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Abstract. Multiaffine hybrid automata (MHA) represent a powerful
formalism to model complex dynamical systems. This formalism is par-
ticularly suited for the representation of biological systems which usually
exhibit a highly non-linear behavior. In this paper, we consider the prob-
lem of parameter identification for MHA. For this purpose, we extend
the algorithm implemented in the tool RoVerGeNe. We lift the purely
discrete abstractions of RoVerGeNe to linear hybrid automata (LHA),
which can be analyzed by the SpaceEx model checker. Besides a general
increase in precision, this enables the handling of time-dependent prop-
erties. We demonstrate the potential of our approach on a model of a
genetic regulatory network and a myocyte model.

1 Introduction

Hybrid automata can model systems from a wide range of real-world domains
such as embedded systems [2], biology [6], etc. Due to its behavioral complexity,
the biological domain can particularly benefit from the expressiveness of hybrid
automata. However, in this setting the models mostly have highly non-linear
dynamics. In the last decade, a number of powerful hybrid model checkers, e.g.,
SpaceEx [15], d/dt [3], Flow* [11], dReach [17], which can handle different classes
of hybrid automata, has evolved. These tools have been developed to verify
whether a given safety property holds for a considered hybrid automaton.

Parameter identification is the complementary problem to verification. Here
we want to find a parameter set for which a given property is fulfilled by the
system. In the biological domain, this problem is of large importance considering
the current limitations on experimental measurement techniques [23].

In this paper, we present a novel approach to solve the parameter identifi-
cation problem for the class of multiaffine hybrid automata (MHA), which we
have implemented in the tool SpaceRover. We reduce the parameter identifica-
tion problem to solving multiple verification problems. We extend the approach
originally presented by Batt et. al. [7] and implemented in the tool RoVerGeNe.
In short, the algorithm consists of the following steps: We divide the parameter



space into a number of equivalence classes. Given an equivalence class, we ap-
proximate the behavior of the system with a linear hybrid automaton (LHA),
which can be analyzed by the hybrid model checker SpaceEx [15]. In addition,
we utilize a hierarchical search to prune the search tree.

Our reachability analysis is less conservative compared to RoVerGeNe where
time-dependent information is lost. This enables us to find larger parameter sets
and to analyze systems featuring an additional time-dependent stimulus. Space-
Rover still uses RoVerGeNe to abstract the MHA with a Kripke structure (KS)
analyzed thereafter by the tool SMV [10]. However, if the resulting precision
is unsatisfactory, we apply our new LHA analysis using the SpaceEx model
checker. In that way, we leverage different abstraction levels and find a “sweet
spot” between precision and performance.

Related work. Several approaches have been developed to solve the parameter
identification problem for hybrid automata. To begin with, a “sensitive barbar-
ian” approach was introduced by Dang et al. [13]. Bartocci et al. [5] consider a
modular version of this approach. The main idea is to combine numerical simula-
tion with sensitivity analysis to reduce the considered parameter space. A crucial
difference to our approach lies in the fact that we utilize a symbolic analysis of the
reachable states. In a further approach, Dreossi at al. [14] provide a parameter
synthesis algorithm for polynomial dynamical systems. Their synthesis technique
uses the Bernstein polynomial representation and recasts the synthesis problem
as a linear programming problem. Note that they consider only discrete time dy-
namical systems, whereas we treat time as a continuous entity. The work by Liu
et al. [22] tackles the parameter synthesis problem using δ−complete decision
procedures [16] for first-order logic (FOL) formulae to overcome undecidability
issues. In this setting, a FOL formula describes the states reachable with a finite
number of steps. Therefore, the parameter identification problem is reduced to
finding a satisfying valuation of the parameters for this formula. This approach
requires enumerating all the discrete paths of a particular length, which leads
to performance degradation for large models. In our approach, we employ the
symbolic model checker SpaceEx, which prunes the state space exploration by
checking whether the currently considered states have already been visited.

The rest of the paper is organized as follows. In Section 2, we introduce
some preliminary notions. In Section 3, we recapitulate the algorithms behind
RoVerGeNe. In Section 4, we present the theoretical foundations of our new
approach. In Section 5, we evaluate it on two biological models. In Section 6, we
conclude and discuss future work.

