m0

x = 0, x′ = x,
y > 0, y′ ≤ y − 1

T6 :

at !2, at m0,
at′ !2, at′ m0

x = 0, x′ = x,
y > 0, y′ = y

τ3

τ3, τ6

τ6

τ6

τ3

Figure 10: Abstract-transition program ANY-

WHILE#.
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For the set of transition predicates

P = {x = 0, x = 1, x′ = x, x′ = 0,

y > 0, y′ = y, y′ ≤ y − 1}

we compute the abstract-transition program ANY-WHILE#,
shown on Figure 10.

We observe that the abstract transitions T1, T5, and T6

are not well-founded. We read the following sets from the
graph of ANY-WHILE#.

abc(L1) = {τ1}

abc(L5) = {τ5}

abc(L6) = {τ6}

Looking at the control-flow graph on Figure 9, we observes
the following.

En(τ1) = En(τ4)

En(τ5) = En(τ2)

En(τ6) = En(τ3)

This means that the predicates just(1, τ4), just(5, τ2), and
just(6, τ3) do not hold. Hence, the well-foundedness of
T1, T5, and T6 is not required for the just termination. We
conclude that ANY-WHILE justly terminates.

7. COMPASSION
Compassion is another conditional fairness require-

ment [20]. Compared to justice, it is not sensitive to the
interruption of transition enabledness infinitely many times.
Compassion requirement is represented by a set C of compas-
sionate transitions, C ⊆ T . Every compassionate transition
that is enabled infinitely often must be taken infinitely often.

We extend Assumptions 1 and 2 to compassionate tran-
sitions. This extension is not a proper restriction (see the
appendix for details).

For dealing with compassion, we are interested in the set
of letters (transitions) abc(

T

Lv) that appear in every word
of the language Lv.

abc(
\

Lv) = {τ | Lv ∩ (T \ {τ})∗ = ∅}

We compute the set abc(
T

Lv) by a standard algorithm,
which involves a backward graph traversal staring from v
and computing intersections over all paths.

We define an auxiliary predicate comp(v, τ c) as follows.

comp(v, τ c) = τ c ∈ abc(Lv) ∨

∀τ ∈ abc(
\

Lv). En(τ) ∩ En(τc) = ∅

Informally, comp(v, τ c) holds if the transition τ j is either
taken or possibly continually disabled on some path from
the root to the node v.

A node v ∈ V − is marked (compassionately) ‘fair’ if the
predicate comp(v, τc) holds for every compassionate transi-
tion.

fairC(v) = ∀τ c ∈ C. comp(v, τc) (2)

We say that a program compassionately terminates if it
does not have infinite computations that satisfy the com-
passion requirement.

Theorem 2 (Compassionate Termination).
The program P compassionately terminates if every non-root

‘fair’ marked node v of the abstract-transition program P#

is labeled by a well-founded abstract transition Tv, formally

∀v ∈ V −. fairC(c) =⇒ well-founded(Tv).

Proof. Assume that the program P does not compas-
sionately terminate. We show that there exists a non-root
node v labeled by a non-well-founded abstract transition Tv,
and that for every compassionate transition τc the predicate
comp(v, τ c) holds.

Let σ = s1, s2, . . . be an infinite computation induced by
the infinite sequence of transitions ξ = τ1, τ2, . . . , where for
all i ≥ 1 we have (si, si+1) ∈ ρτi , that satisfies the compas-
sion requirement.

The computation σ partitions the set of compassionate
transitions C into the sets Cd(isabled) and Ct(aken) as follows. A
transition τ ∈ C is in the set Cd if it is not enabled infinitely
often. Otherwise, i.e., if τ is taken infinitely often, we have
τ ∈ Ct.

Let L = l1, l2, . . . be an infinite ordered set of positions in
σ such that:

• Every transition τ ∈ Cd is not enabled on states at
positions after l1, formally

∀τ ∈ Cd ∀p ≥ l1. sp 1∈ En(τ).

