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Abstract

We apply results from linear programming to show that the relaxation of model checking over integers
to reals is accurate, i.e. yields a full test of temporal properties, for a large class of concurrent systems.
We define abstractions similar to widening and narrowing that accelerate least and greatest fixpoint
computations in model checking over integers or reals. We show that these abstractions are accurate
in the same sense. Preliminary experimental results (e.g. safety for the ticket algorithm, liveness of
a parameterized elevator program) indicate the potential usefulness of our abstraction techniques.

1 Introduction

The verification problem for concurrent systems with (unbounded) integer values is receiving increasing
attention; see e.g. [BW94, BW98, Bul98, BGP97, BGP98, Cer94, CJ98, FR96, SKR98]. The problem
is undecidable for most classes of practical importance. So what can you do? There are basically two
answers. (1) Give a possibly non-terminating algorithm that terminates for useful examples. This is the
approach followed e.g. by [BW98, BGWT97, KMM*97].! (2) Give a semi-test that yields the definite
answer for useful examples (the other answer being ‘don’t know’); see e.g. [BGP97, CGL92, LGS'94,
Gra94, Dam96, Hal93, HPR97, HH95].

One obtains a semi-test by introducing abstractions that yield a conservative approximation of the
original property. In most successful experiments, the abstractions (essentially to finite-state systems)
were more or less chosen manually, application-specific. The application of automated, application-
independent abstractions that enforce termination (as common in program analysis) to model checking
seems difficult, for the reason that such abstractions are often too rough, i.e. abstract away details that
are essential to verify the property in question.

In this paper, we consider two kinds of automated, application-independent abstractions that do not
enforce termination; instead, their approximation is accurate, i.e. does not loose information wrt. the
original property. This way, we carry over the practical advantage of the second approach, namely the
acceleration of the model-checking fixpoint computation, to the first approach while still implementing a
full test, i.e. maintaining the definiteness of all answers.

To know the accuracy of an abstraction is important conceptually and pragmatically. Note that there
seems to be no other way to predict its effect (“too rough?”) for a particular application. Obviously, the
accuracy is useful for debugging (or finding typos); ‘don’t know’ answers are quite frustating. Finally, it
allows one to determine the ‘correct’ parameters in initial-state specifications.

Technically, our contributions are as follows.

Applying classical results from linear programming [DT97, GN72], we show that the symbolic model
checking procedure over reals obtained by relaxation from the one over integers yields a full test of
temporal properties for a specific class of concurrent systems; this class seems natural by its definition
and contains many examples considered in the literature. The purpose of this first abstraction is to
accelerate each single fixpoint iteration. The number of iterations does not decrease. In order to show
that it cannot increase, we prove that the relaxation of the fixpoint test is accurate as well.

UIn this context, see Wolper’s statement about the ‘practical’ absense of a termination guarantee for every model checker
on any but the most trivial instances [BW98].



Applying history-dependent widening and narrowing techniques as already foreseen in the abstract
interpretation scheme [CC77] and basing our intuition on techniques from Constraint Logic Programming
(see [DP98]) and Constraint Data Bases [KKR95, Rev93], we show that a set of abstractions of the model-
checking fixpoint operator yields an accurate model checking algorithm (i.e. a full test if terminating).
These abstractions are able to drastically decrease the number of iterations or even to enforce termination
of an otherwise non-terminating test.

We report on two of our experiments with our CLP(R) implementation of the ‘real’ relaxation of
the symbolic model checking procedure with widening and narrowing. Our examples are typical integer-
valued concurrent systems taken from the literature: the ticket algorithm [BGP97] and an elevator
program [BW94]. We were able to show safety for the ticket algorithm and liveness for the parameterized
elevator program. As far as we know, this is the first time that these two verification problems are solved
with a ‘full-test’ model checker.

2 Constraints, Concurrent Systems, Symbolic Model Checking

In this section, we give the preliminaries and fix the formal setup of this paper. We refer to the logical
formulas in a given class as ‘constraints’ if we are interested mainly in the relation that they denote.
Our constraints are closed under conjunction but not under disjunction. We use lower case greek letters
for a constraint and upper case ones for a set of constraints (which stands for their disjunction). We

write Z for the tuple of variables (z1,...,z,) and d for the tuple of data values (di,...,d,) from the
interpretation domain D. As usual, D, «a |= ¢ is the validity of the formula ¢ under the valuation «, and
a[Z — d] stands for a valuation that maps z; to d; for i = 1,...,n. We can now formally define the

relation denoted by the constraint ¢:
[¢], ={d| D,ald = d] |= ¢}.

(This set is sometimes confused with the set of solutions of ¢.) Note that we use [qﬁ]D always with
respect to &; i.e., x1, ..., T, act as the free variables of ¢, and implicitly all other variables are existentially
quantified. We write ¢[¢] for the constraint obtained by alpha-renaming from ¢. We define [®]_, the
relation denoted by the set of constraints ® with respect to the variables x1, ..., z,, in the canonical way.

