
Parameterized Verification of
Track Topology Aggregation Protocols

Sergio Feo-Arenis and Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Abstract. We present an approach for the verification aggregation pro-
tocols, which may be used to perform critical tasks and thus should be
verified. We formalize the class of track topology aggregation protocols
and provide a parameterized proof of correctness where the problem is
reduced to checking a property of the node’s aggregation algorithm. We
provide a verification rule based on our property and illustrate the ap-
proach by verifying a non-trivial aggregation protocol.

1 Introduction

We study the verification of aggregation protocols, which are often used in sensor
networks [7,12,13]. Such protocols compute an aggregation function in a dis-
tributed fashion. An aggregation function is a function of the data at sensor
nodes where the messages sent by a node are determined by messages received
from other nodes and the own data. Data is propagated from sensor nodes to-
wards specially designated sink nodes, where the result of the computation is
made available.

A simple example of an aggregation protocol is one where the maximum value
among the sensors’ data is calculated at a sink node. Here, if intermediate nodes
transmit only the maximum value among the received data as it is forwarded to
the sink, the utilization of resources can be improved. The reduced amount of
data packets can, e.g., reduce energy usage, reduce the use of available bandwidth
and increase the maximum data collection rate.

Sensor networks may use unreliable communication channels. In order to
mitigate the problem of unreliable communications, sensor networks may take
advantage of the fact that broadcast transmissions may be received by multiple
nodes. In this way, they effectively provide multiple aggregation paths over which
a node’s data can be collected.

Some aggregation functions are, however, duplicate-sensitive. That is, obtain-
ing a correct result requires that sensor values are aggregated only once. This is
the case when, e.g., calculating the sum or the average of the sensor values.

Data aggregation protocols are correct in the presence of unreliable commu-
nications if, whenever an aggregation path is available from a node to the sink,
the sensor’s data is correctly aggregated at the sink. I.e., it is aggregated, but
exactly once if the function being calculated is duplicate-sensitive. This con-
cept of correctness is the strongest possible when unreliable communications are
employed. The failure of all aggregation paths cannot be completely ruled out.

2 Sergio Feo-Arenis and Bernd Westphal

Tracks

Sensor nodes

Sink

Comm. links

Fig. 1. Track Topology

Our goal is to provide a method to (semi-)automatically verify correctness
of aggregation protocols given the implementation of the algorithm executed by
network nodes. As a first approach, we concentrate on track topologies, where
nodes are arranged in tracks according to their distance (in hops) to the sink, and
aggregation paths traverse consecutive track boundaries as shown in Figure 1.

We study aggregation protocols for topologies that have a reliable correction
infrastructure. I.e., nodes within tracks have reliable communication links that
can be used to correct communication errors. This is the case for, e.g., the use of
short-range directional antennas or aggregation systems where communication
units have multiple transceivers.

We additionally assume a schedule, i.e., the sequence in which nodes perform
their computations and transmit their data, such that the data from input nodes
is always available at the time of executing a node’s algorithm.

Even under those assumptions, verifying correctness of an aggregation proto-
col requires considering all possible topologies, with a possibly unbounded num-
ber of nodes. Aggregation protocols are parameterized systems and can thus not
be verified by explicitly verifying all instances. The problem of parameterized
verification is undecidable in general [1].

We approach the problem of verifying a specific class of aggregation protocols
in this work. We make the following contributions.

1. We identify the class of aggregation protocols for track topologies with reli-
able correction infrastructure and provide a formalization as a parameterized
verification problem, including the presence of link failures.

2. We provide a proof rule that reduces the parameterized verification problem
to checking a verification condition on the nodes’ algorithm and show its
soundness. We thus provide an inductive invariant for the verification of
track topology aggregation protocols.

3. We illustrate the utility of our results by applying the verification rule to a
non-trivial aggregation protocol.

This work illustrates the possibility of performing parameterized verification
for distributed systems with topologies that are not regular and with dynamic
aspects such as node or link failures. We are able to concentrate the effort of
verification on single nodes, without the need to consider topology or scheduling

Parameterized Verification of Track Topology Aggregation Protocols 3

issues. Our formalization could be used together with approaches such as [14] to
obtain parametric proofs for such systems. Formalizing link and node reliability
can provide the basis for deriving inductive invariants.

2 Track Topologies and Aggregation Protocols

We define the class of systems that are the subject of our verification effort.
Inspired by instances seen in wireless sensor networks [7], we develop the concept
of track topologies by establishing the properties that characterize them.

Definition 1. A track topology

T = (N,−→, , V)

with domain D is a finite, node-labeled, acyclic graph with nodes N = {n1, . . . , nk},
edges −→ ∪ ⊆ N ×N , and labeling function

V : N → D

which satisfies the following conditions:

– The set of nodes is partitioned into d ∈ N0 non-empty sets N0, . . . , Nd called
tracks. We call N0 the sink track and use track(n) to denote the number of
the track to which node n ∈ N belongs.
The number d is called the depth of the topology, denoted by depth(T).

– The relation −→ is called aggregation relation and connects nodes in a track
with nodes in the track immediately before, i.e.,

∀ (n, n′) ∈−→ • track(n) = track(n′) + 1 (1)

For (n, n′) ∈−→, n′ is called aggregator for n. A path from a node n to a
node n′ ∈ N0 is called aggregation path.

