Formal Verification
of a Parameterized Data Aggregation Protocol

Sergio Feo-Arenis and Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Abstract. We report on our experiences on the successful verification
of a parameterized wireless fault-tolerant data aggregation protocol. We
outline our verification method that involves automatic verification of
a model of the node processing algorithm under system topology
constraints. The presented work forms the basis for a generalization to
verification rules for aggregation protocols that integrate automatic ver-
ification into an inductive framework.

1 Introduction

Data aggregation protocols are used in distributed systems to collect sensor data
gathered by nodes of the system at dedicated sink nodes [5]. In case of unreliable
wireless communication, a common correctness property of a data aggregation
protocol is that, whenever there is a functioning communication path from a sen-
sor node to its sink, then the data must be aggregated at the sink. One may, e.g.,
exploit the redundancy of radio communication, where more than one node may
hear the transmissions of others, to provide multiple communication paths from
a sensor to its sink. So-called duplicate sensitive data aggregation protocols have
an additional correctness property which usually states that a sensor value should
not be aggregated more than once at a sink node.

We consider the case of parameterized data aggregation protocols with a single
sink and an arbitrary number of homogeneous nodes in a fixed (network) topol-
ogy. For this case, we want to determine whether the correctness properties stated
above are true of every configuration of the system by a semi-automatic, com-
positional approach. In general, this Parameterized Model Checking Problem is
undecidable [IJ.

In this work, we report on the successful verification of the ridesharing proto-
col [6], that was proposed for use in DARPA’s satellite cluster system F6 [4]. We
applied a compositional approach that involves reasoning performed manually to
derive verification conditions on the program running in the nodes. We were able
to check those verification conditions fully automatically. We intend to general-
ize our experience from the ridesharing protocol into a general proof rule for a
well-defined class of data aggregation systems which in particular comprises the
ridesharing protocol.

Initially, we present an axiomatization of the system topology, the aggregation
paths, and communication failures. Based on the axiomatization, we formalize

G. Brat, N. Rungta, and A. Venet (Eds.): NFM 2013, LNCS 7871, pp. 428-f37] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Formal Verification of a Parameterized Data Aggregation Protocol 429

= Main parent
---> Backup parent Track 0
Side parent Track 1 Frames
g Track 2
4). O«;Q.LO Track 3 Slots
S \b [so[s1[s2[s3[s4]s5]s6]s7[s8] .| |
Track 3 Track 2
(a) Network topology (b) Scheduling

Fig. 1. Ridesharing Protocol

the correctness property of the protocol. We outline a compositional method to
prove correctness that integrates the automatic verification of the program run-
ning in the nodes. We report on the automatic verification of a Boogie [2] model
that integrates the axiomatization and the program, and on how we validated our
axiomatization using an interactive theorem prover.

2 The Ridesharing Topology

The ridesharing protocol [6] was proposed for use in DARPA’s satellite cluster sys-
tem F6 [4] where satellites communicate over unreliable radio links. It is supposed
to aggregate data from nodes that are logically organized in a tree structure by a
main parent relation (cf. Figure . Each node has a unique main parent and,
in order to provide redundancy, a set of backup parents on the same depth level
(called track) as the main parent. Nodes on the same track may have a side links
as target of requests for correction if a message from a child was lost. Communica-
tion within one track is assumed to be reliable. Data is aggregated cyclically using
schedule to avoid message collisions. Time is split into frames which is further
partitioned into slots (cf. Figure. Each node is assigned exactly one slot to
send datal] Furthermore, nodes can be assumed to be memoryless wrt. frames,
that is, they are initialized at the beginning of each frame. Therefore it is w.l.o0.g.
sufficient to consider a single frame in the correctness proof.

Ridesharing Network. Formally, a ridesharing network is a labeled graph
(N, E,V) comprising a finite set of nodes N including the designated node ny,
called the sink, and a set of edges £ C N x N which is the union of the three
pairwise relations F,,, Ep, and E4 that represent the main and backup parents,
and the side links, respectively. In a network, the main parent relation induces a
tree with the sink as root, i.e. (N, E,;,) is a tree, and the side link relation Ej is
acyclic. The labeling function V' : N — D assigns each node the sensor reading
in the considered frame, i.e. a value from the domain of the possible sensor values
D. Additionally, there is an aggregation function (- @ -) such that (D, @) form a
monoid. When no sensor data is available, the neutral element of @ is assumed.

! For simplicity, we assume that the side link relation is acyclic. In general, the
ridesharing protocol [6] admits that nodes are assigned multiple slots under certain
side conditions.

