
Extending a CP Solver with Congruences as
Domains for Program Verification

Michel Leconte1 and Bruno Berstel1,2

1 ILOG
9, rue de Verdun – 93250 Gentilly – France

2 Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85 – 66123 Saarbrücken – Germany

{leconte,berstel}@ilog.fr

Abstract. Constraints generated for Program Verification tasks very
often involve integer variables ranging on all the machine-representable
integer values. Thus, if the propagation takes a time that is linear in
the size of the domains, it will not reach a fix point in practical time.
Indeed, the propagation time needed to reduce the interval domains for
as simple equations as x = 2y + 1 and x = 2z is proportional to the size
of the initial domains of the variables. To avoid this slow convergence
phenomenon, we propose to enrich a Constraint Programming Solver
(CP Solver) with congruence domains. This idea has been introduced
by [1] in the abstract interpretation community and we show how a CP
Solver can benefit from it, for example in discovering immediately that
12x + |y| = 3 and 4z + 7y = 0 have no integer solution.

1 Introduction

Programs made of production (or condition-action) rules [2–5], which are at the
basis of Business Rules Management Systems (BRMS) [6, 7], are gaining more
and more interest in the industry, as a way to externalize the rapidly changing
behaviors of applications, due to frequent regulation updates or to competitive
pressure. However, in order to deliver the expected agility and robustness, the
business users expects from the BRMS that they assist them in mastering their
rapidly growing rule bases. This concern includes the verification of properties
on the rule programs, as well as code navigation tools that are aware of the rule
program semantics.

Program verification problems, that is, the question of whether a program
satisfies a given property, can often be formulated as satisfiability and non-
satisfiability problems. Using a CP Solver to solve such problems has the ad-
vantage of being able to address a large class of formulas. This comes at the
price of completeness, but practical experience shows that it is most of the time
effective [8]. The solutions that are found correspond to answers (witnesses or
counterexamples) to the program verification questions.

However, the constraint problems that derive from program verification ques-
tions carry specificities that challenge the efficiency of a “plain” CP Solver. In

particular, and in constrast with combinatorial optimization problems, the do-
mains of the input variables are very large, being typically only bounded by the
machine representation of numbers. Also, because program verification often
works by refutation, verification problems tend to produce unsatisfiable con-
straint problems. Since the time taken by CP Solvers to conclude to unsatisfia-
bility may be proportional to the size of the domains of the variables, they result
in being inefficient in some cases, and especially on bug-free programs, for which
the constraint problems are unsatisfiable. This is illustrated by Example 1 in
Section 2.

In this paper we propose to incorporate congruences as domains into CP
Solvers, in order to prove the unsatisfiability of equations on integer variables
more efficiently, that is, in a time independent from the size of the domains
of the variables. Congruences are about the division of an integer by another,
and the remainder in this division. Congruence analysis comes from the static
analysis community. It has been introduced by Granger in [1]. As shown in that
paper [1], congruence analysis is not restricted to linear equations, but can handle
also general multiplication expressions. We extend its scope to other non-linear
expressions such as absolute value, or minimum.

In Section 2 we describe the slow convergence issue, and how it relates to
Program Verification. Then in Section 3 we study the existing related work.
The technique of congruences as domains, as well as the scope we address, are
introduced in Section 4. Section 5 provides the formulas for propagation, and
Section 6 studies the cooperation between congruence and interval domains.
Finally Section 7 illustrates the slow convergence phenomenon with experimental
data, Section 8 presents the usage that was made of this technique in ILOG’s
commercial products, and Section 9 concludes.

2 Slow Convergence in Program Verification

In this paper we will use the following notations (all variables below are elements
of ZZ, the set of the integers).

– We will note aZZ + b the set {az + b | z ∈ ZZ}.
– For x ∈ aZZ + b, we will also note x ≡ b [a].
– We will use a ∧ b for the greatest common divisor of a and b.
– We will use a ∨ b for the least common multiplier of a and b.

As mentioned in the introduction, a particularity of constraint problems
related to program verification, is that the input variables behave as if not
bounded. For example, integer input variables are often supposed to take any
value from machine integers according to their type. This is completely differ-
ent from what happens when using a constraint solver for solving combinatorial
problems, where we always try to reduce the initial domain of variables as much
as it can be with respect to the problem.