– The relation −→ consists of two disjoint relations, the primary aggregation
relation PA and the secondary aggregation relation SA, such that (N,PA)
constitutes a forest and (N,SA) is a directed, acyclic graph.
For (n, n′) ∈ PA (SA), n′ is called primary parent (secondary parent) of n.
We introduce the abbreviation SA(n) = {n′ | (n′, n) ∈ SA} to denote the set
of secondary children of n.

– The relation is disjoint from −→ and called correction relation. It con-
nects the primary parent of a node with all of its backup parents, i.e.

∀ (n, n′) ∈ PA ∃n0, n1, . . . , nm •
n0 = n′ ∧ ∀ 0 ≤ i < m • ni ni+1 ∧ SA(n) ⊆ {n0, . . . , nm}.

(2)

Note that due to the restriction that the aggregation relation connects only
adjacent tracks, always connects nodes in the same track.

k is called the size of T , denoted by |T |.

4 Sergio Feo-Arenis and Bernd Westphal

An example of a track topology with primary, secondary and correction re-
lations can be seen in Figure 2.

For our inductive proof, we require track topologies to be closed under re-
moval of single nodes in the sink track. By allowing to remove only nodes in the
sink track without outgoing correction edges, it is ensured that no correction
path between a primary aggregator and the backup aggregators of some node is
broken, thus preserving the property (2).

Lemma 1. Let n0 ∈ N0 be a node from the sink track of a track topology T =
(N0,−→0, 0, V0) with domain D which does not have any outgoing edges in the
correction relation to any other node.

Then T \ {n0} := (N,−→, , V) with

– N = N0 \ {n0}, V = V0|N ,
– −→= {(n, n′) ∈−→0| n′ 6= n0}, = {(n, n′) ∈ 0| n′ 6= n0},
– track(n) = track0(n)−1 if N00

= {n0}, and track(n) = track0(n) otherwise,

is a track topology with domain D.

Whenever aggregation is performed, nodes initiate a transmission round, each
transmitting their computed messages over the communication medium. In the
following, we formalize unreliable communication links. We introduce an edge
labeling function for the aggregation relation of a topology that indicates whether
communication is successful or not during a transmission round.

Definition 2. A communication function of a track topology T = (N,−→,
, V) is an edge labeling

f : (−→)→ B

of the aggregation relation −→ of T where f(n, n′) = 1 if and only if the com-
munication was successful between the connected nodes n and n′. We use FT to
denote the set of communication functions of T , and n −→f n

′ if and only if
f(n, n′) = 1.

The value of node n is available at the sink track if and only if there exists a
−→-path from n to a node in the sink track such that the communication along
the path was successful according to f . We use Vf (n) to denote the value of n if
the value is available at the sink track according to f and “◦” otherwise, i.e. Vf
is pointwise defined as

Vf (n) =

{
V (n) , if ∃n0 ∈ N0 • n −→∗f n0,

◦ , otherwise.
(3)

In the following, we present the formalization of aggregation protocols and
their correctness, which provides the framework necessary to develop a formal
verification approach.

We observe that an aggregation protocol can be formalized as a function
that maps a set of sensor values to a final aggregation value. For simplicity, and
without loss of generality, we assume that the domain of the sensor values and

Parameterized Verification of Track Topology Aggregation Protocols 5

that of the aggregation result are the same. In practice, complex functions may
utilize different domains.

We continue by defining correctness of an aggregation protocol in the presence
of unreliable communication links. For that, we formalize correctness relative to
the communication function f : whenever there is a working path from a node to
a sink, the data of the node should arrive (in aggregated form) at the sink.

The assumption that the correction infrastructure is reliable plays an im-
portant role. If the correction links were not reliable, then one would have to
define correctness not only for working aggregation paths but also for working
correction paths. We restrict our analysis to a reliable correction infrastructure.
Extending it to unreliable correction links should work in a similar fashion and
is the subject of future work.

Definition 3. Let T be a set of track topologies with domain D and

P : T × FT → D,

a track topology aggregation protocol on T , where FT denotes the set of com-
munication functions of the track topologies in T .

Let A be a family of aggregation functions

Ak : Dk◦ → D,

over domain D where k ∈ N0 and D◦ = D t {◦}.
The aggregation protocol P is called correct wrt. A if and only if, whenever

the value of a node n is available to the sink track, then the data transmitted by
n is aggregated exactly once by P, i.e. if

∀T = (N,−→, , V) ∈ T , k = |N | ∀ f ∈ FT •
P(T, f) = Ak (Vf (n1), . . . , Vf (nk)) .

(4)

Now we formally characterize the aggregation protocols that are the subject
of this work. We formalize the distributed calculation of the aggregation func-
tion as an equation system over local aggregation functions that map incoming
messages and additional parameters to outgoing messages. The most prominent
requirement in our formalization is that correction requests are directly observ-
able in the network transmissions, thus allowing reasoning about the consistency
of the messages computed by the nodes.

Definition 4. Let T be a set of track topologies with a domain D such that
(D◦,⊕, ◦) is a monoid. A track topology aggregation protocol P on T is called
distributed homogeneous if and only if

– there exists a family of sets Msgk of messages together with two families

A k : Msgkk → D
E k : Msgkk → 2IDk

6 Sergio Feo-Arenis and Bernd Westphal

of decoder functions, k ∈ N0, IDk = {1, . . . , k}.
Decoder function A k obtains the aggregation value encoded in a message and
E k : Msgkk → 2IDk extracts from a message the correction requests contained
in that message, i.e., the set of nodes encoded in the message for which a
corrective action should be taken if possible,

– there exists a family of local aggregation functions

aggrk : IDk ×D × (IDk 7→ Msgk)→ Msgk, k ∈ N0,

such that, for track topology T = (N,−→, , V) ∈ T and communication
function f ∈ FT , the aggregation result of the protocol P is the ⊕-sum of the
messages emitted by the sink track, i.e.