We need the following operations on sets of constraints, besides the two operations V and A that
implement disjunction and conjunction (both operations return sets of constraints).

o (Satisfiability test) Satp(®) returns ‘true’ if and only if [® ], # 0.

e (Variable elimination) Elimp(¥,¢) returns a constraint vy that is equivalent to 379 and whose
variables are contained in those of ¢ without y1,...,yx.

e (Entailment test) Entailp(¥,®) returns ‘true’ if and only if [V ] C [®]

D D

Following [Sha93], we use concurrent systems (to which concurrent programs can be directly translated)
to specify systems consisting of concurrently executing processes. A concurrent system S = (Z,0,€) is
given by its control and data variables z1,..., 2., a initial condition @, and a set £ of pairs (¥, ¢) (the
“events”), written also cond ¢ action ¢, where the guard 1 is a constraint over z1,...,z, and the
action ¢ is a constraint over the variables z1,...,z, and z{,...,z]. The primed variable z' stands for
the value of z in the successor state. The interleaving semantics of S is defined by a transition system
whose states are vectors d = (di,...,dy) of values for the variables z,...,z,. The predecessor function
pre of S applied to the set of states S yields the set of all states with at least one successor in S. We
have that

pre(S) ={d| D,alf —d, @ »d|EYAg, d €S, (,p) €t}

We will use a set of constraints ® to represent a set of states S if S = [<I>],D. The predecessor
states of such a set are represented by the set of the constraints obtained by conjoining the guard ¢ and



the action ¢ of each event with each renamed constraint ¢[z'] of ®:2

pre([@],) = [{¥ A @A GlT] | (b,0) € €, gl € @} .
We will next define symbolic model checking in terms of the before-mentioned operations on constraints.
We define the predecessor operator prep over sets of constraints by

- -

prep(®) = {Elimp (', v A A dlr']) | (,0) €E, ¢ € ®, Satp(¥ ApA@[z']) = true}.

and obtain that it implements the predecessor function pre in the sense that
[prep(<I>) ] = pre (smallinst{ﬂ)).
D

Following the style of [KMM™*97], we next formulate (possibly non-terminating) symbolic model checking
algorithms for safety and liveness properties. Given a set of constraints ® (representing a set of states), the
algorithms SYMB-EF and SYMB-EG below ‘compute’ (if terminating) a set of constraints that represents
the sets of states satisfying the properties EF(®) and EG(®), respectively.

Proc SYMB-EF(®) Proc SYMB-EG(®)
) := P; ) := {true};
repeat repeat
Qi1 =P V prep(®;); Qi1 = @ Aprep(®;);
until Entailp (®;11, ®;) = true; until Entailp(®;, ®;11) = true;
return &;; return ®;;
end end

For testing the safety property AG(—®), we add the instruction (recall that © is the initial condition):
check © A sYMB-EF(®) unsatisfiable,
and for the liveness (reactiveness) property AG(® — AF(—~¥)):

check O A sYMB-EF(® A sYMB-EG(?¥)) unsatisfiable.

3 Relaxation

In this section, we investigate the int-real relaxation of the symbolic model checking procedures SYMB-EF
and SYMB-EG for a large class of concurrent systems with unbounded positive integer values (which we
call ‘simple’ for the lack of a better name).3

The relaxation from integers to reals stems from linear programming [DT97, GN72]. The motivation
there is the same as here: the manipulation of linear arithmetic constraints is less costly over reals than
over integers, theoretically (e.g. polynomial vs. NP-hard for the satisfiability test) as well as practically
(e.g., the variable elimination is less involved); see [DT97]. Even if the complexity for integers is the
same as for reals for a particular application (it can hardly be better), there seems to be no reason to
build a solver over integers (other than a potential loss of precision). There exist many highly optimized
constraint systems over reals, general-purpose such as CLP(R) (see [DP98]) and special purpose such as
Uppaal [BLL™98] or Hytech [HHW*97], which one would like to exploit for model checking concurrent
systems over integers.

2Note that [-]p is defined wrt. the variables @1, ..., 2. Le., the primed variables in the conjunction ¥ A ¢ A ¢[z'] are
implicitly existentially quantified. Recall that ¢[z'] is a renaming of ¢.

3Note that this abstraction is not an embedding of the verification problem for a system over integers into one for a
system over reals.



Simple concurrent systems model programs that contain comparisons between variables, assignments
between variables, increments and decrements. Vector Addition Systems (a.k.a. Petri Nets) and Inte-
gral Relational Automata are two well-known subclasses of simple concurrent systems (see e.g. [KM69]
and [Cer94]). The reachability problem is decidable for these classes (see e.g [Cer94, Lam92]). 2-counter
machines [Min67] can be directly encoded by simple concurrent systems. Other examples of simple con-
current systems are multi-clock automata [CJ98] and gap-order automata [FR96]. The above-mentioned
decidability results are related to the general results for verification problems of infinite-state systems
in [AJKT96, FS98]. The communication protocols considered in [BGP97, BGP98, SKR98] are examples
of simple concurrent systems that do not seem to belong to a known decidable subclass.

Definition 3.1 (Simple concurrent systems) In a simple concurrent system, the data variables range
over positive integers and the initial condition and all guards and actions are formulas ¢ (called simple
constraints) built up according to the following grammar (where c is a constant, and z and y are (primed
or unprimed) variables).

¢ = zxz<y+c|lc<z|z<c]|true|false| ¢1 A ¢2.

Note that the assignment action ' = y + c is expressed by the simple constraint 2’ <y +cAy <z —c.
Over the domain of integers, the constraint = < y is equivalent to the simple constraint z <y — 1.