• Every transition τ ∈ Ct is taken on a state lying be-
tween the positions li and li+1 for all i ≥ 1, formally

∀τ ∈ Ct ∀i ≥ 1 ∃ li < p < li+1. τp = τ.

By defining an equivalence relation on pair from the set L
and applying Ramsey’s theorem along the lines of the proof
of Theorem 1, we obtain an infinite ordered set K ⊆ L and
a non-root node v with the following property. For every
pair of elements (k, l) in K we have f(k, l) = v. Again, we
observe that the abstract transition Tv is not well-founded.
Furthermore, since every transition from Ct is taken on a
state between the positions ki and ki+1 for all i ≥ 1, we con-
clude that Ct is contained in the set of transitions abc(Lv).

By the choice of L, a transition τd ∈ Cd is not enabled on
the state sp for every position p in σ after the position k1.
Since every transition τ ∈ abc(

T

Lv) must appear between
the positions ki and ki+1, we conclude that there exists a
state s such that s ∈ En(τ ) and s 1∈ En(τd). By Assump-
tion 2 (which we extended to the compassionate transitions),
the sets En(τd) and En(τ) are disjoint.

SUB-SKIP. We illustrate Theorem 2 on the program SUB-

SKIP, shown on Figure 11. The set of compassionate tran-
sitions C is the following.

C = {τ2, τ3}

Every infinite computation of SUB-SKIP may take the tran-
sition τ2 only finitely many times, although it is enabled in-
finitely often, thus, violating the compassion requirement C.

We show the abstract transition program SUB-SKIP# on
Figure 12. We compute SUB-SKIP# by applying the set of
transition predicates below.

P = {y > 0, y′ ≤ y, y′ ≤ y − 1}

The only non-well-founded abstract transitions are T5

and T7. We show that according to Theorem 2, the well-
foundedness of these two abstract transitions is not needed
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local y : integer

!0 : while y > 0 do

!1 :

2

4

!a1 : y := y − 1
or

!b1 : skip

3

5

!0 !1

τ1 : y > 0, y′ = y

τ2 : y′ = y − 1

τ3 : y′ = y

Figure 11: Program SUB-SKIP.

T1:
at !0, at′ !1,
y > 0, y′ ≤ y

τ1

T5:
at !0, at′ !0,
y > 0, y′ ≤ y

τ3

τ1

T4:
at !0, at′ !0,

y > 0, y′ ≤ y − 1

τ2

T8:
at !0, at′ !1,

y > 0, y′ ≤ y − 1

τ1

τ2, τ3

T2:
at !1, at′ !0,
y′ ≤ y − 1

τ2

T6:
at !1, at′ !1,

y > 0, y′ ≤ y − 1

τ1

τ2, τ3

T7:
at !1, at′ !1,
y > 0, y′ ≤ y

τ2

T3:
at !1, at′ !0,

y′ ≤ y

τ3

τ1 τ3

Figure 12: Abstract-transition program SUB-SKIP#.

for proving compassionate termination. We show that the
predicates comp(5, τ2) and comp(7, τ2) do not hold.

From Figure 12, we obtain the following sets of transitions.

abc(L5) =abc(L7) =

abc(
\

L5) = abc(
\

L7) = {τ1, τ3}

Furthermore, we observe (on Figure 11) that En(τ2) =
En(τ3). Hence, the predicates comp(5, τ2) and comp(7, τ2)
do not hold.

8. LEXICOGRAPHIC COMPLETENESS
Our main interest is in fair termination. But let us look

also at termination. This allows us to compare the power of
transition predicate abstraction with the classical means to
construct termination arguments for programs with nested
loops, which is the lexicographic combination of ranking
functions (see e.g. [21]). We show that, if each lexicographic
component of a ranking function for the program can be ex-
pressed by some conjunction of transition predicates in P,
then transition predicate abstraction will construct a termi-
nation argument for the program.