430 S. Feo-Arenis and B. Westphal

Node n' is called main parent (backup parent, side link) of n, denoted by — g,
(—E,, —g,) if and only if (n,n’) € E,, (Ey, E;). We use E, = E,,, U Ej, to
denote the parent relation and say that nodes n and n’ are directly connected, de-
noted by n —g, 7/, if and only if n’ is either main or backup parent of n. We
use, e.g., —)j{;p to denote the reflexive, transitive closure of — g, . The track of a
node n, denoted by track(n), is 0 if n is the sink, and track(n’) + 1 if there exists a
parent node n’ of n. We denote the set of all nodes at track k with Ny. Side parents
of a node have to be of the same track as the node itself.

Unreliable Communication and Schedule. We model unreliable communi-
cation between parents and children by the communication function f : E — B.
For anedge e = (n,n’) € E, we assume f(e) = 1 if and only if the communication
was successful between nodes n and n’. We use n = n’ to denote that there
was successful communication between connected nodes, i.e. that n — g, n’ and
f(n,n") = 1. Its reflexive transitive closure n —=* n’ denotes that there is a
working path between nodes n and n’. Note that working paths are in general not
unique.

For the schedule we assume that the slots are assigned guaranteeing that for all
nodes n, the input nodes according to the topology relations are scheduled before n.

Aggregation Paths. Two further concepts are useful to clarify the conditions
that define a successful aggregation and under which correctness must be satisfied.

First, a sequence of successful transmissions ng = n1 = ... = n; is called
aggregation path from ng to ny if and only if n; 41 is the first parent of n; that
successfully receives from n;, i.e., if

V0§i<k:Vn€Ni+1o(nii:>n/\n—>Es ni+1) = N =N+

We say ng has an aggregation path to ny, denoted by ng ~» ny, if there exists an
aggregation path from ng to ny or if ng = ny. Note that aggregation paths are
unique in a ridesharing network for a given communication function.

Second, we introduce the term responsible node. A parent n’ is responsible for
aggregating the data of node n (and its children) if all preceding parents (by the
side link relation) of n did not receive the transmission from n.

Correctness. Formally, a ridesharing protocol P can be described as a function
that maps a ridesharing network with nodes IV and edges E and a communi-
cation function f to a set of the nodes for which values were aggregated. lL.e.,
P : (E — B) — BY. A ridesharing protocol is correct if and only if “If there
is a working aggregation path between a node n and the sink then n’s data is
aggregated exactly once by the sink.” Ie.

P is correct :<=Vn € Nen~»ng = P(f)[n]=1 (correctness)

where ng is the sink node.

Formal Verification of a Parameterized Data Aggregation Protocol 431

Algorithm 1. Aggregation algorithm run by network nodes.

input ::id, PC, BC, SP, v, rcv
A:=0;P:=0; E:=0;
if v # NULL then { A:= A@v; P[id]:=1}; // Aggregate local sensor reading
E := rcv[SP];
foreach c € PC U BC do
if rcv[c] # undefined then

if c€ PCV (c € BC A E[c] =1) then // Aggregate received values
(Ac, Po) :==rev(c]; A:==A@ Ac; P:= P | Pe; Elc] :=0;
end
else if c € PC then // Request error correction
Elc] :=1;
end

end
return (A, P, E);

3 A Ridesharing Protocol Algorithm

We seek an algorithm which, given a topology, realizes a correct protocol if exe-
cuted on every node according to the schedule. We recall the aggregation algorithm
as proposed in [6] (cf. Algorithm [I]).

We assume that each node in the given topology has a unique identity. In order
to abstract from communication and data gathering functionality, we assume that
the algorithm is executed once per frame on each node. Input id gives the identity
of the node and PC (BC, SP) the finite set of primary children (backup children,
side parents) of the node, i.e. the inverse of F,, (Ep, Es). Input v gives the cur-
rent sensor reading and rcv the messages received by id in the current frame. The
algorithm computes the message to be sent by id, given v and rcv.

The set of network messages M consists of triples (4, P, E) with the accumu-
lated sensor value A and two control boolean vectors of length | N|. The participa-
tion vector P indicates for each node whether its value is included in A, the error
vector E indicates at each position, whether correction is required for the node at
that position.