We will interpret simple constraints over the positive subset of both, the domains Z and R of integers
and reals, respectively. We will next compare the two interpretations wrt. the operators used in SYMB-EF
and SYMB-EG.

Proposition 3.1 (Relaxation of constraint operators)

i) The relaxation of the tests of satisfiability and entailment* and of the variable elimination is accurate;
i.e., the operators Satp(-), Entailp(-, -) and Elimp (7, -) (over simple constraints or over sets of simple
constraints) yields the same results for D = Z and for D = R.

ii) The application of the symbolic predecessor operator over integers prey and of its real relaxation
preR to a set of simple constraints ® yield two sets of simple constraints with the same integers solutions,
i.e. denoting the same relation over integers. That relation is obtained also by applying the predecessor
function pre to the relation denoted by ®. Formally,

[preR(Q)]Z = [prez(é)]z = pre([@]z)

The proof is based on the classical results from linear programming and the fact that simple constraints
are closed under the application of symbolic predecessor operators; see Appendix A. The iteration of (ii)

yields that for all & > 0, [pref{(d)) ] _ [prekz(d)) ] -
This means that the relaxations of the procedures SYMB-EF and SYMB-EG from integers to reals
‘compute’ (if terminating) the same set of states of concurrent systems over integers. Moreover, since the

satisfiability test is invariant under the relaxation, we obtain the following result.

Theorem 3.1 (Relaxation) The relaxation of the symbolic model checking procedures for safety and
liveness properties of simple concurrent systems is accurate.

4In our implementation of the symbolic model checking procedures, we use the local entailment test that succeeds if
every @ € ¥ entails some ¢ € & (we thus trade efficiency with incompleteness for the fixpoint test); the accuracy of the
relaxation of the local entailment test holds as well.



4 Widening

In this section, we consider how one can achieve (or just speed up) the termination of the least fixpoint
iteration needed in SYMB-EF, the symbolic model checking algorithm for safety properties. We will
first give some intuition through an artificial example, then define the algorithm SYMB-EF-w with the
acceleration by widening formally and then show how it applies to the ticket algorithm. Consider the
concurrent system with the event cond true action z' =z Ay’ =y + 1 and the property EF(z < y).
The procedure SYMB-EF generates an infinite sequence of strictly increasing sets of constraints,

by ={z <y}, 1= U{z<y+1}, &=, U{z<y+2},

whose infinite union is equivalent to the constraint ‘true’. Our widening operator will add the con-
straint ‘true’ (instead of {z < y + 1}) in the second iteration, after having gone through the following
four steps: (1) compare the constraints vy = z <y and ¢ = z <y + 1 and observe that this might be
the start of an infinite sequence, (2) check that ‘¢ depends on 7, i.e. the two constraints are related by
an event e wrt. backward analysis, (3) check that the event e is of a given form for which the sequence of
constraints generated by iteration is known, and for which a constraint n equivalent (or, stronger than)
the disjunction of all those constraints can be inferred, (4) add the constraint n to the set of constraints
obtained in the second iteration step.

In general, the event e that relates the constraint v with the constraint ¢ occurring in some later
iteration is not an original event of the concurrent system but is constructed as a composition of events;
we then write e = event(y, ¢).

We will next specify the predicate ‘¢ depends on <’ and the construction of event(v, ). Let us first
define the restriction prep. of prep wrt. (a concurrent system consisting of) the single event e. Thus, if
e = (¥, p), then prep|.(¢) = Elimp(z', ¢ A A $[2']).

We define that ‘¢ depends on v’ holds if there exists a sequence of events ey, ..., ey, such that

¢ = Prépie,, ( -+ Preéple, (7) . )

Let e; = (11,%1). Then, we define the event event(y, ¢) as the event (true, ) such that®

Y= preD\em (preD\em71 s (pre'D|62 (1/]1 A (pl)) .. ))

We can now define SYMB-EF-W, the symbolic model checking algorithm with widening; see Figure 1. In
the definition of WIDEN function, a third disjunct can be added to the if expression. In that disjunct,
v decomposes into Y = n Az > c and the event e contains a conjunct z' = © — ¢, (i.e. a decrement
instead of an increment). If the condition in the WIDEN function applies to several decompositions of v
simultaneously, the corresponding widenings are effectuated in several successive iterations.

Before we analyze the accelerating effect of the widening for the verification of the ticket algorithm,
we consider its accuracy.

Theorem 4.1 (Widening) The algorithm SYMB-EF-W obtained by abstracting the least fixpoint op-
erator in the symbolic model checking algorithm SYMB-EF with the widening defined in Figure 1 yields
(if terminating) a full test of safety properties for concurrent systems over integers or reals.

'D —_
v € ®; and ¢ € prep(P;), where ®; is the i-th set of constraints computed by the algorithm SYMB-EF;
see Appendix B.