The characterization of (plain) termination of a program
P (namely, by the well-foundedness of the abstract tran-
sitions labeling the nodes of the abstract-transition pro-
gram P#) is the instance of the characterization of fair ter-
mination where the set of fair transitions to be empty. The
program P terminates if every non-root node in the abstract-
transition program P# is labeled by well-founded abstract
transitions, formally

∀v ∈ V −. well-founded(Tv).

Let (f1, . . . , fn) be a tuple of functions from the set of
states Σ into the domains (W1,91), . . . , (Wn,9n) such that
9i is an ordering relation, i.e. transitive and irreflexive, for
each 1 ≤ i ≤ n.

The tuple (f1, . . . , fn) is a lexicographic ranking function
for the program P if each ordering 9i is well-founded and for
every transition τ there exists an index j ∈ {1, . . . , n} such
that the auxiliary predicate lex(ρτ , j), defined as follows,
holds.

lex (R, j) = ∀(s, s′) ∈ R. fj(s) 9j fj(s
′) ∧

∀1 ≤ i < j. fi(s) :i fi(s
′)

For each function fi we define a pair fi 9i f ′
i and fi :i f ′

i

of transition predicates.

fi 9i f ′
i = {(s, s′) | fi(s) 9i fi(s

′)}

fi :i f ′
i = {(s, s′) | fi(s) :i fi(s

′)}

Obviously, the transition predicate fi 9i f ′
i is well-founded.

For example, the function f(x, y) = x + y, where the
variables x and y range over integers, into the set of natu-
ral numbers defines the transition predicates x + y > x′ + y′

and x + y ≥ x′ + y′.

Theorem 3 (Lexicographic Completeness). If the
set T #

P generated by the set of transition predicates P con-
tains the relation fi 9i f ′

i and the relation fi :i f ′
i for

every component fi of the lexicographic ranking function
(f1, . . . , fn) for the program P , then every non-root node
of the abstract program P# obtained by transition predicate
abstraction algorithm is labeled by a well-founded abstract
transition.

141



Proof. Let the tuple (f1, . . . , fn) be a lexicographic
ranking function for the program P such that the transi-
tion predicates fi 9i f ′

i and fi :i f ′
i are contained in the

set of abstract transitions T #
P for each component fi of the

tuple.
We prove for each non-root node v, by induction over

the length of a shortest path from the root node v0 to the
node v, that there exists an index j ∈ {1, . . . , n} such that
the predicate lex(Tv, j) holds. The well-foundedness of Tv

follows directly.
For the base case, let τ be the transition that labels the

edge from the node v0 to the node v. Since lex (ρτ , j) holds
for some j ∈ {1, . . . , n}, we have

ρτ ⊆ fj 9j f ′
j ∈ T #

P ,

∀1 ≤ i < j. ρτ ⊆ fi :i f ′
i ∈ T #

P .

Since α is the ‘best-abstraction’ function, we have

α(ρτ ) ⊆ fj 9j f ′
j ,

∀1 ≤ i < j. α(ρτ ) ⊆ fi :i f ′
i .

Hence, we conclude lex(Tv, j) where Tv = α(ρτ ).
For the induction step, let u be a predecessor node of

a non-root node v such that u is on a shortest path from
v0 to v. Let the predicate lex (Tu, j) hold for some index
j ∈ {1, . . . , n}. For a transition τ that labels the edge (u, v)
there exists an index l ∈ {1, . . . , n} such that lex(ρτ , l) holds.
Let m = min(j, l). We show that lex(α(Tv), m) holds.

By the induction hypothesis, we have

Tu ⊆ fj 9j f ′
j and ∀1 ≤ i < j. Tu ⊆ fi :i f ′

i .

From lex(ρτ , l) we have

ρτ ⊆ fl 9l f ′
l and ∀1 ≤ k < l. ρτ ⊆ fk :k f ′

k.

