
janvier 2007 � Journées Francophones des Langages Applicatifs � JFLA07

Satis�ability Modulo Structures as Constraint

Satisfaction: An Introduction

Hassan Aït-Kaci1 & Bruno Berstel2 & Ulrich Junker2 & Michel Leconte2 & Andreas

Podelski3

1: ILOG, Inc.

hak@ilog.com

2: ILOG S.A.

{bberstel,ujunker,mleconte}@ilog.fr

3: University of Freiburg

podelski@informatik.uni-freiburg.de

Abstract

Constraint Programming (CP) and Satis�ability Modulo Theories (SMT) both generalize SAT
w.r.t. expressiveness and propagation power. CP uses domain propagators based on mathematical
structures, whereas SMT uses constraint propagators based on logical theories. In this paper, we
incorporate SMT reasoning into CP and illustrate the bene�ts of the resulting system for the
problem of rule veri�cation.

1. Introduction

SAT methods have intensively been applied to hardware veri�cation and are gaining in importance for
software veri�cation. As programs involve operations on di�erent data types such as integers, �oating-
points, booleans, strings, arrays, lists, and objects, satis�ability problems in software veri�cation
need to take the mathematical properties of those data types into account. This can be achieved by
dedicated decision procedures, which check the satis�ability of a formula w.r.t. di�erent mathematical
theories (e.g., linear arithmetics, symbolic functions, array theory etc). An important topic is then to
�nd correct and complete combinations of those decision procedures. Nelson and Oppen [6] showed
that equality propagation between decision procedures achieves completeness if equality is the only
operation that is shared by two theories. This pioneering work is fundamental for software veri�cation
and has in�uenced many program veri�ers as explained in [5].

Whereas the Nelson-Oppen method is able to prove the unsatis�ability of formulas such as
x = y ∧ f(x) = f(y) + 1, it does not detect the unsatis�ability of the formula x.startsWith(y) ∧
x.length + 1 = y.length, which combines string operations with integer arithmetics. Only recent
research by Tinelli and Ringeissen [11, 10] has shown how to combine decision procedures for theories
that share more than equality into a semi-decision procedure for unsatis�ability. Craig interpolation
based on conjunctions of clauses over the shared variables is one way to achieve this combination [10].

Craig interpolation is also used in the DPLL(T)-method [9], which combines propositional logic
with a decision procedure for constraints that are attached to propositional variables. From the
stand-point of Constraint Programming (CP), DPLL(T) as in [9] attaches a Boolean variable to
each literal and maintains a global consistency among those Boolean variables w.r.t. a given theory.
As maintaining global consistency is expensive, it may be more e�cient to use incomplete forms of
propagation [2].

1



Aït-Kaci et.al.

Satis�ability modulo theories (SMT) addresses problems with in�nite domains (as for integer
arithmetics) or unknown domains (as for uninterpreted functions). Whereas SMT provides a semi-
decision procedure for unsatis�ability [11, 5] and requires that mathematical structures have decision
procedures or �rst-order axiomatizations, the interest of CP is to provide semi-decision procedures
for satis�ability, while requiring only decision procedures for each function and each predicate in the
mathematical structure. Informally, we can say that SMT is able to enumerate proofs, while CP
is able to enumerate solutions. SMT achieve this by propagating literals (i.e., constraints) among
decision procedures, whereas CP propagates reduced variable domains among constraints.

As the CP framework is quite general, it is possible to incorporate SMT-based reasoning by creating
all relevant constraints subject to SMT-propagation in advance and by posting a global constraint on
them that encapsulates a decision procedure. However, this approach does not work for uninterpreted
functions and other purely symbolic theories, which do not have a �xed semantical counterpart. In
this paper, we address this issue of combining symbolic and semantic reasoning within CP, which is
motivated by a veri�cation problem, namely that of the consistency and coherence of production rules.