P(T, f) =
⊕
ni∈N0

A (τi) (5)

where message τi of node ni ∈ N in the track topology is defined by applying
the local aggregation function to the identity i of the node, its value, and the
set of messages relevant for ni which have successfully been communicated
according to f .
That is, the messages τ1, . . . , τk are the solution of the equation system

τ1 = aggrk(1, V n1,M1) M1 = {i 7→ τi | (ni, n1) ∈ (−→f ∪)}
τ2 = aggrk(2, V n2,M2) M2 = {i 7→ τi | (ni, n2) ∈ (−→f ∪)}

...
...

τk = aggrk(k, V nk,Mk) Mk = {i 7→ τi | (ni, nk) ∈ (−→f ∪)}.

Note 1. A distributed homogeneous track topology aggregation protocol P with
domain D is correct for track topologies with a single node in the sink track if
and only if

A (τ) = Ak (Vf (n1), . . . , Vf (nk)) (6)

where τ is the message emitted by the sink node.

Also note that we implicitly assume a computation sequence (or schedule)
that ensures data availability for all nodes. That is, whenever a node starts its
computations, all the input data is available. Thus, we assume that all nodes
connected to a node n are scheduled to transmit their data before n.

3 Verification of Track Topology Aggregation Protocols

To be able to provide a parameterized proof of correctness as defined in the pre-
vious section, we require the aggregation function to be an associative operator
over the aggregation domain, so that there is a correspondence between the final
aggregated values and the partial values transmitted by intermediate nodes. We
also require the operator to provide a neutral element to be able to aggregate
sensors whose communication fails or do not have data available in a uniform
fashion.

Parameterized Verification of Track Topology Aggregation Protocols 7

Definition 5. A family of aggregation functions Ak : Dk◦ → D, k ∈ N0, over
domain D is called monoidal with respect to (D◦,⊕, ◦), if and only if (D◦,⊕, ◦)
is a monoid and

∀ v1, . . . , vk ∈ D◦ • Ak(v1, . . . , vk) = v1 ⊕ · · · ⊕ vk. (7)

Bringing together the use of correction links and the transmission of correc-
tion requests, we introduce the concept of responsibility among nodes, defined as
the confluence of both the availability of another node’s data and of a correction
request for that node.

Definition 6. Let T = (N,−→, , V) be a track topology and f ∈ FT a com-
munication function.

A node n′ ∈ N is called responsible for node n ∈ N , denoted by n −→g

n′, if and only if n′ is an aggregator of n, communication from n to n′ was
successful according to f , and communication from n to the predecessors of n′

in the correction relation was not successful according to f , i.e. if

n −→g n
′ :⇐⇒ n −→f n

′ ∧ ∀ (n′′, n) ∈ + •f(n, n′′) = 0 (8)

We say a node n has a working aggregation path to node n′ ∈ N if and only if
there is a sequence of responsible nodes between them, i.e., if n −→∗g n′′.

Note that working aggregation paths are unique (if existent). Protocol cor-
rectness can then be reformulated as the property that every node correctly
aggregates the data of those nodes with a working aggregation path to it.

Lemma 2. Let A be a monoidal aggregation function family with respect to
(D◦,⊕, ◦) and P a distributed homogeneous track topology aggregation protocol
on track topologies T with domain D.

If the message of a node n ∈ N encodes the ⊕-aggregation of the values of
all nodes n′ for which n is responsible, i.e. if

∀T ∈ T , f ∈ FT ∀ i ∈ IDk •A (τi) =
⊕

n−→∗
gni

V (n), (9)

then P is correct wrt. A.

Proof. Let T ∈ T be a topology of size k and f ∈ FT a communication function.
Let n ∈ N be a node with a working aggregation path to a node n′ ∈ N0 in

the sink layer, i.e. if n −→∗g n′, By Definition 6, there is a path from n to n′ with
successful communications, i.e. n −→∗f n′. Thus, by Definition 2, Vf (n) = V (n).

Let n ∈ N be a node with no working aggregation path to any node n′ ∈ N0

in the sink layer. Because such a path consists of primary and backup parents
which are, by Definition 1, connected by the correction relation . Thus there
would exist a unique first parent for each track, and therefore n would have a
working aggregation path, thus the value of n is not available at the sink track.
Hence, by Definition 2, Vf (n) = ◦.

8 Sergio Feo-Arenis and Bernd Westphal

By Definition 4, the premise (9), and the premise that A is monoidal we
obtain

P(T, f) =
⊕
ni∈N0

⊕
n−→∗

gni

V (n) =
⊕
n∈N

Vf (n) = Ak(Vf (n1), . . . , Vf (nk)) (10)

thus P is correct. ut

Now that we stated a property local to every node in a network, we intro-
duce an abbreviation in the style of Hoare logic to denote the satisfaction of
a postcondition given some precondition. We can in this form state the verifi-
cation condition that must be satisfied in order to show protocol correctness.
We choose this notation given that we intend to allow the verification of the
implementation of the local aggregation functions against this property using
software model checking.