2 Preliminaries

In this section, we introduce the notions we use in the rest of the paper.

Kripke structure. Given a set of atomic propositions A, a Kripke structure
(KS) [21] is an abstract machine for modeling system behavior, represented by
the tuple K = (S, S0, T, L) where S is a finite set of states, S0 ⊆ S is a set
of initial states, T ⊆ S × S is a transition relation and L : S → 2A is an
interpretation function that defines which atomic propositions hold in the states.



Multiaffine function. A multiaffine function f : Rn → Rp (p ∈ N) is a polyno-
mial in the variables x1, . . . , xn with the property that the degree of f in any of
the variables is less than or equal to 1 [20]. Formally, f has the following form:

f(x1, . . . , xn) =
∑

i1,...,in∈{0,1}
ci1,...,inx

i1
1 · · ·xinn ,

with ci1,...,in ∈ Rp for all i1, . . . , in ∈ {0, 1} and the convention that x0k = 1.

Hybrid automaton. A hybrid automaton (HA) [1] is a mathematical for-
malism to model complex dynamical systems. It is represented by the tuple
H = (Loc, Inv ,Flow ,Trans, Init). Loc is a set of discrete locations. Each ` ∈ Loc
is associated with a set of differential equations (or inclusions) Flow(l) that de-
fines the time-driven evolution of the continuous variables. A state s ∈ Loc×Rn

consists of a location and values of the continuous variables x1, . . . , xn. A set
of discrete transitions Trans defines how the state can jump between locations
when the state is inside the transition’s guard set. The system can remain in a
location ` while the state is inside the invariant set Inv(`). All behavior origi-
nates from the set of initial states Init . A trajectory of a hybrid automaton is a
function which defines the state of the hybrid automaton for every time moment.
We consider Flow(l) to be continuous dynamics of the following two forms:

1. If ẋ(t) = f(x, t) where f(x, t) is a multiaffine function, then the HA is called
a multiaffine hybrid automaton (MHA).

2. If ẋ(t) ∈ P where P is a polytope, then the HA is called a linear hybrid
automaton (LHA).

Here x(t) ∈ Rn denotes the values of the continuous variables.
In the verification setting, we are interested in whether there exists a trajec-

tory from the set Init to the set Bad which defines the bad states to be avoided.

Genetic regulatory network. A genetic regulatory network [7] is defined by
the dynamics of the following form:

ẋi = fi(x, p) =
∑

j∈Pi

κij r
P
ij(x)−

∑

j∈Di

γij r
D
ij (x)xi (1)

where xi is the i-th component of the state vector x ∈ Rn, κij ∈ DP
ij and

γij ∈ DD
ij are production and degradation rate parameters of the parameter

vector p ∈ Rm, and rij are continuous piecewise-multiaffine functions arising
from products of ramp functions r+ and r− of the form shown in Figure 1(a).

Each rij captures the combined impact of several regulatory proteins in the
sets Pi and Di, respectively, on the control of the production or degradation of
the protein i. Assuming that the protein i does not regulate its own degradation,
i.e., for j ∈Di, xi does not occur in rDij (x), function f = (f1, . . . , fn) is multiaffine
in x and affine in p. We note that the ramp functions induce a partition of the
state space into a grid of hyper-rectangular regions. The values of the separating
hyperplanes are called thresholds θ. In that way, we can define an MHA with
locations induced by the state space partition. Note that an MHA provides a
semantically equivalent representation of the dynamics (1). In the following, we
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xa [0, 40] 2 8 12
xb [0, 20] 1 8 12

(d)

Fig. 1. (a) Ramp functions r+ and r−. θi and θ′i are threshold parameters. (b) Gene
network comprising two genes, a and b, coding for two repressor proteins, A and B.
Each protein represses the expression of the other gene, forming a cross-inhibition
network. (c) PMA model of the network in (b). Because of its simplicity, this model
is actually piecewise-affine. (d) Known and uncertain parameter values. (e) Bistability
property expressed in LTL.

the piecewise-affine (PA) models proposed in [13] (see also [9]). However, contrary
to the step functions used in PA models, ramp functions capture the graded
response of gene expression to continuous changes in effector concentrations.