The major obstacle is that uninterpreted and interpreted functions work on di�erent universes such
as Herbrand terms and integer domains and that the same expression may be interpreted di�erently
by di�erent decision procedures. In order to obtain an e�ective propagation, we need to combine
propagations on various domains, such as equality propagation over Herbrand terms or interval
propagation over numerical constraints. A recent paper of Baader and Ghilardi [1] uses an explicit
homomorphism to connect di�erent copies of the constraints, which can be interpreted di�erently. We
introduce copies of the interpreted functions. We interpret the original symbols such as + syntactically
(on Herbrand terms) and the copy +i semantically by the integer sum. We connect both via a function
h, which is a homomorphism since we add the constraint h(t1 + t2) =i h(t1) +i h(t2) for each subterm
t1 + t2 of the given formula. Unlike [1], we are not connecting theories, but mathematical structures
and we do not need to split the initial formula into separate subformulas. Structure connection turns
out to be very naturally compared to theory connection as it just attaches meaning to syntactic terms
via the well-known concept of a homomorphism between structures. We show that this is su�cient
to test the satis�ability of a quanti�er-free formula within a CP approach.

2. Veri�cation and Constraint Programming

In this section, we show that even very simple veri�cation problems can pro�t from di�erent types
of propagation including Boolean propagation, equality propagation, and the propagation of numeric
intervals. We explain why Constraint Programming can be bene�cial for veri�cation and why it needs
to be extended by other propagation methods for this purpose.

We consider a simple problem occurring in rule veri�cation. Business rule management systems
are becoming a popular way to manage business policies in business applications such as pricing,
claim processing, loan accrediting, and others. As business rules can be entered by di�erent experts,
veri�cation and validation methods are needed to consolidate the given rule set. Suppose that an
expert dealing with a customer �delity program has entered a pricing rule that adds a discount of
20% to customer orders of at least 10000 Euros. Formally, the rule is expressed as a production
rule consisting of a condition, which is applied to given objects, and an action, which modi�es those
objects. Our rule is applicable if there is an object o which is an instance of type Order and which
has a value greater than or equal to 10000. If the rule is applied then the discount of the object is
increased by 20:

r1: if o: Order(value >= 10000) then o.discount += 20;

The manager of the rule base now imposes that discounts must always be within the range 0 to 30%.
She asks whether there is any rule that can move a discount out of this domain. We thus obtain a

2



Satis�ability Modulo Structures

veri�cation problem, which consists in checking whether a safety property can be violated. A typical
approach to solve this problem is to see whether there is a scenario in which the rule is applied and
the property is violated. For this purpose, we need to model the rule execution, which represents a
transition of a state s1 to a state s2. We model this transition between unknown states by a quanti�er-
free �rst-order formula. We use a constant symbol o for the matched object and unary terms indexed
by the state for the value and discount attributes.

values1(o) ≥ 10000
discounts2(o) = discounts1(o) + 20

(1)

We also state that the initial discount of the order is within [0, 30]:

discounts1(o) ≥ 0 ∧ discounts1(o) ≤ 30 (2)

We also state that the discount does not change for any other object that is di�erent to o. In the
simple example, we consider one unknown object in addition to o and use the variable x to denote it:

¬(x = o) ⇒ discounts2(x) = discounts1(x) (3)

Furthermore, we suppose that the transition moves the discount of the object x out of the range [0, 30]:

discounts1(x) ≥ 0 ∧ discounts1(x) ≤ 30
discounts2(x) < 0 ∨ discounts2(x) > 30

(4)

We then combine (1), (2),(4), and (3) into a conjunction φ and ask whether φ it is satis�able. In
�rst-order logic, this requires to �nd a model of φ. A model consists of a domain and of functions and
relations over this domain that interpret the given symbols such that the formula evaluates to true.
It is important to note that the symbols for equality, sum, and order have a �xed interpretation.