Definition 7. Let P be a distributed homogeneous track topology aggregation
protocol and let P k, Qk be families of formulae over id, v, Mid , and τid .

We write

{P} aggr {Q}

if and only if for for each k ∈ N0 and each valuation of id , v,Mid which satisfies
P k, that valuation extended by τid = aggrk(id , v,Mid) satisfies Qk.

Having provided all the prerequisites, we can now state the main theorem
of this work, where we reduce protocol correctness to the verification of a local
node property. Assuming that all nodes in the network execute the same im-
plementation of the local aggregation function aggr , we claim that if the local
computation at a node ensures consistent aggregation up to that node, including
the transmission of consistent correction requests, then the protocol is correct.
We prove the soundness of this claim inductively.

Theorem 1. Let P be a distributed homogeneous track topology aggregation pro-
tocol for the set T of track topologies with domain D.

If {P} aggr {Q} with

P k ≡ id ∈ IDk ∧ v = V (nid)

and

Qk ≡ A (τid) = V (nid)⊕
⊕
τi∈Mid

∧((ni,nid)∈PA∨(i∈E (Mid)∧(ni,nid)∈SA))

A (τi)

∧ E (τid) = {i | τi 6∈Mid ∧ (ni, nid) ∈ PA}
∪ {i | i ∈ E (Mid) ∧ (τi 6∈Mid ∨ (ni, nid) 6∈−→)}

then P is correct.

Parameterized Verification of Track Topology Aggregation Protocols 9

Proof (sketch). We show by double induction on the depth d of topologies and
the size ` of their sink track that the set of messages emitted by the nodes
according to the protocol satisfy the following properties:

– (�): For each node n, the emitted message comprises the aggregation of all
nodes which n is (transitively) responsible for.

– (�): Correction for node nj is initially requested by a node ni if and only if
ni is the primary parent and there was no successful communication between
the two.

– (F): A correction request for node nj emitted by ni implies that no prede-
cessor of ni in the correction relation was able to provide a correction.

Formally, we show

∀ d ∈ N0, ` ∈ N0 ∀T = (N,−→, , V) ∈ T •
depth(T) = d ∧ |N0| = ` =⇒

∀ni ∈ N •A (τi) =
⊕

n−→∗
gni

V (n) (�)

∧ ∀ j • j ∈ E (τi) \ E (Mi) ⇐⇒ (nj , ni) ∈ PA ∧ f(nj , ni) = 0 (�)

∧ ∀ j ∈ E (τi) =⇒ ∀ (n′, ni) ∈ ∗ • nj −→ n′ =⇒ f(nj , n
′) = 0. (F)

Then (�) in particular implies (9), thus P is correct by Lemma 2. ut

Discussion The theorem presented allows us to eliminate most sources of in-
finiteness from the parameterized correctness proof for the studied protocols.
Taking advantage of the fact that nodes have only local knowledge of the state
of the system and the topology, we are able to implicitly profit from the resulting
local symmetry of irregular networks.

The resulting verification problem is one where the system parameter k re-
mains as a variable, and can thus be treated symbolically by verification tools.
Alternatively, even a bounded correctness proof (up to some maximum size) can
be provided by explicit model checking, provided that the data types used in the
implementation are finite.

Developers of aggregation protocols can profit from the inductive proof pro-
vided. They can concentrate on verifying their particular implementations against
our verification condition; a process that is less involved than providing a com-
plete proof.

Some implicit assumptions were taken into account. We considered a sin-
gle aggregation round, where nodes transmit only once. We thus assume that
nodes are memoryless between aggregation rounds. This has, nonetheless, an
advantage: systems are allowed to dynamically change their topology between
aggregation rounds.

4 Case Study

We analyze the ridesharing protocol [9,10], proposed for use in DARPA’s satel-
lite cluster system F6 [3]. Nodes are arranged in tracks and reliability in the

10 Sergio Feo-Arenis and Bernd Westphal

Track 3

Track 2

Track 1

Track 0Main parent
Backup parent
Side parent

Fig. 2. Ridesharing topology

presence of failing communication links is improved by coordinating corrective
actions between nodes. We concentrate on a variant of the ridesharing proto-
col with reliable correction links. An initial attempt of the verification of the
ridesharing protocol without considering the aggregation function, but the par-
ticipation vector is presented in [8], for self-containment, we recall the protocol
description here.

The goal of the protocol is to aggregate the readings of sensor arranged in
a track graph towards a single, specially designated node called sink. Except
from the sink, every node has one assigned parent (the main parent), which is
responsible for aggregating its data. Additionally, other nodes in communication
range are designated as fail-over aggregators (the backup parents) in case the
communication between a node and its main parent fails.

The possible data paths from sensors to the sink form a directed, acyclic
graph (DAG) with multiple paths through the track graph (See Fig. 2). Primary
and backup edges are between adjacent tracks. There are also side edges within
the same track. A side edge points to a node from its side parent. The main
edges form a spanning tree with the sink as root.

Main parents transmit correction requests if the communication to their chil-
dren fails. Those requests are relayed by the track nodes towards the backup par-
ents connected to them using the reliable side links. If a backup parent receives
a correction request for a backup child, and the data is available, it aggregates
the data and stops propagating the error correction request.