The proof of the theorem works by showing that [ WIDEN(y, )] C [szo <I>]~]D holds for constraints

5We here assume suitable a-renamings of all variables that are implicitly existentially quantied; i.e., when prep is applied
to ¢[Z,z'] we consider a renaming z'’ of the variables '’ etc.. Note that we can construct an event with an empty guard
since the events (¢, ¢) and (true,¥ A ¢) are equivalent wrt. model checking



Procedure SYMB-EF-W(®)
by := P;
repeat
®,.1 =®; U WIDEN(®;, prep(®;));
until Entailp(®;41, ;) = true;

end

Function WIDEN(T', ®) = {WIDEN(y,¢) |y € T, ¢ € ®}

Function WIDEN(7, @)

vy =nAhz<y+c vy =nAz<c
v entails ¢ v entails ¢
¢ depends on vy ¢ depends on vy
if with e = event(vy, ¢) or if with e = event(vy, ¢)
e contains &' =z + ¢z, Y =y + ¢y e contains ' =z + ¢,
where cy — ¢, >0 where ¢, > 0
[ 7 entails prepi.(n) [ 7 entails prep.(n)

then return 7;
else return ¢;

end
Figure 1: Symbolic model checking procedure with widening.

In the ticket algorithm [BGP97, DP98] (see Figure D in Appendix), the variables are p;, pa, a, b, t, s. Here,
p1 and po are the control variables of two concurrent processes trying to access a shared resource (ranging
over the constants think, wait and use); the other variables range over unbounded positive integers. The
incoming processes are assigned increasing numbers (“tickets”) that are generated through the variable ¢
and stored internally by the two processes with the variables a and b, respectively; the variable s, which
stores the number of the ticket to be served next, is updated each time a process leaves the critical section.

This concurrent system does not belong to any of the known classes for which reachability is de-
cidable. The unsafe states (“both processes are in the critical section”) are represented by the simple
constraint p; = use A p; = use. The procedure SYMB-EF here yields an infinite sequence of constraints;
see Figure D.1 in the appendix. We take two constraints in this sequence:

v = pr=useAps=wait \b<s+1At<s+1,
¢ = pr=useAps =wait A\b<s+2At<s+1.

Clearly, v entails ¢. Furthermore, ¢ ‘depends on’ v (it is produced by the application of the sequence of
events called es, e1, e3 in Figure D.1) via the constructed event e that we can write as:

cond p; —useAt<s+1 action o' =tAt' =t+1As =s+1.
We decompose v into v = nAb < s+ 1, where
N = pr=useApy =wait Nt < s+ 1.
Then, we note that 1 entails prep|.(n), since

PT€D|e(77) = lelapéaalab,atlasl<

p1 = use Aps = wait Apj =use A ph=wait N t<s+1A
a =t NV =bAt =t+1 AN s=s+1At'<s+1



As a consequence, we can add the constraint 1 to the current set of constraints (in the appendix, see
Figure D.2). Adding this constraint blocks the addition of new constraints containing p; = use, p2 = wait
(because they will all be subsumed).

The widening procedure has the same kind of effect on the remaining ‘sources of non-termination’
(namely, the constraints containing p; = wait, p2 = wait, or p; = think,ps = wait, or p; = wait,p; =
think). Thus, the algorithm SYMB-EF-W terminates for this problem. In its result, the only constraint
with p; = think Apy = think is such that ¢ < s — 1, which is not satisfiable in conjunction with the initial
condition © (see Figure D). Since we have a full test, the result determines the ‘correct’ parameters in
the initial condition ©. E.g., the initial values for the variables a, b and ¢ can be left unconstrained if
and only if we set s = 0.

5 Narrowing

We will next consider the acceleration of the greatest fixpoint iteration for SYMB-EG, the algorithm for
liveness properties. Again, we will first consider a trivial example. This example, a dual to the intro-
ductory example in the previous section, will not be suitable, however, to explain the extra complication
of narrowing wrt. widening for symbolic model checking based on constraints. Intuitively, the duality
between narrowing and widening stops at the fact that we represent states as disjunctions of constraints
(i.e. conjunctions of atomic formulas) and not as conjunctions of disjunctions; the intersection operator
between sets of constraints is more involved than the union operator; the function NARROW on sets of
constraints cannot be defined as a canonical extension of a function on constraints, in contrast to the
function WIDEN. Take the concurrent system with the event cond true action 2’ = z Ay =y —1
and the property EG(z < y). The procedure SYMB-EG generates a strictly decreasing (wrt. the denoted
relation) infinite sequence of sets of constraints,

Dg={true}, &1 ={z<y}, Ir={z<y—-1}, ¢3={z<y—-2},...

whose infinite intersection is equivalent to the constraint ‘false’. Thus, in a series of four steps as in the
introduction of the previous section, we come to intersect ®; with ‘false’, which corresponds to removing
the (here only) constraint z <y — 1 from prep(®1). What would we do, however, if prep(®) contained
more constraints (obtained e.g. from other events), possibly one that subsumes z < y? The narrowing
step that we define (see Figure 2) first checks a sufficient condition that ensures that the above-mentioned
overlap between ‘removable’ and ‘unremovable’ constraints does not arise. The condition requires that
®; can be partitioned into the constraint v and the set of constraints ¥ (i.e., the conjunction of v and ¥
is unsatisfiable). If the constraint ¢ arising in ®;,; ‘depends on’ v via the event e, then the following
must hold: the predecessors wrt. the event e of states represented by -y are represented by ¢, and all
predecessors of states represented by U are represented by ®;,1 \ {¢}; formally

[prepic(7) ] € [7], and [prep(¥)], C[¥],.