Consider a simple constraint such as, say, 2x + 2y = 1 where x and y are
integer variables with value ranging from −d to d, for some integer d. Obviously,

there is no solution to this constraint, and the “usual” interval reduction will
find it, by reducing the domains of x and y down to empty sets. But to achieve
this, the interval reduction will have to step through all the domains [−d, d],
then [−d + 1, d− 1], etc. up to empty ones.

We stress that this slow convergence phenomenon occurs during the prop-
agation of constraints: the time taken to reach a fix point is asymptotically
proportional to the width of the domains. Propagation occurs both initially and
during labelling; as a result, slow convergence may happen when searching for
a solution. For example, the equation 2x + 2y + z = 1 leads to the (slow) prop-
agation of the previous constraint 2x + 2y = 1 if z has been assigned 0 during
the search. It is to avoid both cases that we have implemented congruences as
domains.

The slow convergence issue over real numbers has motivated the development
of special interval narrowing techniques in [9]. Unfortunately, they do not apply
to the integer issue.

From the point of view of program verification, such problems can occur
in various situations. Consider for instance a program containing the following
loop: while (x is even) increment x. This program always terminates. As
mentioned in [10], a way to prove it is to prove that the conjunction of the
loop test expressed on the program states before and after one loop step, is
unsatisfiable. Here the program state is the value of x; after one loop step it
equals x + 1. To conclude to the termination of the program, a prover may thus
want to show that the constraint even(x)∧even(x+1) is unsatisfiable. This boils
down to the constraint problem exposed above, with the same slow convergence
problem.

As other examples of program verification problems that lead to proving
that a conjunction of integer equalities is unsatisfiable, consider the problem of
overlapping conditions in a guarded integer program. The original motivation for
the work presented in this paper comes from the verification of rule programs,
but the overlapping conditions problem may arise in any context that involves
guarded commands.

Example 1. Consider the following program, which implements in some fictious
guarded command language a simple version of the function that returns the
number of days in a Gregorian calendar year.

function nbOfDays (y : int) : int is
y === 0 mod 4 -> 366 |
y === 1 mod 4 -> 365 |
y === 2 mod 4 -> 365 |
y === 3 mod 4 -> 365

end

The question is whether the guards in this program overlap or not.

The answer is ‘no’, that is, the program is bug-free (with respect to the
question). To prove it, we shall first translate the guards into constraints, which

gives the four constraints y = 4xi + i, for i = 0, 1, 2, 3. In these constraints y
and xi are integer variables lying in [−d − 1, d] for some integer d (potentially
231 − 1). Then we shall prove that for any two distinct i and j between 0 and 3,
the conjunction y = 4xi + i ∧ y = 4xj + j is unsatisfiable. As seen previously in
this section, interval reduction can achieve this, but will need d steps. The rest
of this paper shows that using congruences as domains allows a CP Solver to
prove the unsatisfiability in a fixed number of steps.

3 Related Work

Congruence analysis has been introduced by Granger [1, 11] with applications to
automatic vectorization. Today congruence analysis is an important technique,
especially to verify pointer alignment properties [12, 13]. In this paper we ex-
tend its scope beyond linear equations and multiplication, to other non-linear
expressions such as absolute value, or the minimum operator.

Congruence domains have also been extended to constraints of the form
x− y ≡ b [c] [14, 15]. Toman et al. proposed in [16] a O(n4) normalization pro-
cedure for conjunctions of such constraints, Miné improved it to O(n3) in [14].
Grids [17, 18] are another extension which addresses relational congruence do-
mains, in the presence of equalities of the form

∑
aixi ≡ b [c], while we address

the more specific non-relational domains for x ≡ b [c]. In [19], Granger proposes
an extension of the congruence analysis by considering sets of rationals of the
form aZZ + b, where a, b ∈ Q.

In this paper, we extend a solver based on the finite domain CP Solver ILOG
JSolver [20] with congruence as domains for variables. Very few CP Solvers
reason with congruence. The Alice system [21] and its successor Rabbit [22]
implement some congruence reasoning capabilities as part of formal constraint
handling. Let us look at an example, which was taken from [22].

Example 2. Find all integer positive solutions of x3 + 119 = 66x.