We show the aggregation algorithm as proposed in [10] (see Algorithm 1).
Each node in a given ridesharing topology has a unique identity. Input id gives
the identity of the node and PC , BC , SP are the sets of primary children, backup
children, and side parents of the node respectively. Input v gives the current
sensor reading and rcv the messages received by id . The algorithm computes
the message to be sent by id , given v and rcv .

Nodes transmit triples 〈A,P,E〉 with the accumulated sensor value A and
two control boolean vectors of length |N |. The participation vector P indicates
for each node whether its value is included in A and the error vector E indicates
at each position, whether correction is required for the node at that position.

Aggregation starts by initializing A with zero and P and E with all zeroes.
If node id has sensor data, it is aggregated to A and P is updated accordingly.

Parameterized Verification of Track Topology Aggregation Protocols 11

Algorithm 1: The ridesharing aggregation algorithm. [10]
input: id, PC , BC , SP , v, rcv
A := 0; P := 0̄; E := 0̄;
if v 6= NULL then { A := A+ v; P [id] := 1 } ; // Aggregate local sensor reading
E := rcv [SP];
foreach c ∈ PC ∪ BC do

if rcv [c] 6= undefined then
if c ∈ PA ∨ (c ∈ SA ∧ E[c] = 1) then // Aggregate received values

(Ac, Pc) := rcv [c]; A := A+ Ac; P := P | Pc; E[c] := 0;
end

else if c ∈ PC then // Request error correction
E[c] := 1;

end

end
return (A,P,E);

We use rcv [SP] to denote the bit-wise disjunction of the error vectors received
from id ’s side parents. Then, E comprises all requests for corrections. In the
loop, the received messages from id ’s children are processed: if id received the
message from c and if c is a primary child or a backup child with a pending
request for correction in E then c’s data is aggregated, i.e. A is updated and
the P vector becomes the disjunction of the incoming P vectors. If id did not
receive the message from primary child c, it flags a request for the correction of
c and leaves A and P unchanged.

4.1 Verification of the Ridesharing Protocol

We show how the ridesharing protocol fits into the framework presented in Sec-
tion 2. First, we show that the topologies used are track topologies.

– The set of nodes N = {n1, . . . , nk} is the set of nodes present in a ridesharing
topology, there is a single sink node in the sink track N0 = {nk},

– The main parent relation is the primary aggregation relation PA. It connects
nodes between adjacent tracks and forms a tree with nk as root.

– The backup parent relation is the secondary aggregation relation SA. It forms
an acyclic directed graph (N,SA).

– The side parent relation is the correction relation . It connects nodes
sequentially.

– The track function can be defined with respect to PA since it forms a span-
ning tree:

track(n) =

{
0 iff @ (n, n′) ∈ PA
track(n′) + 1 iff ∃ (n, n′) ∈ PA

– each node ni has access to its sensor value vi from the domain D of bounded
integers, if the sensor does not have a value, vi = 0 is used. Thus the labeling
function is defined as: V = {ni 7→ vi | 1 ≤ i ≤ k}.

Second, we show that the protocol is distributed homogeneous.

– The domain is the type of the sensor readings, we assume it to be bounded
integer numbers: D = {−2n, . . . , 2n − 1} for some positive integer n.

12 Sergio Feo-Arenis and Bernd Westphal

– The aggregation operator is the sum operator. I.e., ⊕ = +.

– The domain, aggregation operator and neutral element (D,+, 0) form a
monoid. Thus the aggregation function Ak(v1, . . . , vk) = v1 + · · · + vk is
monoidal.

– The set of messages is the set of transmissions of the nodes τi = 〈Ai, Pi, Ei〉
where Ai, Pi, Ei are the values calculated by ridesharing at node i. Thus,
Msgk = D × Bk × Bk.

– The value decoder function reads the aggregation value directly from a mes-
sage, i.e., A (τi) = Ai. The correction requests can also be read directly from
the transmitted messages: E (τi) = {j ∈ IDk | Ei[j] = 1}.

– The local aggregation function is Algorithm 1. I.e.,

aggrk(i, v,M) = ridesharing(i,PA(i),SA(i),SP(i), v,M)

where PA(i) = {j ∈ IDk | (j, i) ∈ PA}. SA(i) and SP(i) are defined anal-
ogously w.r.t. SA and . M is defined with respect to a communication
function as in Def. 4.

We can thus apply the verification theorem to the ridesharing protocol. It is left
to verify whether the formula

{P} ridesharing(i,PA(i),SA(i), (i), v,M) {Q}

is valid for P and Q as defined in Theorem 1.

To that end, we developed a model including our formalization from Sec. 2
using Boogie [2]. The topology and communication functions are represented
by axioms. Additional axioms represent the properties of the system analyzed.
The aggregation algorithm is input directly in imperative form by representing
boolean arrays as functions of type array : N → B. Instead of bounded inte-
gers, we used unbounded integers to simplify the model, thus introducing the
assumption that the actual data types used in an implementation are enough
to accommodate the aggregation values without overflowing. Simple invariants
for the loop in the algorithm were necessary: framing conditions for the loop
variables and the fact that consistency is preserved across iterations of the loop
was sufficient. P and Q were expressed in terms of the protocol variables and
used as pre- and postconditions of the algorithm respectively1.

The verification took 1.05 seconds to verify 35 partial verification conditions
(including sanity checks), while using approximately 13 MB of memory. Boogie
was able to show that the verifications conditions are all valid. We thus have
shown correctness of the ridesharing protocol with reliable side links.