We now discuss informally how the problem can be solved by di�erent forms of propagation.
We associate an (in�nite) interval domain to every numerical expression such as discounts2(x).
Furthermore, we associate a Boolean domain {T,F} to each atomic formula such as x = o and
discounts2(x) < 0. Initially, interval propagation reduces the interval domain of values1(o) to
[10000,∞) and the interval domains of discounts1(x) and of discounts1(o) to [0, 30]. Moreover, the
sum constraint in (1) reduces the domain of discounts2(o) to [20, 50]. This means that any model of
φ will evaluate those expressions to values within the reduced domains.

We now ask whether a model of φ may evaluate x = o to false. We therefore set the Boolean
domain of x = o to {F}. Boolean propagation of (3) will then set the Boolean domain of

discounts2(x) = discounts1(x) (5)

to {T}. As this constraint is true now, it will propagate the interval [0, 30] from discounts1(x) to
discounts2(x). Hence, neither the constraint discounts2(x) < 0, nor discounts2(x) > 30 can be
satis�ed, meaning that their Boolean domains are reduced to {F}. The disjunction in (4) is thus
violated and there is no model of φ that evaluates x = o to false.

Therefore, the constraint x = o must be true and we set its domain to {T}. Neither Boolean
propagation, nor interval propagation can now proceed with problem solving. However, equality
propagation can do so as we can deduce that discounts2(x) must be equal to discounts2(o) since x
is equal to o. Hence, equality propagation posts a new constraint:

discounts2(x) = discounts2(o) (6)

Interval propagation via this constraint sets the domain of discounts2(x) to [20, 50]. As a consequence,
the constraint discounts2(x) < 0 is violated and its Boolean domain is set to {F}. Boolean

3



Aït-Kaci et.al.

propagation via (4) then sets the domain of discounts2(x) > 30 to {T}. Interval propagation then
reduces the domain of discounts2(x) to [31, 50]. This interval is propagated via (6) to discounts2(o)
and the sum constraint in (1) reduces the domain of discounts1(o) to [11, 30]. In this particular
example, we can �nd a model of φ for any value in this domain. Hence, a safety violation can occur
if x is equal to o and the initial discount of o is within [11, 30]. The rule veri�cation system therefore
alerts the manager:

When applying rule r1 to an order o with discount strictly greater than 10 the discount of

o will be outside the domain of [0, 30].

As a consequence, the manager of the rule base modi�es the rule as follows:

r1': if o: Order(value >= 10000; discount <= 10) then o.discount += 20;

The safety violation check for this new rule adds the constraint discounts1(o) ≤ 10 to the conjunction
φ. This new conjunction is unsatis�able as we already deduced that discounts1(o) must be strictly
greater than 10 when φ is given.

This example shows that di�erent kinds of propagations are useful for �nding models of a quanti�er-
free formula. In the example, we used interval propagation, Boolean propagations, and equality
propagations. Other forms of propagations based on modular arithmetics for integers [4], regular
expressions for strings, and others are also useful.

It is important that these propagations are used altogether and operate on a single problem space.
As the propagations reduce domains that are linked together, they can interact very tightly. We
have seen that a Boolean propagation can trigger an equality propagation which triggers an interval
propagations. The interval propagation may trigger Boolean propagations and so on. It is thus
important to combine the di�erent propagations within a single solver which maintains a single
problem space in form of domains. This guarantees a good synergy among the propagations. If
multiple solvers with multiple problem spaces were used, then signi�cant e�ort for coordinating these
spaces would be needed. Constraint Programming (CP) provides a well-elaborated framework in
which di�erent forms of propagation can interact quickly. We will see that we gain a semi-decision
procedure for satis�ability of quanti�er-free formulas (modulo given mathematical structures) within
CP (supposed that domains are enumerable and constraints are decidable), which is very well-suited
for veri�cation problems such as safety checks.