From x3 < 66x, Rabbit finds that x2 < 66, and then x < 8. Rabbit then
performs two factorizations, namely 119 = 7 × 17 and 66 = (3 × 17) + 15.
It then uses a congruence reasoning to deduce from these factorizations that
x3 ≡ 15x [17], which can also be written x(x2 − 15) ≡ 0 [17]. Rabbit then
applies the deduction rule

if a× b ≡ 0 [k] and k is prime, then a ≡ 0 [k] or b ≡ 0 [k]

to deduce that x ≡ 0 [17] or x2 ≡ 15 [17]. Since x is positive and x < 8, the
constraint x ≡ 0 [17] is always false. Finally x2 ≡ 15 [17] leads to x = 7 as this is
the only admissible value for x among [1, 7].

As we can see from Example 2, the congruence capabilities of Rabbit are
pretty important, and they are based on redundant modular equations genera-
tion. In this example, it involves the factorization of 119 as 7× 17.

To solve this example, congruence domains of the form aZZ +b as we propose
are not enough. However, here pure interval reduction is enough to find the
solution. When the example is given to ILOG JSolver, the domain of x starts
at [1, 231 − 1], and is reduced to [2, 1290], then to [3, 43], to [5, 13], to [6, 9], to
end with x = 7.

As we will see, interval and congruence domains interact smoothly [1, 12, 13].
This is an example of the so-called reduced product operation of the theory of
abstract interpretation [1, 23, 24]. Numeric domains such as intervals and con-
gruences are available in Static Analysis Systems such as Astrée [25] or the
Parma Polyhedra Library [26, 27].

Finally, another approach to avoiding the slow convergence problem on con-
straints such as x = 2y + 1 and x = 2z, is to use an integer linear solver inside
the CP Solver. Note that this would handle only linear equations.

4 Congruences as Domains

4.1 Scope

The scope of constraints that we consider here extends to any equality constraint
over integer variables and expressions. The integer expressions are built using
the usual +, −, ×, ÷ arithmetic operators, as well as the power, absolute value,
minimum, and maximum ones.

We also consider element expressions in the form t[i], where t is an array
and i is an integer variable. The element expression denotes the i-th element of
the array. In simple element expression, this element is an integer; in generalized
ones, the element is an integer variable. An element constraint is a constraint of
the form z ∈ {t[i]}, which amounts to the disjunction

∨
i z = t[i].

Finally, we also consider if-then-else expressions in the form if(c, e1, e2),
where c is a constraint, and the ei are integer expressions. The if-then-else expres-
sion denotes the e1 expression if the constraint c is true, and the e2 expression
if the constraint c is false.

Although the whole range of integer constraints is covered, congruence anal-
ysis is of course not a decision procedure. That is, congruence analysis alone will
not always detect the unsatisfiability of a set of integer constraints. And this does
not harm, since it is simply meant to strengthen the constraint propagation.

4.2 Using Congruences on Interval Domains

Example 3. Find all integer solutions of 2x + 4y + 6z = 1.

On the example above, the interval-based constraint propagation will perform
no bound reduction at all. In particular, the unsatisfiability of the constraint will
not be detected by constraint propagation.

A congruence reasoning shows that the expression 2x + 4y + 6z is even, and
thus cannot be made equal to 1. At least, this illustrates a missing propagation.

Remember that a constraint
∑

i aixi = c has no solution if the greatest
common divisor

∧
i ai does not divide the constant c. We can use this property

in the propagators of integer linear constraints: we compute the greatest common
divisor of the coefficients of uninstantiated variables, and check if it divides the
constant minus the sum of the aixi for instantiated variables.

This passive use of a congruence constraint, where congruences are used to
update the bounds of interval domains, may already be useful. In addition it has
little overhead on propagation time since this check has to be done up-front, and
then only when a variable becomes instantiated.

4.3 Storing Congruence Information Separately

Example 4. Find all integer solutions of the problem made of the constraints
2x + 4y + 3z = 1 and z = 2t + 12.

The passive use of congruence information just described will not detect that
z cannot be even in 2x + 4y + 3z = 1. Thus the unsatisfiability of the two
constraints will be not detected. However, it would be a bad idea to use such a
congruence constraint in an active way without caution.