Furthermore, the condition requires that the event e can be applied only to the constraint vy (and not
to any other constraint in ®;). In the appendix we show that this condition ensures that v and ¥ give
rise to two disjoint (wrt. solutions) decreasing chains: prep(¥;) = prep.(v) W prep(¥), etc.. Before we
apply the narrowing operator to the elevator example, we consider its accuracy.

Theorem 5.1 (Narrowing) The algorithm SYMB-EG-N obtained by abstracting the greatest fixpoint
operator in the symbolic model checking algorithm SYMB-EG with the narrowing defined in Figure 2
yields (if terminating) a full test of liveness properties for concurrent systems over integers or reals.

The proof of the theorem works by showing that ()5, [®; ], = ;s [ 5], where the sequence {®} }i>o
is obtained after k-applications of the narrowing operator; see Appendix C.



Procedure SYMB-EG-N(®)
@) := {true};
repeat
&, =P A NARROW(®;, prep(®;));
until Entailp (®;41, ®;) = true;

end

Function NARROW({y} U ¥, {¢} U ®)

( ® entails ¥ ( ® entails ¥
y=nANz<y+c Yy =EnANz>c
v A V¥ is unsatisfiable v A V¥ is unsatisfiable
¢ entails v ¢ entails vy
. ¢ depends on 7y . ¢ depends on 7y
if or if
with e = event(y, ¢) with e = event(vy, ¢)
e is the only event applicable to ~ e is the only event applicable to v
econtains ' =x +cg, Y =y + oy e contains ' = x + ¢,
where ¢, —c; <0 where ¢, < 0
([ prepe(n) entails n ([ prepe(n) entails n

then return ;
else return {¢} U ®;

end

Figure 2: Symbolic model checking procedure with narrowing.

The elevator program (see Appendix E) is taken from [BW94]. It is the composition of two processes
(the motor and the control panel). The variables are el (the internal state of the elevator), ¢ (the current
floor of the elevator), g (the goal, i.e. the current request), and n (the number of floors). When a request
is submitted to the control panel, the elevator enters the state move and starts moving until the target
floor g is reached. The system is parameterized in the number of floors n.

Consider the liveness property AG(el = choose — AF(el = ok)). The call of symMB-EG({el =
move, el = choose}) yields an infinite decreasing sequence of sets of constraints ®g, ®;, P2, ... (see
Appendix E.1), where

®y: {el=moveAc>g+1Ac>0, el =moveAc<g—1},
®;3: {el=moveANc>g+2Ac>1, el =moveNc<g—2}.

We will analyze the effect of the algorithm SYMB-EG-N in the third iteration.

We consider the partion of the set ®; into ®; = {y} W & where v = el = move Ac > g+ 1 and
® = {el = moveAc < g—1}. Weset ¢ = el = moveAc > g+2Ac > 1. Observe that the condition of the
narrowing rule holds; here, n = ¢ > 1. Thus, we can remove the constraint el = moveAc>g+2Ac>1
from prep(®2).

At the next iteration, we apply the narrowing rule again, now setting v = el = moveAc < g— 2 and
® = (). We derive the empty set of constraints as the fixpoint in the fourth iteration step of SYMB-EG-N.
The liveness property is then immediately verified.



6 Conclusion and Related Work

Previous approaches to symbolic model checking for integer-valued concurrent systems are based mainly
on Presburger arithmetic formulas or on automata as representations of sets of states (see [BGP97,
BGP98, Pug92, BW98, SKR98]). Our result about relaxation says that constraints over reals are a
potential third alternative with the same precision, at least for the many examples described in Section 3:
here, the abstraction of the meaning of integer-valued constraints to the reals is accurate. This means
that we can use also the already existing tools based on real arithmetic [BLLT98, HHW 197, DP98])
as full tests on these examples. A comparison of the three approaches wrt. to the performance of the
corresponding tools (in the style of [SKR98]) is now in order.

Our widening operator is related to Boigelot and Wolper’s loop-first technique [BW94] for deriving
‘periodic sets’ as representation of infinite sets of integer-valued states for reachability analysis (although
they do not use abstract-interpretation terms explicitely). As a difference, Boigelot and Wolper analyze
cycles and nested cycles in the control graph to detect meta-transitions before and independently of
their (forward) model checking procedure, whereas we construct new events (which roughly are meta-
transitions) during our model checking procedure and consider them only if we detect that they possibly
lead to an infinite loop. It will be interesting to formulate their ‘widening’ in our setup and possibly
extend it; note that a set is ‘periodic’ if it can be represented by an equational constraint with existential
variables, e.g. dy z = 2y.

The application of widening techniques to the verification of systems with huge or infinite state spaces
has proven useful in several examples (it seems that narrowing for proving liveness properties has not
been investigated as much until now). Halbwachs [Hal93], using linear relational analysis [CH78] to prove
properties involving integer-valued delay counters of synchronous programs, defines a widening operator
over convex polyhedra: unions of polyhedra are approximated by their convex hull before the widening
step. This technique is also applied to linear hybrid systems, see e.g. [HPR97]. Approximation techniques
for more general classes of hybrid systems are studied in [HHW™97, HH95]. Specifically, Henzinger and
Ho [HH95] apply an extrapolation operator which gives better approximations than Halbwachs’ convex
widening operator for their examples. In [BGP97, BGP98], Bultan, Gerber and Pugh generalize Halb-
wachs’ widening operator: their multi-polyhedra widening can be applied to unions of convex polyhedra
without the preliminary computation of their convex hull (here, termination is no longer guaranteed).
They were thus able to prove the safety property of the ticket algorithm. In [BGP98], they explicitely
mention the difficulty that often the abstraction is too rough.