3. Satis�ability Modulo Structures

In the last section, we gave an example of a rule veri�cation problem and showed how it can be
expressed as the satis�ability problem of a quanti�er-free �rst-order formula. Many other problems in
Computer Science, Operations Research, and Arti�cial Intelligence can be formulated as satis�ability
problems in a logical language. It is often the case that this language mixes symbols that can freely be
interpreted with symbols that have a �xed interpretation for the given problem. In the last section,
we used constant symbols such as o and function symbols such as discounts1 to express statements
about objects. The interpretation of these symbols can freely be chosen. Furthermore, we used the
binary function symbol + to express a sum of integers and the binary predicate symbol ≥ for the
greater-than-or-equal-to relation among integers. These symbols have a �xed mathematical meaning
for the problem of consideration. In other terms, we use a �xed mathematical structure such as integer
arithmetics to interpret this second class of symbols.

There are two approaches to solve satis�ability problems where some symbols are interpreted
within a given mathematical structure. The �rst approach, called satis�ability modulo theories (SMT),
requires an axiomatization of the mathematical structure in form of a �rst-order theory. The problem

4



Satis�ability Modulo Structures

then consists in �nding a model of this �rst-order theory that also satis�es the original constraints.
The second approach, which we call satis�ability modulo structures (SMS), tries to extend the given
mathematical structure by an interpretation of the yet uninterpreted symbols. Hence, the problem
consists in �nding a model of the original constraints that extends the given mathematical structure.

SMT requires an axiomatization of the mathematical structure and thus can address only limited
forms of integer arithmetics, such as Presburger arithmetics, for which axiomatizations exist. As SMT
adds universally quanti�ed formulas (the axioms) to the given constraints, it leads to a semi-decision
procedure for unsatis�ability. This means that an SMT procedure can prove the inconsistency of an
unsatis�able problem within a �nite number of steps, but may run forever if the problem is satis�able.
The SMS approach can address arbitrary mathematical structures that have enumerable universes
and decidable predicates and functions. It provides a semi-decision procedure for satis�ability as it
only needs to choose values for the subterms of the quanti�er-free formula. Furthermore, it can pro�t
from speci�c solving procedures that are available for the mathematical structure. An example are
the interval propagation methods explained in the last section.

Satis�ability procedures as used in Mathematical Programming and Constraint Programming
follow an SMS approach, but require that all symbols are interpreted by a mathematical structure.
In this case, the satis�ability procedure just needs to determine values of the variables. In the general
SMS setting, the satis�ability procedure also needs to choose the interpretation of terms involving
uninterpreted functions. A convenient way is to use a Herbrand structure and to interpret those
terms by themselves. However, we encounter two technical di�culties. Firstly, our constraints
make statements about the equality and disequality of objects. We may write formulas such as
a = b ∧ ¬(discount(a) = discount(b)). This formula is unsatis�able if we interpret the syntactic
equality by the identity relation. In this case, we interpret a and b by the same value. As a
consequence, the ground terms discount(a) and discount(b) are interpreted by the same values
as well and the formula is unsatis�able. Structures which interpret the syntactic equality by the
identity relation are called equality structures (cf. [8], section 3.1). Now consider the formula
¬(a = b)∧ discount(a) = discount(b). Although a and b represent di�erent objects, their discounts
may be equal and the formula should be satis�able. However, a Herbrand structure is not a suitable
equality structure for our purpose. It is based on a free algebra (cf. e.g., [8], section 3.1), which means
that the equality of two terms f(t1) = f(t2) implies the equality of their arguments t1 = t2. As a
consequence, the second formula is unsatis�able in a Herbrand structure which interprets the syntactic
equality by the identity relation.

Our problem consists in �nding a model of a �rst-order formula that interprets the syntactic
equality by an identity relation. However, we can transform this satis�ability problem into a di�erent
satis�ability problem which uses a Herbrand structure. Herbrand structures have the advantage that
less values need to be chosen by the satis�ability procedure. If only uninterpreted function and
predicate symbols are given, the satis�ability procedure just needs to determine the interpretation of
the predicate symbols, including the syntactic equality. We limit the interpretation of the syntactic
equality to a congruence relation, i.e. an equivalence relation ≈ that has the following two properties:

t1 ≈ t′1, . . . , tk ≈ t′k imply f(t1, . . . , tk) ≈ f(t′1, . . . , t
′
k) for all functions f

t1 ≈ t′1, . . . , tk ≈ t′k imply p(t1, . . . , tk) = p(t′1, . . . , t
′
k) for all predicates p