By the transitivity of 9i for 1 ≤ i ≤ n, we have

Tu ◦ ρτ ⊆ fm 9m f ′
m,

∀1 ≤ i < m. Tu ◦ ρτ ⊆ fi :i f ′
i .

Analogously to the base case, we conclude lex(Tv, m), where
Tv = α(Tu ◦ ρτ ).

The following example illustrates that transition predi-
cate abstraction may apply to programs whose termination
cannot be proven by lexicographic ranking functions whose
components are contained in T #

P .

CHOICE. We consider the program CHOICE shown on Fig-
ure 13. This program terminates. As one can easily see, no
lexicographic combination of the functions

f1(x, y) = x, f2(x, y) = y, f3(x, y) = x + y

is a ranking function for CHOICE. Executing the transition
τ1 may strictly increase the value of y and x + y, and ex-
ecuting the transition τ2 the value of x or y may increase.

We compute the abstract-transition program CHOICE#,
shown on Figure 14, by taking the following set of transition
predicates.

P = {x′ ≤ x, x′ ≤ x − 1, x′ ≤ y − 2,

y′ ≤ y, y′ ≤ y − 1, y′ ≤ x + 1, y′ ≤ x}

local x, y : natural
2

6

6

4

loop forever do
2

4

!a : (x, y) := (x − 1, x)
or

!b : (x, y) := (y − 2, x + 1)

3

5

3

7

7

5

!τ1 :
x′ = x − 1,

y′ = x
τ2 :

x′ = y − 2,
y′ = x + 1

Figure 13: Program CHOICE.

T1 :
x′ ≤ x − 1,

y′ ≤ x

τ1

τ1, τ2

T4 :
x′ ≤ x − 1,
y′ ≤ y − 1τ1

T3 :
x′ ≤ y − 2,
y′ ≤ y − 1

τ1, τ2

T2 :
x′ ≤ y − 2,
y′ ≤ x + 1

τ2 τ2

τ1

τ2

Figure 14: Abstract-transition program CHOICE#.

Note that the set of abstract transition T #
P induced by the

transition predicates above contains the transition predi-
cates fi 9i f ′

i and fi :i f ′
i for each i ∈ {1, 2, 3} (and no

other ranking functions.)
We observe that every non-root node in CHOICE# is la-

beled by a well-founded abstract transition, i.e., the pro-
gram CHOICE terminates.

9. CONCLUSION
In this paper, we have proposed the extension of predicate

abstraction to transition predicate abstraction as a way to
overcome the inherent limitation of predicate abstraction
to safety properties. Previously, the only known way to
overcome this limitation was to annotate the finite-state ab-
straction of a program in a process that involved the manual
construction of ranking functions. We have gone beyond the
idea of abstracting a program to a finite-state program and
checking the absence of loops in its finite graph. Instead,
we have given the transformation of a program into a finite
abstract-transition program. We have given algorithms to
check fair termination on the abstract-transition program.
The two algorithms together yield an automated method for
the verification of liveness properties under full fairness as-
sumptions (justice and compassion). In conclusion, we have
exhibited principles that extend the applicability of predi-
cate abstraction-based program verification to the full set of
temporal properties.

We believe that our work may trigger a series of activities
to develop tools for checking liveness, similar to the series
of activities that have lead to the success of tools for safety
and invariance properties [2, 6, 14, 15, 30].
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The logical next step is to investigate counterexample-
driven abstraction refinement [2, 7, 15]. We extracted tran-
sition predicates from guards (which yields the special case
of assertions such as x > 0, i.e. without primed variables)
and from update statements x:=e (which yields transition
predicates of the form x′ ≤ e and x′ ≥ e). Although
this was sufficient for our experiments so far, an automated
counterexample-driven abstraction refinement will be desir-
able at some point. A counterexample will here be a rela-
tion τ1 ◦ . . . ◦ τn corresponding to a path in the graph of
an abstract-transition program, a path that leads to a ‘fair’
‘non-terminating’ node.