In this paper we have shown that it is possible to achieve (or just accelerate) termination with
abstractions by widening or narrowing that are, as we prove, accurate. The above-mentioned widenings
loose precision in general. It will be interesting to investigate in which cases these widenings can be made
accurate by adding operations as described in this paper. The general goal will be a whole library of
useful, accurate widening and narrowing rules for a variety of verification problems.
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Appendix to the Extended Abstract

A Proof of Proposition 3.1

The proof of Proposition 3.1 is based on results from integer linear programming. We will first give some
preliminaries in the next section.

A.1 Linear and Integer Programming

An integer linear problem consists of finding a solution for a system of inequations having the form
Y2 jaiz; < b, i=1,...,m,z; >0, j =1,...,n, also written as A7 < b, ¥ > 0 integer, where ¥
is a n-vector of variables, A is a m x n matrix (n is the number of variables and m is the number of
equations) consisting of integer coefficients, and b is a n-vector of integers. Let us reformulate a problem
AZ < b as BZy,+ Nz, < b where B is a non-singular square submatrix of A. A solution to AZ < b can be
obtained by setting #,, = 0 and by solving the resulting problem wrt Z;. Such a solution is called basic
and corresponds to a solution of the problem &}, < B~ 1b.

A fundamental theorem of linear programming says that the solutions of a given problem Az < b, % > 0
are determined by the basic solutions only. Below we recall the results under which the basic solutions
are integral. The following definitions and results are taken from [GN72].

Definition A.1 A square matriz A is unimodular if its determinant is = 1. A matriz B is totally
unimodular if every square, nonsingular submatriz of B is unimodular.

Theorem A.1 If A is totally unimodular, the extreme points of the set of solutions to AT < b are integer
for arbitrary integer vector b.

As a consequence, if A is totally unimodular the set of real solutions of AZ < 5,5:' > 0 is empty if and
only if the set of integer solutions is empty (in fact, the extreme points are integer solutions). This result

allows one to consider the following relazation in the reals of the previous system: AZ < 5,5:’ > 0 real.
A number of interesting properties can be used to identify totally unimodular matrices. We listed them
below.

Proposition A.1 Let A be a m X n matriz.

o If A is totally unimodular than a;; = 0,1, -1, for all 3, j.
o A is totally modular if and only if At (the transposed matriz) is totally unimodular.
o Let I}, be the k x k identity matriz. If A is totally unimodular then (A,I,) and (I‘:) are totally
untmodular.
Furthermore, we have the following.

Theorem A.2 An integer matriz A (a;; = 0,1,—1 for all i,3) is totally unimodular, if

e No more than two monzero elements appear in each column.

e The rows can be partitioned into two subsets Q1 and Qo such that: if a column has two nonzero
values with same sign, one element is in each of the partitions; if a column has two nonzero values
with different sign, both elements are in the same partition.
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A.2 Simple Constraints and Integer Programming

Let us reformulate a simple constraint in terms of a integer linear programming problem. We first order

the variables and the conjuncts occurring in a simple constraint ¢, say zi,...,z,, and ¢1,...,¢,. Then,
we define the matrix A of the coefficients as the m x n matrix such that: if ¢; = z, < z, + ¢; then
aip = 1, ajg = —1, b; = ¢;, and the remaining elements of the i-th row are all zero; if ¢; = (—)zp < ¢;

then a;p = (—)1, b; = ¢;, and the remaining elements of the i-th row are all zero.
Simple constraints satisfy the following important property.

Theorem A.3 Let ¢ be a simple constraint and let AZ < b be its corresponding matriz form. Then, A
18 totally unimodular.

Proof A.1 Let At be the transpose of A. By construction, each column of A® has at most two nonzero
elements. Furthermore, if two nonzero elements are in the same column, they have different sign. Now,
let Q1 be the set of all the rows and Q2 be the empty set. By Theorem A.2, At is totally unimodular. To
conclude, we apply Proposition A.1 and obtain that A is totally unimodular. O

The following corollary easily follows.
Corollary A.4 A simple constraint ¢ is satisfiable in Z if and only if it is satisfiable in R.

The previous result allows us to use linear programming techniques to handle simple constraints, In
particular, we can employ the Fourier-Motzkin Variable Elimination (FMVE) algorithm to compute the
projection wrt to a given variable.

Algorithm FMVE [DT97]. Assume that x is the variable to eliminate in the simple constraint .
The algorithm consists of the following steps. Firstly, the conjuncts in ¢ containing z are partitioned in
two sets, say Q1 and Qg, such that 1, containts the atomic constraints of the form z < y + ¢ (i.e. such
that = occurs on the left of <) and Qg contains the atomic constraints of the form z —d < z (i.e. such
that = occurs on the right of <). The variable z is then eliminated by introducing the new constraints
z < y+c+d (ie all the possible combinations of constraints in Qr and @) and by simpliflying
redundant ones (e.g. y < d and y < ¢ can be simplified in y < min{c,d}).
The following result holds.