Imagine for example that the congruence constraint not only checks for the
constants dividing the greatest common divisor, but also adjusts the bounds of
the domains of variables accordingly. Let us say that propagating 2x+4y+3z = 1
would lead to adjust the bounds of z in such a way that these bounds are not
even. Coming back to Example 4, an empty domain will be found for z, as the
constraints will eventually lead to a domain with both odd and even bounds.
Unfortunately, this would exhibit a slow convergence behavior since the bounds
would change by one unit at a time.

The way to solve this last problem is to share the congruence information
between constraints, that is to say to equip variables with congruence informa-
tion, as opposed to hide it in the actual values of their bounds. Consequently,
in the very same way we associate a point wise finite domain to each integer
variable, we associate to each of them a congruence domain in the form of a pair
(a, b) that represents the set aZZ + b. Then for each expression, the congruence
domain of the expression can be computed from the congruence domains of the
sub-expressions, using the formulas detailled in next section. Similarly the com-
puted congruence domains are propagated by equalities constraints to reduce
the congruence domains of the variables.

This way, the unsatisfiability of the two constraints x = 2y and x = 2z +1 is
found by a congruence reasoning deducing that x should be both even and odd.
This reasoning requires a number of steps which is independent from the size of
the domains of the variables involved.

This active use of congruence information, where domains are reduced, sub-
sumes the passive use described previously, which only performs divisibility
checks.

5 Propagation of Congruences as Domains

5.1 Propagation Through Operations

Each integer variable has a congruence domain, noted aZZ + b, which represents
all possible values for this variable. We use 0ZZ + b to represent the constant b,
and 1ZZ + 0 as the domain of a variable with all integers as possible values.

Now we have to define how to compute the congruence domain for expres-
sions. We only give here the formulas for the addition and multiplication oper-
ations. These formulas, and those for substraction and division, can be found
in [1]. Given x ∈ aZZ + b and y ∈ a′ZZ + b′:

x + y ∈ (a ∧ a′)ZZ + (b + b′) (1)
x× y ∈ (aa′ ∧ a′b ∧ ab′)ZZ + bb′ (2)

One can note that the square expression has a more precise characterization
than the one derived from the general multiplication case. Given x ∈ aZZ + b:

x2 ∈ (a2 ∧ 2ab)ZZ + b2 (3)

Let us look now at the union expressions, which result from constraints of
the form z ∈ {x, y}. Given x ∈ aZZ + b and y ∈ a′ZZ + b′:

if z ∈ {x, y} then z ∈ (a ∧ a′ ∧ |b− b′|)ZZ + b (4)

The dissymmetry between b and b′ in this formula is only apparent. Indeed, let
α denote the greatest common divisor of a, a′, and |b − b′| appearing in (4): in
particular it divides |b − b′|. That is, ∃k ∈ ZZ, b − b′ = αk. In other words, we
have b ≡ b′ [α].

This formula for the union gives the formula for if-then-else expressions. Re-
member that if(c, e1, e2) is an expression taking the value e1 when c is true and
e2 when c is false. If the constraint c is known to be true (resp. false), then the
congruence domain for if-then-else is the congruence domain of e1 (resp. e2).
However if the truth value of the constraint is unknown, then the expression has
a congruence domain which is the union of the congruence domains of the two ex-
pressions. (This makes union an over-approximation of if-then-else expressions.)
Given x ∈ aZZ + b, y ∈ a′ZZ + b′, and a constraint c:

if(c, x, y) ∈

aZZ + b if c is known to be true
a′ZZ + b′ if c is known to be false
(a ∧ a′ ∧ |b− b′|)ZZ + b otherwise

(5)

This also leads to the formula for a min expression, as min(x, y) is equivalent
to if(x < y, x, y). Formulas for max and absolute value may be easily found if
we remark that max(x, y) = if(x < y, y, x) and |x| = if(x < 0,−x, x).

Finally, for an array t of integer variables and an integer variable i, the
expression z = t[i] is equivalent to z ∈ {t[j]} for all values j which are non-
negative, and less than the length of the array t.