(7)

If a Herbrand structure interprets the syntactic equality by a congruence relation, then we call it
a Herbrand congruence structure. If the given quanti�er-free formula only contains uninterpreted
function and predicate symbols in addition to the syntactic equality, then it is satis�able in an equality
structure if and only if it is satis�able in a Herbrand congruence structure. This correspondence follows
from well-known results about equality structures and congruence relations (cf. e.g., [8], section 3.1).
We are thus able to use Herbrand structures for equality constraints over uninterpreted functions.

A second di�culty stems from the fact that the quanti�er-free formula may contain interpreted
as well as uninterpreted function and predicate symbols. An example is a = b ∧ 10 ≥ discount(a) ∧

5



Aït-Kaci et.al.

discount(b) ≥ 20. Whereas the predicate symbol ≥ represents the greater-than-or-equal-to relation
over integers, the function symbol discount can be interpreted freely. Following the discussion above,
we will interpret the ground terms discount(a) and discount(b) by themselves. However, these
terms occur as arguments of the greater-than-or-equal-to relation that expects integer arguments.
This means that we need two interpretations of the terms discount(a) and discount(b), namely
in form of Herbrand terms and in form of integers. If we chose only the integer interpretation,
then we would have di�culties to interpret terms such as isGood(discount(b)) which apply other
uninterpreted functions to an integer-valued term.

Recent work of Baader and Ghilardi [1] on theory combination allows the coexistence of multiple
interpretations of the same symbols within a mathematical structure. Baader and Ghilardi use a
many-sorted �rst-order logic. They introduce copies f ′ of certain function symbols f and they ensure
that f and f ′ range over di�erent sorts S, S′. These sorts can be interpreted by di�erent universes
U,U ′. Thanks to this, the copy f ′ can be interpreted di�erently than the origin f . Furthermore,
Baader and Ghilardi introduce an explicit connection function from the sort S to the sort S′. This
function connects a term f(t) to its copy f ′(t′) and represents a homomorphism between the two
interpretations since it has to satisfy the formula h(f(t)) = f ′(h(t)).

We apply this approach in the following way. We consider a many-sorted signature Ω, which
consists of a set of sorts, a set of constant symbols, a set of function symbols, and a set of predicate
symbols. Furthermore, we consider a quanti�er-free formula φ formulated with the symbols in Ω. We
distinguish a sub-signature Ω1, which contains those sorts and symbols from Ω which have a �xed
meaning for our problem. We consider a mathematical structure A1 that interprets the symbols in
Ω1. In order to permit unlimited equality reasoning over Herbrand terms, we will interpret all the
symbols in Ω by a Herbrand congruence structure as explained above. This Herbrand structure will
interpret the symbols in Ω1 in a di�erent way as speci�ed by A1. We therefore introduce a copy
Ω2 of the signature Ω1. We interpret the copies in the same way as the original sorts and symbols.
Let A2 be the corresponding mathematical structure. We can safely combine a Herbrand congruence
structure that interprets Ω with the structure A2 that interprets Ω2 as the two signatures Ω and Ω2

do not share any sort and symbol. Furthermore, we introduce connection functions h from the sorts
of Ω1 to the sorts of Ω2. As a result, we obtain a combined signature Ω∗ which consists of the original
signature Ω, the copy Ω2, and the connection functions h. We consider mathematical structures for
Ω∗ that interpret Ω by a Herbrand congruence structure, Ω2 by A2, and the connection functions h
by homomorphisms that ensure that the following properties are satis�ed:

h(f(t1, . . . , tk)) = f ′(h(t1), . . . , h(tk)) for all function symbols f and their copies f ′

.p(t1, . . . , tk) ≡ p′(h(t1), . . . , h(tk)) for all predicate symbols p and their copies p′
(8)