Aggregation starts by initializing A with the neutral element of the aggregation
function and P and F with all zeroes. If node id has sensor data, it is aggregated to
A and P updated accordingly. We use rcv[SP] to denote the bit-wise disjunction
of the error vectors received from id’s side parents. Then, E comprises all requests
for corrections. In the loop, the received messages from id’s children are processed
as follows: if id received the message from ¢ and if ¢ is a primary child or a backup
child with a pending request for correction in F then ¢’s data is aggregated, i.e. A
is updated and the P vector becomes the disjunction of the incoming P vectors. If
1d did not receive the message from primary child ¢, it flags a request for correction
leaving A and P unchanged.

Executing Algorithm[Ionce for each node in a network according to the sched-
ule yields a history. A history h is asequence of transmissions 71, 72, . . . , 7)) Where
7; = (A, E;, P;) is the message transmitted by the node scheduled at slot j. Given
the communication function f, that indicates which node received which transmis-
sion, there is the following relation between history h and the partial functions
rcup[-] : N -+ M: For each two connected nodes n — g, n', rcv,[n'] = 7; if '

432 S. Feo-Arenis and B. Westphal

is scheduled at slot ¢ and f(n,n’). rcv,[n'] is undefined otherwise. That is, rcv,q
is passed as parameter rcv to the execution of Algorithm [on node id. The exe-
cution of Algorithm[I]once for each node in a network is a ridesharing protocol P
as it maps a communication function f to the transmission of the sink, which is
scheduled last, i.e., P(f) := Py

4 Compositional Verification

In the formalizations presented in Sectionsland[3] we have a formal model of all fi-
nite instances of Ridesharing, of which there are unboundedly many. We can model
ridesharing networks for all numbers n of nodes (inducing length n for the vectors
P and F) and all tree topologies (including all sizes up to n of PC and BC'), each
with 2!Z»| failure scenarios. In general, correctness is, for this setting, undecidable.

Nonetheless, we have successfully verified the correctness of Algorithm [I with
respect to the correctness property of Section 2l Our approach focuses the veri-
fication efforts on any single node, due to the observation that the aggregation
algorithm works symmetrically with respect to the id parameter. In principle,
we verify whether, when a node in any given track receives consistent data from
the subjacent track and its side parent, the track to which the node belongs also
transmits consistent data.

In general, having correct data for an arbitrary node at its scheduled slot is a
property of the complete earlier history, which again has an unbounded length.
However, in this case, we can observe that for every node, only the exact structure
of the network at the track immediately below and the own track is relevant. This
observation allows us to produce an abstraction that partitions the history — and
thus the input data for the node — in a finite manner according to whether the
received data contains information for nodes on tracks below, on the same track,
or on tracks above the node in question. We thus observed, that it is sufficient
to assume that the nodes on a track aggregate data exclusively from the tracks
below them, that no data is aggregated in a duplicate manner, and that the side
parents do not transmit spurious correction messages. Formally, the data trans-
mitted by track Ny = {n1,...,n} in history h is the subsequence 71,72, ..., 7%
where 7; = (4;, E;, P;) is the transmission of node n;, 1 < ¢ < £. We call the data
of track Ny consistent if and only if

Vn; #n; € N ¥n € N o (=(P;[n] A Pj[n]) (1)
A (Pin] = n=n;V track(n) > k) A (E;[n] = track(n) =k + 1))

This property allows us to give a specification for the aggregation algorithm, in
the form of pre- and postconditions. The precondition is that the data in the rcv
buffers of a node is consistent, in the sense of ([Il) and with respect to a commu-
nication function f. The algorithm should guarantee the postcondition that, for
every possible role of a node, the bits in each position of the output vectors are
set correctly with respect to the input data. That is, that no spurious aggregation
occurred for nodes on the same track or tracks above, and that correction signals
were correctly processed and generated such that no duplicate aggregation will

Formal Verification of a Parameterized Data Aggregation Protocol 433

occur. Satisfying that condition allows us to conclude that the data output by the
track of the node being verified is consistent.

We utilized Boogie [2] to perform that verification task automatically. We used
the axiomatization from SectionZland added our pre- and postconditions. Due to
the loop in Algorithm [I] an invariant was necessary. Framing conditions for the
loop variables and the fact that consistency is preserved across iterations of the
loop were sufficient.

We ensured the consistency of our model by checking that the axioms that
describe the topology and the environment are consistent. We utilized a combina-
tion of smoke testingE and debugging by examination of counterexamples using
BVD [7]. Boogie required approximately 1 second and 13MB of RAM to verify a
total of 35 partial verification conditions.