5.2 Propagation Through Equality

We now indicate how to deal with equality constraints. As usual when propagat-
ing through equality, we just have to compute the intersection of the domains.
Given x ∈ aZZ + b and y ∈ a′ZZ + b′:

if x = y then x ∈
{

(a ∨ a′)ZZ + b′′ if (a ∧ a′) divides (b− b′)
∅ otherwise (6)

The number b′′ can be computed as follows. Let x = au+ b and y = a′v + b′, the
equality x = y gives au+b = a′v+b′, that is, au−a′v = b′−b. Since a∧a′ divides
b − b′, this can be simplified by a ∧ a′ into αu − α′v = β. Since α and α′ are
relatively prime, Bezout’s theorem ensures that there exist u0 and v0 such that
αu0 + α′v0 = 1. These numbers can be computed using a generalized Euclid’s
algorithm [28]. Combining the last two equations gives α(u−βu0) = α′(v+βv0).
Since α and α′ are relatively prime, u−βu0 is a multiple of α′. From x = au+ b,
we have x ∈ α′aZZ + b′′, where b′′ = b + βu0.

If the equality constraint involves expressions instead of variables, then the
congruence domains of the expressions are used to compute the intersection.
This resulting domain is then downward propagated to the sub-expressions of
the expressions until it falls back to the variables.

Example 5. Find all integer solutions to 4x = 3|y|+ 2.

Let us use Example 5 to illustrate how the propagation of congruence domains
proceeds. In the absence of further information, we have x, y ∈ 1ZZ + 0. The
formulas for addition (1), multiplication (2), and absolute value (5) give that
4x ∈ 4ZZ + 0 and 3|y|+ 2 ∈ 3ZZ + 2.

The formula (6) for the equality constraint gives that both expressions belong
to 12ZZ+8. Since 4x ∈ 12ZZ+8, x ∈ 3ZZ+2. Since 3|y|+2 ∈ 12ZZ+8, |y| ∈ 4ZZ+2.
The absolute value can be decomposed into the case where y ∈ 4ZZ + 2, and the
case where −y ∈ 4ZZ + 2. This latter case gives y ∈ 4ZZ − 2, which is the same
as 4ZZ + 2. Eventually y ∈ 4ZZ + 2. The domains cannot be further reduced: a
fix point is reached.

6 Cooperation of Congruences and Intervals

The idea here is to merge the two notions and to consider domains of the form
aZZ +b∩ [min,max]. In the Abstract Interpretation framework, this corresponds
to the reduced cardinal product of congruence domains and interval domains.
It is called Reduced Interval Congruence (RIC) in [12, 13]. By combining the
two domains, information coming from interval domains will be used by the
congruence domain and vice-versa.

Let us first examine how to communicate information from interval domains
to congruence domains.

– When a variable is bound, as for instance in x = b, this can be formulated
in congruences as x ∈ 0ZZ + b.

– When it is found that x ∈ {bi} for some constants bi, this implies that
x ∈ (

∧
i>0 |bi − b0|)ZZ + b0.

– For an element constraint z ∈ {t[i]}, the range of the variable i restricts the
elements of t that are to be taken into account to compute the congruence
domain of z.

To communicate information from congruence domains to interval domains,
one will use the fact that the bounds of a variable must lie in the same congruence
domain as the variable itself. That is, if x ∈ [min,max] and x ∈ aZZ + b, then
min and max must be adjusted in order to belong to aZZ + b. When a 6= 0, the
adjusted min is ad(min − b)/ae+ b and the adjusted max is ab(max − b)/ac+ b.

If the diameter max −min is less than a, the variable will have a singleton or
empty domain. For instance if the interval domain had been reduced to [0, a−1],
then the variable can be instantiated to b, which is the only element of aZZ + b∩
[0, a− 1]. Similarly, if the interval domain had been reduced to [0, |b| − 1], then
the solver fails, as aZZ + b ∩ [0, |b| − 1] = ∅ for any a.

Also, for an element constraint z ∈ {t[i]}, the congruence domain of z is to
be taken into account to remove from the index variable domain the values i0
for which z = t[i0] cannot be satisfied.

Let us close this section with a example showing non-trivial reductions.

Example 6. Consider the two constraints 4x = 3y + 2 and |x| − 12z = 2.