Discussion. Due to the symbolic representation of the parametric set of nodes,
the theorem prover used by Boogie requires only a finite number of cases to show
the validity of the generated verification conditions fully automatically.

1 Model available at http://www.informatik.uni-freiburg.de/~arenis/forte13/

Parameterized Verification of Track Topology Aggregation Protocols 13

Thanks to the result that the ridesharing protocol is correct, in the sense
of Definition 3, a reliability measure can be simply computed from the failure
probability of the inter-track radio links as follows:

Let p(ni, nj) be the probability of node nj successfully receiving the trans-
mission of a connected node ni. The probability of the data of some node n
being successfully aggregated is then equal to the probability of all links in each
possible aggregation path failing:

1−
∏

π∈paths(n)

1−
∏

1≤j<|π|

p (π[j], π[j + 1])


where paths(n) are the sequences π = n1, . . . , nm of nodes starting at node n,
connected by the aggregation relation and ending in the sink node. The length
|π| = m. The expression π[i] refers to the i-th node on the path π.

If all links have the same success probability p, then the probability of a node
n in track t successfully being aggregated at the sink simplifies to

1−
(

1− ptrack(n)
)|paths(n)|

assuming that link failures are independent.
These results thus reduce the need to use simulation tools to determine the

overall reliability of the ridesharing protocol.

5 Related Work

The parameterized analysis of safety properties is undecidable in the general
case [1]. The problem of verifying properties for parameterized systems has been
approached by several authors. We discuss a few that we feel are the closest to
our line of work.

We can best situate our work in the line of work of Namjoshi et al. [14] for
the verification of irregular networks. Although we concentrate on asynchronous
systems, the verification condition presented in this work can be viewed as a
particular case of an inductive, compositional invariant, though used in the con-
text of irregular networks with dynamic links. We ensure the local symmetry
of aggregation networks with redundancy by explicitly considering three types
of edges and restricting the analysis to systems where inter-node communica-
tion occurs after computation, without interleaving. We enrich the computation
model by explicitly including the network dynamic as part of the system state.

The particular problem of network dynamic in the form of link and node
failures has been the subject of recent efforts [5]. We present an instance of
verification of broadcast networks with link unreliability, which can simulate
node failures, for the special case of aggregation protocols.

The method of “network grammars” [4], where regular families of networks
are described using context-free grammars is used to verify parameterized sys-
tems by using abstraction. Several model checking problems are derived, which,

14 Sergio Feo-Arenis and Bernd Westphal

if solved, deliver a proof of correctness. We do not explicitly perform any kind
of abstraction on the states of the local aggregation programs, leaving that pos-
sibility open for the method used to establish the satisfaction of our verification
condition.

Similar methods rely on finding so called network invariants [11,15], overap-
proximations of the sets of reachable states of the systems, and proving that they
imply the property being verified. The focus lies on automatically finding those
invariants through model checking. We distance ourselves from the automatic
finding of invariants and perform explicit induction using a fixed invariant, deliv-
ering a proof rule for the class of aggregation protocols with irregular topology.
Explicit induction has been also used for the verification of regular networks [6].

The systems we consider in this work are asynchronous systems where com-
putation steps of network components are considered atomic. The systems could
be, however, considered as an instance of bounded-data parameterized systems
in the sense of [15].

This work is a follow-up of the initial analysis of the protocol from our
case study [8]. We improve the analysis by extending it to the use of arbitrary
duplicate-sensitive aggregation functions, eliminating the need for the explicit
transmission of a vector of aggregated nodes. Here, we provide a complete, for-
mal inductive proof and, as a result, simplify the resulting verification conditions.
The software model checking step of the verification is thus simplified, improving
the chances of obtaining a verification problem within the capabilities of current
software verification tools.

6 Conclusions

We have presented an inductive, parameterized proof of correctness for track
topology aggregation protocols. We reduce the problem to the verification of
a single verification consistency condition on the nodes’ aggregation algorithm,
which can be automatically checked using state of the art software verification
tools.

We identify a class of aggregation protocols that allows us to illustrate the
feasibility of reducing the verification of parameterized, asynchronous systems
with irregular topologies and dynamic link (and thus node) reliability to estab-
lishing local consistency properties.

Possible directions for future work are the relaxation of the constraints for the
systems verified –to enlarge the class of systems covered–, such as the reliability
of the correction infrastructure and the acyclicity of some of the node connection
relations.

Additionally, the use of our verification conditions as a template for the
automatic generation of inductive node invariants can be explored, such that
given decoding functions for a protocol messages, the verification task is further
automated.

Parameterized Verification of Track Topology Aggregation Protocols 15

Finally, criteria for the decidability of the resulting verification problem can
be studied. This would lead to the identification of a decidable class of parame-
terized systems.