Another direction for future work is to investigate whether
the existing techniques to speed up predicate abstraction,
e.g. [3, 13, 18], are applicable for transition predicate ab-
straction.

Our algorithm suggests a verification methodology where
the input to the algorithm is a liveness property without fair-
ness assumptions. One then takes the computed abstract-
transition program and its node labeling (‘terminating’ or
not) to derive what fairness assumptions are required for
the liveness property to hold. It should be possible to auto-
mate this derivation step.
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APPENDIX
A. ENABLEDNESS ASSUMPTIONS

For completeness, we give the syntactic transformation
for Assumptions 2 and 2 (which we extended to the com-
passionate transitions).

We replace every fair transition τ ∈ J ∪ C by a set of
transitions obtained as follows. For each bit-vector over the
enabledness sets of transitions T \{τ} we create a new tran-
sition with the transition relation obtained from ρτ by inter-
secting its enabledness set En(τ ) with the set defined by the
bit-vector. The following conditions hold for the transition
relations and the enabledness sets obtained by splitting the
transition τ into the set of transitions {τ1, . . . , τn}.

En(τ ) = En(τ1) < · · · < En(τn) (3a)

ρτ = ρτ1 < · · · < ρτn (3b)

The set of just (compassionate) transitions J (C) of the
program is modified by replacing τ by the set {τ1, . . . , τn}.

We show that the above modification preserves the fair
termination property.

Lemma 2. The program P with the set of just transitions
J justly terminates if it justly terminates after replacing
each just transition by the set of transitions satisfying Equa-
tion (3).

Proof. Assume that there exists an infinite computa-
tion σ = s1, s2, . . . of the original program that satisfies the
justice requirement J . Since partitioning does not make
the transition relation of the program smaller, see Equa-
tion (3b), σ is a computation of the modified program.

We show that for every τ ∈ J replaced by the set of tran-
sitions {τ1, . . . , τn}, the computation σ satisfies the justice
requirement for each τi, where 1 ≤ i ≤ n.

If τ is disabled infinitely often then each of τi, for 1 ≤ i ≤
n, is disabled infinitely often. If τ is continually enabled,
and, hence, infinitely often taken, we consider the following
two cases.

We assume that there exists an enabledness set En(τj) for
some 1 ≤ j ≤ n such that σ eventually does not leave the
set En(τj), formally,

∃1 ≤ j ≤ n ∃k ≥ 1 ∀l ≥ k. sl ∈ En(τj).

Every transition τi, where 1 ≤ i 1= j ≤ n, is not continu-
ally enabled, by Assumption 2. The transition τj is taken
infinitely often, by Assumption 1.

If the assumption above does not hold, then none of the
transitions τi, for 1 ≤ i ≤ n, is continually enabled.

Lemma 3. The program P with the set of compassionate
transitions C compassionately terminates if it compassion-
ately terminates after replacing each compassionate transi-
tion by the set of transitions satisfying Equation (3).

Proof. Assume that there exists an infinite computation
σ = s1, s2, . . . of the original program that satisfies the com-
passion requirement C. Since partitioning does not make
the transition relation of the program smaller, see Equa-
tion (3b), σ is a computation of the modified program.

We show that for each τ ∈ C replaced by the set of transi-
tions {τ1, . . . , τn}, the computation σ satisfies the compas-
sion requirement for each τi, where 1 ≤ i ≤ n.

If τ is not enabled infinitely often then each of τi, for
1 ≤ i ≤ n, is not enabled infinitely often. If τ is enabled
often, and, hence, infinitely often taken, we consider the
following two cases.

For each 1 ≤ j ≤ n such that En(τj) is visited infinitely
often, by Assumptions 1 and 2 (extended to compassionate
transitions), the transition τj is taken infinitely often. All
other transitions are not enabled infinitely often.
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