Proposition A.2 (Simple constraints are closed under projection) Given a simple constraint ¢,
the FMVE algorithm yields a simple constraint ¢ equivalent to .

Proof A.2 The proof that ¢ is a simple constraint is by a case analysis, whereas the equivalence of
and 1 is a consequence of the Fourier-Motzkin’s Theorem [DT97]. O

We are now in condition to prove Proposition 3.1. Concerning point 7), Cor. A.4 and Proposition A.2
proves that the functions Satp(-) and Elimp(-) are equivalent when D = Z and D = R. Furthermore,
following [Sri92], the entailment test reduces to a number of satisfiability tests. More precisely, given two
sets of constraints ® = {¢1,...,¢,} and ¥ = {¢y,..., ¢, }, Entailp (P, ¥) is true if and only if for each ¢;
and for each choice of ‘atomic’ contraints Aln € Y1,. ., Am;, € ¥m, the constraint cm/\—'Aljl Ao m A,
is unsatisfiable. To conclude, we notice that since A4; is atomic, —.4; is still a simple constraint. Thus,
for each satisfiability problem, we can apply again Cor. A.4.

Finally, point i7) follows as a corollary of point 7). O
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B Proof of Theorem 4.1

We prove the theorem for one of the two subcases considered in the narrowing operator (i.e. the one
applied to the ticket algorithm). Let us first mention the following properties:

i) pre,prep are monotonic wrt. set inclusion, and continuous wrt. set union.
i) Ui Pret([®0] ) = Ui [preb(@0) | = [Uisopreb(@0)]
iii) pre|, (|:Ui>0 <I>i] ) = [Ui>0 @i} if e = event(y, ¢), v and ¢ as in the conditions of the widening.
= D = D

In order to prove the accuracy of the widening operator, we first prove that, under the hypothesis
considered in Section 4, [n Ne<y+c+gx(cy— cm)] C [Ui>0 <I>i] for each ¢ > 0.
D = D

The proof is by induction on g. The base case immediately follows by assumption. To prove the inductive
step let us first notice that, by properties i) and %),

pre\e([n/\x §y+C+Q*(Cy_Cz)]D) Qpre\e([an]D) = [U%]D,

i>0 i>0
and by property of prep,
pre|e([n/\m Sy+C+Q*(Cy_Cz)]D) = [preme(n/\m §y+C+Q*(Cy_C$))]D
Now, by definition of prep,
prepe(MAz <y+c+qx(cy—c)) = A p Ao AnE| Az <y +c+qley —ca).

By applying the substitution z' = & + ¢;, ¥’ = y + ¢, (which is part of ¢) to 2’ <y’ + ¢+ g(cy — cz) we
obtain the equivalent constraint 3. (1/) ANp A 7][5’]) ANz <y+c+(q+1)(cy — cz). By hypothesis. n[Z]
entails 3z7.( A o A n[z']), thus we conclude that

Az <y+e+ @+ -a)] e[| o
>0

To conclude the proof, we notice that Vq>0 nAz <y+c+q(cy — ) is equivalent to
NA V02 <y +c+qlcy —c;) which in turn is equivalent to true. a
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C Proof of Theorem 5.1

We first notice that, given a system S and a set of constraints ®, by conjoining the constraints in ® with
the guard of the events in S, we can build a system S’ such that

prep s (T)=d A preDlS(\I').

In the following we will assume that prep is defined over the modified system S'.

Let us define the chain {®;};>o as follows: ®; = {true} and ®;;1 = prep(®;). Furthermore, let us
define the family of chains {®F};>¢ for k > 0 as follows: {®%};59 = {®;};>0, whereas {®¥"1},~ is such
that ®§"' = NARROW(®E, , prep(®F, )) where ®F, | my > 0, is the first step of the k-th chain for which
the conditions of the NARROW operator are all satisfied. Note that, by the assumptions of NARROW,
[<I>’f ] »C [<I>§ ] p for all k. Intuitively, {®¥}>0 is obtained after k-application of the narrowing operator.
We now show that the application of the narrowing operator is accurate, i.e.,

ﬂ [2;]5 = ﬂ [‘I)?]D for each k.

j=0 j=0

The proof is by induction on k. The base case immediately follows by definition. Let us assume that
the asserts hold for k. Let my be (the first index) such that ®F = {y} U ¥ and v and ¥ satisfy the
condition of the operator NARROW. We first notice that

m[q:‘?]l): m [CI:‘?]D:

7>0 j>my

(as a consequence of the conditions of NARROW)

= () [erep. M ]pUprep(®) ], = [ [prep.(M]pU [ [prep() ],

j>my Jj>my Jj>my

i.e., since the chains produced by v and ¢ have empty intersection, we can distribute N over U. Let now
us assume that y =n A z <y + c and that e contains ' = 2 + ¢;,y' = y + ¢, with ¢, — ¢, < 0. By
arguments similar to the ones used in the proof of the accuracy of the widening operator, we notice that
Njsms [prejple(w ],D is represented by the constraint

/\ preqme(n) ANv<w+c+q(ey —cz),
q>0

which has no solutions, i.e., (;-,,, [prejple('y) 1,=0.