We have already seen that the first constraint leads to x ∈ 3ZZ + 2 and
y ∈ 4ZZ+2. Now, looking at the second constraint, we deduce that |x| ∈ 12ZZ+2.
Since |x| = if(x < 0,−x, x), we deduce that x ∈ 12ZZ + 10 (if x < 0) or
x ∈ 12ZZ + 2 (if x ≥ 0). Because 12ZZ + 10 ∩ 3ZZ + 2 = ∅, we are left with
x ∈ 12ZZ + 2 and x ≥ 0.

7 Experimental Illustration

In this section we describe two examples that suffer from the slow convergence
problem, and we provide experimental data that exhibits the phenomenon.

Example 7. Solve 2x + 3y + 6z = 2, with x, y, z ∈ [−10d, 10d].

In Table 1, the times mentioned are the time taken to generate the first
solution. The variable x is instantiated first to −10d, then to −10d + 1 and
finally to −10d + 2 which leads to a solution. The numbers show that without
congruence domains this time is proportional to the size of the domains, while it
is not when using congruence domains. The result is then found in a time lower
than what can be measured; this is interesting per se, but the table shows that
this time does not depend on the size of the domains.

Example 8. Prove that 2x + 2y = 1, with x, y ∈ [−10d, 10d], has no solution.

In Table 2, the times mentioned are the time taken during the propagation,
which concludes to the unsatisfiability of the constraint. Here also, the numbers
show that without congruence domains this time is proportional to the size of
the domains, while it is not when using congruence domains.

Value of d Time without C.D. Time with C.D.

4 0.04 s 0 s

5 0.19 s 0 s

6 1.88 s 0 s

7 18.85 s 0 s

8 241.82 s 0 s

9 946.57 s 0 s
Table 1. Times taken for solving Example 7.

Value of d Time without C.D. Time with C.D.

4 0.12 s 0 s

5 0.06 s 0 s

6 0.62 s 0 s

7 6.16 s 0 s

8 61.96 s 0 s

9 871.05 s 0 s
Table 2. Times taken in propagation for Example 8.

8 Industrial Usage

From a marketing perspective, Program Verification is an important feature
for BRMS [29]. As mentioned in the introduction, it aims at helping the non-
technical users to master the rule programs their author using the system.
This takes both the form of verification of properties on the program, and of
semantics-aware code navigation tools. For commercial products such as ILOG
JRules, this is a key differentiator.

As an illustration, one of the verification tasks we perform is to detect when
a rule is never applicable, that is, when the tests in its condition part are always
unsatisfiable. When the user creates a rule within the Eclipse IDE [30], a rule
that is never applicable will be immediately signaled, with the tests causing the
unsatisfiability highlighted.

We have embedded in ILOG JRules a new verification solver, as a Java
library built on a Constraint-based Programming Solver derived from ILOG
JSolver [20]. This CP Solver is part of ILOG JRules since release 4.5 which
was delivered in 2003, and has kept evolving since. The passive use of congruence
as presented in section 4 is present in ILOG JRules since release 6.0. We are
now implementing congruence as domains for the next release of ILOG JRules.

9 Conclusion

Integer constraint propagation exhibits a slow convergence phenomenon when
the time to reach a fix point or to fail is proportional to the size of the domains
of the variables.

To avoid this phenomenon for some integer equality constraints, we added
to a CP Solver some congruence reasoning capabilities. We have taken the idea
of equiping the variables with congruence domains from the abstract interpre-
tation community [1], as it leads to efficient and scalable implementations. We
have shown how a CP Solver can benefit from these congruence domains with
several examples, concluding with illustrations on the interaction of interval and
congruence domains.

This work is part of the already distributed ILOG JRules product, and will
be completely integrated in the next ILOG JRules release.

References

1. Granger, P.: Static analysis of arithmetic congruences. International Journal of
Computer Math (1989) 165–199

2. Allen Newell, H.A.S.: Human problem solving. Prentice Hall, Englewood Cliffs,
NJ, USA (1972)

3. Davis, R., Buchanan, B.G., Shortliffe, E.H.: Production rules as a representation
for a knowledge-based consultation program. Artif. Intell. 8(1) (1977) 15–45

4. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match
problem. Artif. Intell. 19(1) (1982) 17–37

5. Baralis, E., Widom, J.: An algebraic approach to static analysis of active database
rules. ACM Trans. Database Syst. 25(3) (2000) 269–332