We call the resulting structure an Ω-Herbrand expansion of A1 over (Ω1,Ω2). This notion provides our
second transformation result: A quanti�er-free formula over Ω is satis�able in an equality structure
that coincides with A1 on the symbols in Ω1 if and only if there is an Ω-Herbrand expansion of A1

over (Ω1,Ω2). Whereas the original satis�ability problem consists in �nding an equality structure that
extends A1, we can now solve our problem by seeking a Herbrand structure which is linked to A1

via a homomorphism. In the next section, we describe how this problem can be solved by Constraint
Programming.

4. Constraint Networks for Satis�ability Modulo Structures

Given a quanti�er-free formula φ, we build a constraint network to determine a model for the formula
if it is satis�able. A constraint network consists of a set of variables and a set of constraints. Each
variable x has a domain D(x). Each constraint consists of a tuple (x1, . . . , xk) of variables and a k-ary
relation R which is a subset of D(x1) × . . . × D(xk). A constraint network represents a constraint

6



Satis�ability Modulo Structures

satisfaction problem. This problem consists in �nding an assignment of values to the variables such
that the value of each variable belongs to its domain and all the constraints are satis�ed. An assignment
satis�es a constraint with variables (x1, . . . , xk) and relation R if the vector of values of those variables
is an element of R.

We introduce variables for the unknown parts of the Ω-Herbrand expansion of A1. As the subterms
t of φ are interpreted by themselves, we do not introduce variables for the subterms themselves. If f is
an interpreted function symbol fromA1, then we introduce the variables χh(f(t1,...,tk)), χh(t1), . . . , χh(tk)

for the unknown interpretation of the terms h(f(t1, . . . , tk)), h(t1), . . . , h(tk). Furthermore, we
introduce a variable χψ with Boolean domain for each subformula ψ of φ. For equality propagation,
we furthermore need a variable χt1=t2 with Boolean domain for two arbitrary subterms1 t1 and t2 of
φ. We then express the following constraints:

1. Logical constraints: If φ contains a subformula of the form ¬ψ, then we introduce a binary
constraint with variables χψ, χ¬ψ and the relation R¬ := {(F,T), (T,F)}. If φ contains
a subformula of the form ψ1 ∧ ψ2 then we introduce a ternary constraint with variables
χψ1 , χψ2 , χψ1∧ψ2 and the relation R∧ := {(F,F,F), (F,T,F), (T,F,F), (T,T,T)}. If φ contains
a subformula of the form ψ1 ∨ ψ2 then we introduce a ternary constraint with variables
χψ1 , χψ2 , χψ1∨ψ2 and the relation R∨ := {(F,F,F), (F,T,T), (T,F,T), (T,T,T)}.

2. Congruence constraints: If φ contains two subterms f(t1, . . . , tk) and f(t′1, . . . , t
′
k), then we

introduce a constraint with variables χt1=t′1 , . . . , χtk=t′
k
, χf(t1,...,tk)=f(t′1,...,t

′
k
) and a relation that

ensures that χf(t1,...,tk)=f(t′1,...,t
′
k
) is true i� all the χt1=t′1 , . . . , χtk=t′

k
are true. We introduce

similar congruence constraints for subformulas p(t1, . . . , tk) and p(t′1, . . . , t
′
k) of φ. Furthermore,

we have to ensure that the syntactic equality is interpreted by an equivalence relation. We
ensure re�exivity by setting χt1=t2 to T whenever t1 and t2 are the same terms. The symmetry
and transitivity can be guaranteed by a congruence constraint for the equality predicate for
all subterms t1, t2, t

′
1, t

′
2 of φ. This means we introduce a ternary implication constraint with

variables χt1=t′1 ,χt2=t′2 ,χ(t1=t′1)=(t2=t′2)
. The congruence constraints can be encoded e�ciently

in form of a global constraint that encapsulates the congruence closure algorithm of Nelson and
Oppen [7].