References

1. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

2. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.P. (eds.) FMCO. LNCS, vol. 4111, pp.
364–387. Springer (2005)

3. Brown, O., Eremenko, P.: The value proposition for Fractionated space architec-
tures. In: AIAA Space 2006. No. 7506, AIAA (2006)

4. Clarke, E.M., Grumberg, O., Jha, S.: Verifying parameterized networks. ACM
Trans. Program. Lang. Syst. 19(5), 726–750 (1997)

5. Delzanno, G., Sangnier, A., Zavattaro, G.: Verification of ad hoc net-
works with node and communication failures. In: Giese, H., Rosu, G. (eds.)
FMOODS/FORTE. LNCS, vol. 7273, pp. 235–250. Springer (2012)

6. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput.
Sci. 14(4), 527–550 (2003)

7. Feng, J., Eager, D.L., Makaroff, D.J.: Aggregation protocols for high rate, low delay
data collection in sensor networks. In: Fratta, L., Schulzrinne, H., Takahashi, Y.,
Spaniol, O. (eds.) Networking. LNCS, vol. 5550, pp. 26–39. Springer (2009)

8. Feo-Arenis, S., Westphal, B.: Formal verification of a parameterized data aggrega-
tion protocol. In: Brat, G., Rungta, N., Venet, A. (eds.) NASA Formal Methods.
LNCS, vol. 7871, pp. 428–434. Springer (2013)

9. Gobriel, S., Khattab, S., Mossé, D., Brustoloni, J., Melhem, R.: Ridesharing: Fault
tolerant aggregation in sensor networks using corrective actions. In: IEEE Commu-
nications Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks. pp. 595–604 (2006)

10. Iskander, M.K., Lee, A.J., et al.: Privacy and robustness for data aggregation in
wireless sensor networks. In: 17th ACM conference on Computer and communica-
tions security. pp. 699–701. ACM (2010)

11. Kesten, Y., Pnueli, A., Shahar, E., Zuck, L.D.: Network invariants in action. In:
Brim, L., Jancar, P., Kret́ınský, M., Kucera, A. (eds.) CONCUR. LNCS, vol. 2421,
pp. 101–115. Springer (2002)

12. Liu, M., Gong, H.G., Mao, Y.C., Chen, L.J., Xie, L.: A distributed energy-efficient
data gathering and aggregation protocol for wireless sensor networks. Journal of
Software 16(12), 2106–2116 (2005)

13. Montresor, A., Jelasity, M., Babaoglu, O.: Robust aggregation protocols for large-
scale overlay networks. In: Dependable Systems and Networks, 2004 International
Conference on. pp. 19–28. IEEE (2004)

14. Namjoshi, K.S., Trefler, R.J.: Uncovering symmetries in irregular process networks.
In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI. LNCS, vol. 7737, pp.
496–514. Springer (2013)

15. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible
invariants. In: Margaria, T., Yi, W. (eds.) TACAS. LNCS, vol. 2031, pp. 82–97.
Springer (2001)

16 Sergio Feo-Arenis and Bernd Westphal

A Proof of Theorem 1

Proof. We show

∀ d ∈ N0, ` ∈ N0 ∀T = (N,−→, , V) ∈ T •
depth(T) = d ∧ |N0| = ` =⇒

∀ni ∈ N •A (τi) =
⊕

n−→∗
gni

V (n) (�)

∧ ∀ j • j ∈ E (τi) \ E (Mi) ⇐⇒ (nj , ni) ∈ PA ∧ f(nj , ni) = 0 (�)

∧ ∀ j ∈ E (τi) =⇒ ∀ (n′, ni) ∈ ∗ • nj −→ n′ =⇒ f(nj , n
′) = 0. (F)

by double induction on the depth d of topologies and the size ` of their sink
track.

In the following, we can always assume that any message τid as given by
aggrk(id , V (nid),Mid) satisfies Qk because the pre-condition P k is directly sat-
isfied.

Base Case: d = 0.

Base Case ` = 0: trivial.

Induction Step `→ `+ 1: Because N0 has size `+1 > 0 and because the correc-
tion relation is acyclic, there exists a node ni ∈ N0 which is not in correction
relation with any other node.

Then, by Lemma 1, T \ {ni} is a track topology of depth 0 and size ` so the
induction hypothesis applies to all nodes except for ni.

Because of depth d = 0, node ni does not have any children and it has a
working aggregation path exactly to itself. Thus,

A (τi) = V (ni) =
⊕

n−→∗
gni

V (n). (11)

By Qk, the identities in E (τi) \ E (Mi) are those of primary children of ni.
Since ni does not have any primary children, E (τi) \ E (Mi) is empty, and
(�) holds directly.

Because E (τi)\E (Mi) is empty, we only have to consider correction requests
for nodes which have already been in E (Mi). By induction hypothesis, they
satisfy (F), and since ni does not have any children, (F) is preserved.

Induction Step: d→ d+ 1.

As there is no track topology with depth greater 0 and a sink track of size 0,
the base case is the singleton sink track.

Parameterized Verification of Track Topology Aggregation Protocols 17

Base Case ` = 1: Let nk be the single node on the sink track.
Then messages {τ1, . . . , τk−1} are the messages emitted by the nodes of the
topology T \{nk} of depth d. By induction hypothesis, they satisfy (�), (�),
and (F). In the following, we show that nk satisfies (�), (�), and (F).

Because N0 = {nk}, node nk has only incoming primary aggregation links
thus by Qk we have

A (τk) = V (nk)⊕
⊕

τi∈Mk,
(ni,nk)∈PA

A (τi). (12)

By induction hypothesis, we obtain

A (τk) = V (nk)⊕
⊕

τi∈Mk,
(ni,nk)∈PA

⊕
n−→∗

gni

V (n). (13)

By Definition 4, τi ∈Mk ∧ (ni, nk) ∈ PA implies ni −→f nk. And n −→∗g ni,
(ni, nk) ∈ PA, and ni −→f nk implies n −→∗g nk by Definition 6. Further-
more, nk −→∗g nk, thus

A (τk) =
⊕

n−→∗
gnk

V (n), (14)

which is (�).