To increase our confidence on the successful Boogie verification results, we
checked whether our axiomatization was consistent, i.e., whether our axioms imply
non-empty topologies and thus whether the verification conditions are not triv-
ially satisfied. For that purpose, we used HOL-Boogie [3] to translate the model
together with its verification conditions into Isabelle [9] and reconstructed the
proof. B. Only one manual lemma was necessary due to technicalities in the trans-
lation to Isabelle. The remaining proof was reconstructed automatically.

Having verified that tracks produce consistent output is sufficient to reason in-
ductively and establish that for each topology of depth d, the messages of track 0
will be a correct aggregation of the nodes in the tracks below with respect to the
communication function f. In our particular case, track 0 contains only the sink
node.

Our induction proof is a double induction. Vertically, we consider ridesharing
topologies of depth d and horizontally the width of tracks. The base case d = 0 is
a track consisting of only leaf nodes. In the induction step, we inductively prove
that for a depth d + 1 the chains of side links inside the track, starting at the
leftmost node, preserve our consistency property where we can assume consistent
data from track d.

5 Conclusions and Future Work

Applications of sensor networks for critical tasks commonly require robust data
aggregation protocols. They represent an interesting instance of parameterized
systems.

We presented the successful verification of the ridesharing protocol, a wireless
aggregation protocol that employs redundant aggregation paths. The verification
puts a “spotlight” [§] on a single node in a single track, while giving a finite ab-
straction of the data coming from the subjacent track. This allowed us to derive
proof obligations on the aggregation algorithm which we discharged using auto-
matic software model checking. We checked our axiomatization using interactive
theorem proving. Overall we obtain a compositional approach which decouples

2 In Boogie, adding assert (false) to each basic block to check for its reachability.
3 Code available at: http://www.informatik.uni-freiburg.de/~arenis/nfm13/

http://www.informatik.uni-freiburg.de/~arenis/nfm13/

434 S. Feo-Arenis and B. Westphal

the verification of the aggregation algorithm from the communication scheme. Us-
ing automatic software model checking increases the degree of automation and
allows for an easy extension to a heterogeneous implementation: each implemen-
tation just needs to be verified to satisfy the proof obligations. To the extent of
our knowledge, there are no previous works on the combination of deduction and
automatic model checking for the verification of aggregation protocols.

In the future, we would like to generalize our approach. This amounts to a more
general axiomatization of network topologies, e.g. lifting the restrictions on acyclic-
ity and reliability of the side links, a deductive framework based on our inductive
approach, and a simplification of the invariants required. Having narrowed down
the conditions that are sufficient to ensure a finite case-split during verification,
our generalization would then identify another decidable class of parameterized
systems.

References

1. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307-309 (1986)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364-387.
Springer, Heidelberg (2006)

3. Bohme, S., Moskal, M., Schulte, W., Wolff, B.: HOL-Boogie - an interactive prover-
backend for the verifying C compiler. J. Autom. Reasoning 44(1-2), 111-144 (2010)

4. Brown, O., Eremenko, P.: The value proposition for Fractionated space architectures.
In: ATAA Space 2006, No. 7506. ATAA (2006)

5. Feng, J., Eager, D.L., Makaroff, D.: Aggregation protocols for high rate, low delay
data collection in sensor networks. In: Fratta, L., Schulzrinne, H., Takahashi, Y.,
Spaniol, O. (eds.) NETWORKING 2009. LNCS, vol. 5550, pp. 26-39. Springer,
Heidelberg (2009)

6. Gobriel, S., Khattab, S., Mossé, D., Brustoloni, J., Melhem, R.: Ridesharing:
Fault tolerant aggregation in sensor networks using corrective actions. In: IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Communications
and Networks, pp. 595-604 (2006)

7. Le Goues, C., Leino, K.R.M., Moskal, M.: The boogie verification debugger (tool
paper). In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041,
pp. 407-414. Springer, Heidelberg (2011)

8. Wachter, B., Westphal, B.: The spotlight principle. On combining process-
summarising state abstractions. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.
LNCS, vol. 4349, pp. 182-198. Springer, Heidelberg (2007)

9. Wenzel, M., Paulson, L.C., Nipkow, T.: The isabelle framework. In: Mohamed,
O.A., Muiloz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33-38.
Springer, Heidelberg (2008)

	Formal Verification
of a Parameterized Data Aggregation Protocol
	1 Introduction
	2 The Ridesharing Topology
	3 A Ridesharing Protocol Algorithm
	4 Compositional Verification
	5 Conclusions and Future Work
	References