3.2 Embedding transition systems

The specific form of the PMA functions f suggests a division of the state space
X into hyperrectangular regions (Figure 2(a) for our example). For every i ∈
{1, . . . , n}, let Λi = {λj

i}j∈{1,...,li} be the ordered set of all threshold constants in
f , and of all atomic proposition constants in Π, associated with gene i, together
with 0 and maxxi . The cardinality of Λi is li. Then, we define R as the following
set of n-dimensional hyperrectangular polytopesR ⊆ X , simply called rectangles:

R = {Rc | c = (c1, . . . , cn) and ∀i ∈ {1, . . . , n} : ci ∈ {1, . . . , li − 1}},

where
Rc = {x ∈ X | ∀i ∈ {1, . . . , n} : λci

i < xi < λci+1
i }.

c is the coordinate of the rectangle Rc. The union of all rectangles in X is denoted
by XR: XR = ∪R∈RR. Note that XR 6= X . Notably, threshold hyperplanes are
not included in XR. Two rectangles R and R′, are said adjacent, denoted R m R′,
if they share a facet. coord : R → ∏n

i=1{1, . . . , li−1}maps every rectangle R ∈ R
to its coordinate, and rect : XR → R maps every point x in XR to the rectangle
R such that x ∈ R. For the cross-inhibition network, the set R = {R11, . . . , R33}
of all rectangles is represented in Figure 2(b). R11 and R21 are adjacent, whereas
R11 and R22 are not.

Formally, the semantics of a PMA system Σ is defined by means of an em-
bedding transition system.

Fig. 1. (a) Ramp functions r+ and r−. (b) The two-genes network model.

will analyze the MHA representation of the system. The parameters allowed
to vary in an interval are called uncertain parameters. The parameters with
fixed values are semantically equivalent to constants. DP

ij and DD
ij define the

domains of the uncertain parameters for the production and degradation terms,
respectively. We denote the domain of all the uncertain parameters by D.

Finally, a property ϕ describing the desired system behavior is provided. In
this paper, we consider properties of the form Rinit → ¬FRbad where the region
Rinit denotes the set of the initial system states and the region Rbad denotes the
states to be avoided. Note that ϕ belongs to the class of safety properties. We
are interested in identifying a subset of the parameter domain D which ensures
that the property ϕ holds for a given MHA. More precisely, we look for the
parameters which ensure to not reach the region Rbad when starting in Rinit.

Example (two-genes network). In the following, we illustrate our approach on
the two-genes network [8] (also called toggle switch or cross-inhibition network).

ẋa = κa · r−(xa, θ
4
a, θ

5
a) · r−(xb, θ

2
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3
b )− xa
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2
a, θ

3
a)− 2xb κa ∈ [0, 30], κb ∈ [0, 40]
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4
b ) = (0, 8, 12, 20)

where xa and xb define the concentrations of the proteins A and B, respec-
tively. The parameters κa and κb define their range of production rates in the
given intervals. As Figure 1(b) shows, protein A inhibits the production of both
proteins A and B while protein B only inhibits the production of protein A.

We want to check a property which asks whether the protein concentrations
cannot reach some specific threshold values when starting in an initial region.

Furthermore, we consider an extended version of the dynamics (1) which
features a stimulus. The stimulus is a time-dependent function which models an
external influence on the system.

Example (two-genes network with stimulus). We extend the previous example
with the first equation now featuring some stimulus u:

ẋa = κa · r−(xa, θ
4
a, θ

5
a) · (1− r+(xb, θ

2
b , θ

3
b ) · (1− u))− xa

u([t1, t2]) = 1, u([t2, t3]) ∈ [0, 1], u([t3, t4]) = 0, (t1, t2, t3, t4) = (0, 0.29, 0.3, 1)

We use a stimulus which is 1 at the beginning up until 0.29s and then drops
linearly to 0 within 10ms, expressed by the ramp function of time r−(t, 0.29, 0.3).
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Fig. 2. (a) From state space partition to Kripke structure. Example for κa = 10 and
κb = 15 (arrows normalized). (b-c) Flow computation for P = [8, 12]× [15, 20].

This stimulus regulates the production of the protein A together with the
protein B. The term (1 − r+(xb, θ

1
b , θ

2
b ) · (1 − u)) encodes the logical formula

¬(xb ