
Detection of Inconsistencies in Rules due to
Changes in Ontologies: Let’s Get Formal

Bruno Berstel-Da Silva1 and Amina Chniti2

1 Institut für Informatik
Albert-Ludwigs-Universität Freiburg

Germany
2 INSERM UMRS 872 Eq.20,

Ingénierie des Connaissances en Santé,
Paris, France

Abstract In this paper, we focus on the impact of ontology changes
on production rules, in the context of rule programs written over the
entities of OWL ontologies. Then, ontology evolutions may make rules
inconsistent with respect to the knowledge modeled by the ontology.
To address this problem, we propose to combine two approaches: the
syntactic approach of the Model-Detect-Repair (MDR) method, and
a semantic approach based on a formal description of production rules
and rule program inconsistencies. The present paper shows on simple
use cases the expected benefits of such a combination, which relies on
existing implementations.
Keywords: Ontology, Production Rule, Ontology Change, Inconsistency,
Program Analysis, Program Verification

1 Introduction

The integration of ontologies and rules is a topic of great interest for the se-
mantic web community [1]. Interest has also been demonstrated by companies
that care about ensuring the flexibility of their information systems [11]. In this
context, a solution for authoring and executing production rules over OWL on-
tologies is proposed in [5]. Such an approach leverages the best of both worlds:
an ontology is used to model the domain of concern, while a production rules
program implements the computations of the business application.

In this short paper, we focus on the impact that a change in the ontology
may have on the consistency of the rule program with respect to the knowledge
modeled by the ontology. Indeed a change in the structure or in the TBox of the
ontology can cause inconsistencies in the rule program, either at the rule level
(self-contradiction, invariant violation...) or at the rule program level (subsump-
tion, non-confluence...). To address these problems, we have developed in previ-
ous works [6] a new method, calledModel-Detect-Repair (MDR), to maintain
the consistency of rules when an ontology evolves. The general idea of MDR
consists in modeling the possible ontology changes, detecting the inconsistencies



that can be caused by such changes, and proposing solutions, or “repairs”, to
resolve the inconsistencies.

However, the “Detect” part in this method is based on the syntactic analysis
of the rules. This already gives good results in simple situations, but suffers from
the lack of a formal definition of inconsistencies. As a consequence, the accuracy
of detection rapidly decreases with the complexity of the rules, and/or of the
inconsistencies being looked for.

The present paper proposes to complement the MDR method with the
formalization of inconsistencies in production rule programs that we describe
in [2, 3, 4]. We expose this proposal the following sections, and we illustrate it
on simple use cases, where a change in the domain of a property in the ontology
causes the violation of an invariant by a rule.

2 The Problem

As mentioned above, we are interested in the problem of detecting inconsistencies
in rules that are defined over ontologies, when these ontologies change. Our
use cases are taken from a fictional market segmentation application, in which
customers are assigned scores and categories.

Rule r1 below assigns a Bronze category to a person p, when their score is
lower than 20.

r1(p : Person) : p.score < 20 → p.category := Bronze

Formally, a rule is a tuple r = (~o, ~T , g, a), where ~o are the variables for the
objects matched by the rule, ~T are their types, and g and a are the condition1

and the action of the rule. A rule condition is a non-quantified first-order logic
formula in the rule variables; a rule action is a loop-free imperative program
using the same variables.

In the example of rule r1, we have ~o = (p), ~T = (Person), g ≡ p.score < 20,
and a ≡ p.category := Bronze. The rule r1 is authored over an OWL ontol-
ogy [5]. This ontology defines the concept Person that has the property score
and the property category with an enumerated domain category owl:oneOf
{Bronze,Silver,Gold,Platinum}. The rule r1 includes an assignment that
complies with the domain.

A change occurs in the ontology, by which the value Bronze is removed from
the domain. This ontology change will make the rule r1 inconsistent, as the value
assigned to property category no longer is in the domain of the property.

Thus, we propose theMDR approach that enables to track ontology changes
and to detect their impacts on rules authored over the ontology.

3 The MDR Approach

TheMDR approach (forModel-Detect-Repair) consists in modeling ontology
changes, detecting rule inconsistencies caused by the changes, and repairing the
1 The letter g stands for ‘guard’.



detected inconsistencies [6]. This approach is based on Change Management
Patterns (CMP) [8]. It consists of three categories of patterns: change patterns,
inconsistency patterns and repair patterns. In this paper, we focus on the detec-
tion of inconsistencies, and hence on the inconsistency patterns.

Inconsistency detection in rules is performed by (1) detecting the rules im-
pacted by an ontology change, and (2) detecting the rule inconsistencies caused
by the change.

The impacted rules are detected by analyzing the syntax tree of each rule
in the rule program in order to see if they use the ontology entity on which
the change operates. For example, in the use case described in Section 2, the
impacted rules are those using the property category in their definition.

The inconsistency patterns are implemented using inconsistency detection
rules (IDRs). These rules express conditions for ontology changes to cause some
kinds of inconsistency in rules. For example, an ontology change by which a value
is removed from the enumerated domain of a property may cause inconsistencies
of the kind Rule Never Applies and of the kind Domain Violation. The former can
be detected when a rule includes an equality test with the value being removed
in its condition. The latter can be detected when a rule assigns the value being
removed in its action, as in the example rule of Section 2.

The inconsistency detection rules RNAsyn and DVsyn below implement these
detection patterns:

RNAsyn(c :DomainChange, r :Rule, t :Comparison) :
r in c.impactedRules

& t in r.conditionTests
& t.operator = Equals
& t.property = c.property
& t.expression = c.valueRemoved

→ signal Rule Never Applies by r

DVsyn(c :DomainChange, r :Rule, a :Assignment) :
r in c.impactedRules

& a in r.actionStatements
& a.propertyInLHS = c.property
& a.expressionInRHS = c.valueRemoved

→ signal Domain Violation by r

However, this approach is based on the syntactic analysis of the rules, and
is only correct up to the power of this syntactic analysis. For example, rule r3
below would falsely be detected by RNAsyn as causing Rule Never Applies.

r3(p : Person) : p.category = Bronze OR p.category = Silver → p.bonus := 5

As another illustration of the limits of a syntactic approach, DVsyn is limited
to enumerated domains. Assume for example that the ontology defines the do-
main of the property bonus to [0, 40] and the domain of score to [0, 30]. Rule r2
below, which sets the score of a person p based on their bonus, complies with



these domains. However, it no longer does if the domain of bonus is changed to
[0, 50] in the ontology.

r2(p : Person) : p.score = 0 → p.score := (p.bonus+ 20)÷ 2

It requires more than the syntactic analysis currently performed by MDR to
detect such a Domain Violation.

4 A Formal Complement to the MDR Approach

In this section, we leverage the formal framework briefly exposed in Section 2,
and in more details in [3, 4], to describe, and reason about, rules and rule pro-
grams. In this framework, the example rule r2 is written ~o = (p), ~T = (Person),
g ≡ p.score = 0, and a ≡ p.score := (p.bonus + 20)÷ 2.

For the sake of simplicity, we assume in this paper that the action of a rule
consists of a single assignment, that is, a ≡ o.fr := e with fr ∈ Attr, where
Attr is the set of the attribute symbols denoting the properties defined by the
ontology, such as category , score or bonus. Because the formal framework defines
rule semantics based on Hoare triples, this limitation can be lifted by using the
results of Hoare logic.

When the ontology defines a domain on a property f of a class T , we represent
this domain constraint with a closed formula ∆f ≡ ∀o :T δf , where δf is a
formula in the sole variable o, and involves only the attribute f . In our example,
the formulas for the property domains after the changes in the ontology are

∆category ≡ ∀o : Person (o.category ∈ {Silver, Gold, Platinum})
∆score ≡ ∀o : Person (o.score ∈ [0, 30])

∆bonus ≡ ∀o : Person (o.bonus ∈ [0, 50]) .

A rule r complies with these domains if, provided its condition is compatible with
the domain formulas, the result of its execution still is compatible with them.
In terms of Hoare triples, this can be expressed as {

∧
f∈Attr∆f} r {

∧
f∈Attr∆f}.

That is, using the Hoare logic axiom for assignment:

CompliesWithDomains(r)
def≡

∧
f∈Attr

∆f ∧ g ∧∆fr [e/o.fr] .

Conversely, a Domain Violation inconsistency occurs if, although the rule
condition is compatible with the domain formulas, the result of its execution no
longer is. This gives the following definition, illustrated further below on rule r2:

DomainViolation(r)
def≡

∧
f∈Attr

∆f ∧ g ∧ ¬∆fr [e/o.fr] .

In this setting, the second inconsistency detection rule of Section 3 can be
rewritten as follows to use DomainViolation as a semantic criterion:



DVsem(c :DomainChange, r :Rule) :
r in c.impactedRules & DomainViolation(r)
→ signal Domain Violation by r

In this version of the inconsistency detection rule, we could omit the syntactic
condition r in c.impactedRules, as the semantic condition DomainViolation(r) is
enough to detect the inconsistency. It can also be kept as an optimization.

For such a rule as DVsem to be executed, a representation of the rules such
as r1 and r2 in our formal framework has to be built, and the inconsistency
detection engine has to be able to assess the satisfiability of a formula such
as DomainViolation [2]. This has been implemented in the Rule Static Analysis
features of the ILOG BRMS2 product, now known as IBM ODM3 [10].

The inconsistency caused in r2 by the extension of the domain of bonus is
thus detected by assessing the satisfiability of DomainViolation(r2), which reads:

∆category ∧∆score ∧∆bonus ∧ p.score = 0 ∧ ¬∆score [(o.bonus + 20)÷ 2/o.score]

that is, after simplication:

∀o : Person (o.bonus ∈ [0, 50]) ∧ ∃x : Person ((x.bonus + 20)÷ 2 /∈ [0, 30]) .