We show the two directions of (�) separately.

– “ =⇒ ”: Let j ∈ E (τi) \ E (Mi). By Qk, the identities in E (τk) \ E (Mk)
are those of primary children of nk. Furthermore, by Qk, τj /∈ Mk and
thus f(nj , nk) = 0 by Definition 4. Which is the right hand side of (�).

– “⇐=”: Let (nj , nk) ∈ PA and f(nj , nk) = 0. By Qk, j ∈ E (τi)
We have j /∈ E (Mi), because otherwise the primary parent n′ of nj would
have added it by Qk and induction hypothesis. By Definition 4, a node
does not process its own messages, thus (nj , n

′) ∈ PA with n′ 6= nk in
contradiction to PA being a forest by Definition 1. Thus the left hand
side of (�) holds.

To see that (F) holds for nk, let nj be a node such that there is a correction
request for nj sent by nk and let n′ be an aggregator of nj which is in
correction relation to nk, i.e.

j ∈ E (τk) ∧ nj −→ n′ ∧ (n′, nk) ∈ ∗ . (15)

We distinguish two cases:

n′ = nk: nj −→ n′ and the premise imply (nj , nk) ∈ PA. By Qk, we have
τj 6∈Mm and thus f(nj , nk) = 0 by Definition 4.
Hence f(nj , n

′) = 0 as required for (F).

18 Sergio Feo-Arenis and Bernd Westphal

n′ 6= nk: Now nj −→ n′ implies (nj , nk) 6∈ PA by Definition 1. Thus j ∈
E (Mk) by Qk.
Then there must be some node np which emitted the correction request,
i.e. with j ∈ E (τp), and which is a direct predecessor of nk in , i.e.
np nk. By induction hypothesis, neither np nor any of its predecessors
in had successful communication with nj .
By Definition 1, (n′, np) ∈ ∗, thus in particular f(nj , n

′) = 0 as required
for (F).

Induction Step `→ `+ 1: Because N0 has size `+1 > 0 and because the correc-
tion relation is acyclic, there exists a node ni ∈ N0 which is not in correction
relation with any other node.
Then, by Lemma 1, T \ {ni} is a track topology of depth d + 1 and size `
so the induction hypothesis applies to all nodes except for ni. By induction
hypothesis, the messages τ1, . . . , τk except for τi satisfy (�), (�), and (F).
In the following, we show that ni satisfies (�), (�), and (F).

By Qk and induction hypothesis we have

A (τi) = V (ni)⊕
⊕

τj∈Mi,(nj ,ni)∈PA
∨(j∈E (Mi)∧nj−→ni)

⊕
n−→∗

gnj

V (n) (16)

In the following, we show that

{n ∈ N | τj ∈Mi ∧ ((nj , ni) ∈ PA ∨ (j ∈ E (Mi) ∧ nj −→ ni)) ∧ n −→∗g nj}
= {n ∈ N | n −→+

g ni}.
(17)

Then (�) follows:

A (τi) = V (ni)⊕
⊕

n−→+
g ni

V (n) =
⊕

n−→∗
gni

V (n). (18)

To show (17), we first consider n ∈ N with n −→+
g ni and show that n is in

the set on the left hand side. Distinguish the following cases:
– Node ni is primary parent of a node nj which is responsible for n, i.e.
n −→∗g nj ∧ (nj , ni) ∈ PA ∧ nj −→f ni:
Then n is in the set on the left hand side of (17) because τj ∈ Mi by
Definition 4.

– Node ni is secondary parent of a node nj which is responsible for n, i.e.
n −→∗g nj ∧ (nj , ni) /∈ PA ∧ nj −→f ni:
By Definitions 6 and 1, we can conclude that there was no successful
transmission between nj and its primary parent nm. By induction hy-
pothesis, node nm requests a correction, thus j ∈ E (τm).
Since n −→+

g ni, there must be a path in from nm to ni. By Qk and
by Definition 4, we have j ∈ E (Mi). Thus n is in the set on the left hand
side of (17).

Parameterized Verification of Track Topology Aggregation Protocols 19

Secondly, we consider n ∈ N with ¬(n −→+
g ni) and show that n is not in

the set on the left hand side of (17). Consider the following cases:
– The nodes n and ni are not transitively related by −→, i.e.,
¬(nj −→∗ nk), or there is no node nj on track N1 such that n −→∗g nj :
Then n is not in the set on the left hand side of (17).

– There is a node nj on track N1 with n −→∗g nj and nj −→ ni:
Then there are again two cases:
• There was no successful communication between nj and ni, i.e.
f(nj , ni) = 0:
By Definition 4 we know that τj /∈Mi. Furthermore, the responsible
node nj is unique, thus n is not in the set on the left hand side of
(17).

• There was successful communication between nj and ni but there is
a strict predecessor nm of ni in the correction relation which had
successful communication with nj , i.e. nj −→f ni and nm ∗ ni
and nj −→f nm:
Then nm does not emit a request for correction for nj by (F), i.e. j /∈
τm. Because, by (�), only the primary parent initiates a correction
request, the nodes between nm and ni in the correction relation do
not emit a request for correction for nj . As furthermore ni is not
primary parent of nj , n is not in the set on the left hand side of (17).

To show (�) and (F) for ni, the same reasoning as for ` = 1 applies.
ut