3. Homomorphism constraints: If φ contains a subterm of the form f(t1, . . . , tk) and f is a function
symbol in Ω1 then we introduce a constraint on variables χh(t1), . . . , χh(tk), χh(f(t1,...,tk)) that
has the relation R(f) := {(v1, . . . , vk, v) | v = fA1(v1, . . . , vk)} where fA1 is the interpretation
of f in the structure A1. If φ contains a subformula of the form p(t1, . . . , tk) and p is a predicate
symbol in Ω1 then we introduce a constraint on variables χh(t1), . . . , χh(tk), χp(t1,...,tk) that has
the relation R(p) := {(v1, . . . , vk, v) | v = pA1(v1, . . . , vk)} where pA1 is the interpretation of p in
the structure A1. For any two subterms t1, t2 of φ that both have a sort S from Ω1, we introduce
a constraint on the variables χh(t1), χh(t2), χt1=t2 that ensures that χt1=t2 is true whenever χh(t1)
and χh(t2) are equal.

4. Satisfaction constraint: �nally we introduce a constraint on χφ with relation {T} stating that
φ must be true,

The resulting CSP has a solution if and only if there is a Ω-Herbrand expansion of A1 over
(Ω1,Ω2). The CSP can be solved by di�erent methods such as systematic search, interval propagation,
propagation of modular arithmetics [4], and other methods dedicated to the mathematical structure
under consideration.

1For the sake of brevity, we do not discuss the possible optimizations of this constraint network.

7



Aït-Kaci et.al.

5. Conclusion

We explained the principles of how to integrate SMT reasoning capabilities into CP, which enables
CP methods to test the satis�ability of quanti�er-free formulas modulo given mathematical theories,
as it is required by software veri�cation. A major di�culty is the incorporation of equality reasoning
over uninterpreted functions. We achieve this by a double representation in the sense of [1]. Equality
propagation is done over Herbrand terms and domain propagation is done by constraints. We showed
how to construct a hybrid constraint network coupling those propagations and illustrated the possible
synergy obtained by this connection. A topic of future work is the incorporation of advanced forms
of con�ict learning. CP allows more compact forms of con�icts and thus promises faster interpolation
methods [3].

Bibliography

[1] Franz Baader and Silvio Ghilardi. Connecting many-sorted theories. In CADE, pages 278�294,
2005.

[2] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
DPLL(T): Fast decision procedures. In CAV, pages 175�188, 2004.

[3] Ulrich Junker and Olivier Lhomme. Return of the JTMS: Preferences orchestrate con�ict learning
and solution synthesis. In ECAI, pages 123�127, 2006.

[4] Michel Leconte and Bruno Berstel. Extending a CP solver with congruences as domains for
program veri�cation. In Proceedings of the 1st workshop on Constraints in Software Testing,

Veri�cation and Analysis, pages 22�33, 2006.

[5] Zohar Manna and Calogero G. Zarba. Combining decision procedures. In Formal Methods at the

Crossroads. From Panacea to Foundational Support, volume 2757 of Lecture Notes in Computer

Science, pages 381�422. Springer, 2003.

[6] Greg Nelson and Derek C. Oppen. Simpli�cation by cooperating decision procedures. ACM

Trans. Program. Lang. Syst., 1(2):245�257, 1979.

[7] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure. J.

ACM, 27(2):356�364, 1980.

[8] Michael M. Richter. Logikkalküle. Teubner, 1978.

[9] Cesare Tinelli. A DPLL-based calculus for ground satis�ability modulo theories. In JELIA,
volume 2424 of Lecture Notes in Computer Science, pages 308�319, 2002.

[10] Cesare Tinelli. Cooperation of background reasoners in theory reasoning by residue sharing.
Journal of Automated Reasoning, 30:1�31, 2003.

[11] Cesare Tinelli and Christophe Ringeissen. Unions of non-disjoint theories and combinations of
satis�ability procedures. Theoretical Computer Science, 290:291�353, 2003.

8