Interval propagation gives than if x.bonus ∈ [0, 50], then (x.bonus + 20) ÷ 2 ∈
[0, 35]. The formula above is therefore satisfiable, which signals a Domain Vio-
lation.

5 Conclusion

In this paper, we propose to combine two approaches, to enhance the detection
of inconsistencies in rule programs due to changes in ontologies.
MDR (forModel-Detect-Repair) is a pattern-based method to manage the

impacts of ontology evolutions on rules defined over ontologies. Its “Detect” phase
currently uses a syntactic approach. This approach consists in analysing the syn-
tax tree of rules, to detect the rules impacted and the inconsistencies impacting
them. We propose to complement this approach with a formal definition of in-
consistencies in rule programs, which allows us to include a logic-based detection
mechanism of these inconsistencies inMDR.

Thanks to this combination,MDR can detect more cases of inconsistencies,
on more complex rules, more reliably.

We have not implemented our proposal yet, however we are confident of its
feasibility, since our formal approach is at the heart of the Rule Static Analysis
features of the IBM ODM product [10], andMDR has been prototyped on top
of IBM ODM. Furthermore, both have been deployed on large-scale, real-world
use cases. MDR is experimented by Audi to verify that the tests elaborated
2 BRMS stands for ‘Business Rules Management System’.
3 ODM stands for ‘Operational Decision Manager’.



on seat belts conform to the European regulation [6], and by Hôpital Européen
Georges-Pompidou in pharmaceutical validation of medication orders [7]. IBM
ODM is used on a daily basis in mission-critical applications, such as the payment
clearing and settlement platform of major credit card companies [9].
Acknowledgments The MDR approach has been developed in the context of the
Ontorule project at the Center for Advanced Studies (CAS) of IBM France. The for-
mal approach has been developed as a joint project between the University of Freiburg
and ILOG, now a part of IBM.

References

1. G. Antoniou, C.V. Damásio, B. Grosof, I. Horrocks, M. Kifer, J. Maluszynski, and
P. F. Patel-Schneider. Combining rules and ontologies: a survey. Technical Re-
port IST506779/Linköping/I3-D3/D/PU/a1, Linköping University, 2005. http://
rewerse.net/publications/rewerse-description/REWERSE-DEL-2005-I3-D3.html.

2. B. Berstel and M. Leconte. Using constraints to verify properties of rule programs.
In Proceedings of the 2010 Third International Conference on Software Testing,
Verification, and Validation Workshops, ICSTW’10, pages 349–354. IEEE Com-
puter Society, 2010.

3. B. Berstel-Da Silva. Formalizing both refraction-based and sequential executions of
production rule programs. In A. Bikakis and A. Giurca, editors, Rules on the Web:
Research and Applications, volume 7438 of Lecture Notes in Computer Science,
pages 47–61. Springer Berlin / Heidelberg, 2012.

4. B. Berstel-Da Silva. Verification of business rules programs. Ph.D. thesis, Albert-
Ludwigs-Universität Freiburg, Germany, 2012. http://www.freidok.uni-freiburg.
de/volltexte/8799/.

5. A. Chniti, P. Albert, and J. Charlet. A loose coupling approach for combining
OWL ontologies and business rules. In RuleML2012@ECAI Challenge, at the 6th
International Symposium on Rules Research Based and Industry Focused 2012,
volume 874, pages 103–110. CEUR Workshop proceedings, 2012.

6. A. Chniti, P. Albert, and J. Charlet. MDROntology : An ontology for managing
ontology changes impacts on business rules. In Joint Workshop on Knowledge Evo-
lution and Ontology Dynamics 2012. In conjunction with International Semantic
Web Conference (ISWC 2012). CEUR Workshop proceedings, 2012.

7. A. Chniti, A. Boussadi, P. Degoulet, P. Albert, and J. Charlet. Pharmaceutical
validation of medication orders using an OWL ontology and business rules. In
Joint Workshop on Semantic Technologies Applied to Biomedical Informatics and
Individualized Medicine (SATBI+SWIM 2012). In conjunction with International
Semantic Web Conference (ISWC 2012). CEUR Workshop proceedings, 2012.

8. R. Djedidi and M.A. Aufaure. ONTO-EVOAL ontology evolution approach guided
by pattern modelling and quality evaluation. Proceedings of the Sixth International
Symposium on Foundations of Information and Knowledge Systems (FoIKS 2010),
2010.

9. IBM. VISA Europe: Processing payments with unprecedented agility and reliability,
2011. http://www.ibm.com/software/success/cssdb.nsf/CS/SSAO-8FNJEB.

10. IBM. IBM Operational Decision Manager v8.0 User’s Manual, 2012. http://publib.
boulder.ibm.com/infocenter/dmanager/v8r0/.

11. Ontorule Project. Ontologies meet Business Rules, 2012. http://
ontorule-project.eu.