Finally, we note that, by definition, ;.,,, [predy(¥) ], corresponds to N0 [®4+1],, where the
‘seed’ of the the k + 1-th chain is set to NARROW(®F, ,prep(®F, )). To conclude, we apply the inductive
hypothesis and obtain that (-, [®]"" ], corresponds to ;5o [®;] - i
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D Ticket Agorithm

init p; = think Ap; =thinkANa=0Ab=0At=0As=0.
e : cond p; = think action pj =wait Na' =t At =t + 1.
e2: cond p1 =wait Aa <s  action p| = use.
es: cond p; = use action p] = think A s’ = s+ 1.

. and similarly for ps; and b

D.1 Least Fixpoint Iterations of SYMB-EF

p1 = use, p2 = use a>0, b>0, t>0, >0

p1 = wait, p2 = use a<s, b>0, a >0, t>0

p1 = use, p2 =wait b<s, a>0, b>0, t>0

p1 = think, p2 = use t<s, a >0, b>0, t>0

p1 = use, p2 =think t <s, a >0, b>0, t>0

p1 = wait, p2 =wait b<s, a<s, a>0, b>0, >0

p1 =think, p2 =wait b<s, t <s, a >0, b>0, t>0

p1 = wait, p2 =think a<s, t <s, a>0, b>0, >0

p1 =think, p2=think t<s—1, a>0, b>0, t>0

p1 = use, pr=wait b<s+1, t<s+1, a>0, b>0, t>0 =«

p1 = wait, p2 = use a<s+1l, t<s+1, b2>0, a>0, t>0

p1 =wait, pr=wait b<s+1 t<s+1, a<ls, a>0, b2>0, >0
p1 = wait, p2 =wait b<s, t<s+1, a<s+1l, a>0, b>0, 0
p1 =think, ps=wait b<s+1, t<s, a>0, b>0, t>0

p1 =wait, p2=think a<s+1, t<s, a>0, b>0, t>0

p1 = use, pr=wait b<s+2, t<s+1, a>0, b>0, t>0 =«

p1 = wait, p2 = use a<s+2, t<s+1, b>0, a>0, t>0

p1 =wait, pr=wait b<s+2, t<s+1, a<ls, a>0, b2>0, >0
p1 = wait, p2 =wait b<s, a<s+2 t<s+1, a>0, b2>0, >0
p1 =think, p2=wait b<s+2, t<s, a>0, b>0, t>0

p1 =wait, p2=think a<s+2, t<s, a >0, b>0, t>0

p1 = use, p2=wait b<s+3, t<s+1, a>0, b>0, t>0 <«

p1 = wait, p2 = use a<s+3 t<s+1, b2>0, a>0, t>0

p1 =wait, p2=wait b<s+3, t<s+1, a<s, a>0, b>0, >0
p1 = wait, p2 =wait b<s, a<s+3 t<s+1l, a>0, b2>0, t>0
p1 =think, ps=wait b<s+3, t<s, a >0, b>0, t>0

p1 = wait, p2=think a<s+3, t<s, a>0, b>0, 0

. non-terminating
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D.2 Least Fixpoint obtained with SYMB-EF-wW (Accurate Widening)

p1 = use,
p1 = watt,
p1 = use,
p1 = think,
p1 = use,
p1 = watt,
p1 = think,
p1 = watt,
p1 = think,
p1 = use,
p1 = watt,
p1 = watt,
p1 = watt,
p1 = think,
p1 = watt,
p1 = use,
p1 = watt,
p1 = watt,
p1 = watt,
p1 = think,
p1 = watt,

D2
D2
D2
D2
D2
D2
D2
D2
D2

D2

D2
D2
D2
D2
D2

D2

D2
D2
D2
D2
D2

= use
= use
= wait
= use
= think
= wait
= wait
= think
= think

= wazt

= use
= wazt
= wait
= wait
= think

= wait

= use
= wait
= wazt
= wait
= think

a >0,
a<s,
b<s,
t <s,
t<s,
b<s,
b<s,
a<s,
t<s—1,

b<s+1,

a<s+1,
b<s+1,
b<s,

b<s+1,
a<s+1,

t<s+1,

t<s+1,
t<s+1,
b <s,
t <s,
t <s,

b>0,
b>0,
a >0,
a >0,
a>0,
a < s,
t <s,
t <s,
a >0,

t<s+1,

t<s+1,
t<s+1,
t<s+1,
t <s,
t <s,

t>0,
a >0,
b>0,
b>0,
b>0,
a >0,
a >0,
a >0,
b>0,
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s>0
t>0
t>0
t>0
t>0
b>0,
b>0,
b>0,
t>0



E Elevator

init el =idleANc=1ANg=1An>2.

e1: cond el = choose action el'’ =moveAg' <n—1 A ¢ > 1.
ez : cond el = idle action el’ = choose.
es: cond el = moveAc=g action el' = idle.

es: cond el = moveAc>g+1 actionc =c—1.

es: cond el =moveAc<g—1 actionc =c+1.

E.1 Greatest Fixpoint Iterations with sYMB-EG

Note that the constraint in ®» contains the conjunct ¢ > 0 because all variables are interpretet as positive
numbers (which is sometimes left implicit).

by :  true.

®,: el =move.

$y: el=moveANc>g+1Ac>0.
el =moveANc<g—1.

$3: el=moveANc>g+2Nc>1.
el =moveANc< g—2.

b,: el=moveAc>g+3Ac>2.
el =move ANc<g—3.

. non-terminating
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