6. ILOG: ILOG JRules. (2006) http://www.ilog.com.
7. JBoss: Drools. (2006) http://www.drools.org.
8. Collavizza, H., Rueher, M.: Exploration of the capabilities of constraint program-

ming for software verification. In Hermanns, H., Palsberg, J., eds.: TACAS. Volume
3920 of Lecture Notes in Computer Science., Springer (2006) 182–196

9. Lhomme, O., Gotlieb, A., Rueher, M.: Dynamic optimization of interval narrowing
algorithms. J. Log. Program. 37(1-3) (1998) 165–183

10. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear
ranking functions. In Steffen, B., Levi, G., eds.: VMCAI. Volume 2937 of Lecture
Notes in Computer Science., Springer (2004) 239–251

11. Granger, P.: Static analysis of linear congruence equalities among variables of a
program. In Abramsky, S., Maibaum, T.S.E., eds.: TAPSOFT, Vol.1. Volume 493
of Lecture Notes in Computer Science., Springer (1991) 169–192

12. Balakrishnan, G., Reps, T.W.: Analyzing memory accesses in x86 executables. In
Duesterwald, E., ed.: CC. Volume 2985 of Lecture Notes in Computer Science.,
Springer (2004) 5–23

13. Venable, M., Chouchane, M.R., Karim, M.E., Lakhotia, A.: Analyzing memory
accesses in obfuscated x86 executables. In Julisch, K., Krügel, C., eds.: DIMVA.
Volume 3548 of Lecture Notes in Computer Science., Springer (2005) 1–18

14. Miné, A.: A few graph-based relational numerical abstract domains. In
Hermenegildo, M.V., Puebla, G., eds.: SAS. Volume 2477 of Lecture Notes in Com-
puter Science., Springer (2002) 117–132

15. Bagnara, R.: Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Università di Pisa, Corso Italia 40, I-56125
Pisa, Italy (1997) Printed as Report TD-1/97.

16. Toman, D., Chomicki, J., Rogers, D.S.: Datalog with integer periodicity con-
straints. In: SLP. (1994) 189–203

17. Bagnara, R., Dobson, K., Hill, P.M., Mundell, M., Zafanella, E.: Grids: A domain
for analyzing the distribution of numerical values. In: LOPSTR. (2006)

18. Müller-Olm, M., Seidl, H.: A generic framework for interprocedural analysis of
numerical properties. In Hankin, C., Siveroni, I., eds.: SAS. Volume 3672 of Lecture
Notes in Computer Science., Springer (2005) 235–250

19. Granger, P.: Static analyses of congruence properties on rational numbers (ex-
tended abstract). In Hentenryck, P.V., ed.: SAS. Volume 1302 of Lecture Notes in
Computer Science., Springer (1997) 278–292

20. ILOG: ILOG JSolver. (2000) http://www.ilog.com.
21. Laurière, J.L.: A language and a program for stating and solving combinatorial

problems. Artif. Intell. 10(1) (1978) 29–127
22. Laurière, J.L.: Programmation de contraintes ou pro-

grammation automatique. Technical report, L.I.T.P. (1996)
http://www.lri.fr/~sebag/Slides/Lauriere/Rabbit.pdf.

23. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL.
(1977) 238–252

24. Cousot, P., Cousot, R.: Static determination of dynamic properties of generalized
type unions. In: Language Design for Reliable Software. (1977) 77–94

25. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The Astrée analyzer. In: ESOP’05. (2005)

26. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex poly-
hedra and the Parma Polyhedra Library. In Hermenegildo, M.V., Puebla, G., eds.:
Static Analysis: Proceedings of the 9th International Symposium. Volume 2477 of
Lecture Notes in Computer Science., Madrid, Spain, Springer-Verlag, Berlin (2002)
213–229

27. Parma Polyhedra Library: PPL. (2006) http://www.cs.unipr.it/ppl.
28. Knuth, D.E.: Seminumerical Algorithms. Second edn. Volume 2 of The Art of

Computer Programming. Addison-Wesley, Reading, Massachusetts (1981)
29. Hendrick, S.D.: Business Rule Management Systems: Addressing Referential Rule

Integrity. IDC. (2006) http://www.idc.com/getdoc.jsp?containerId=201262.
30. The Eclipse Consortium: Eclipse 3.0. (2005) http://www.eclipse.org.

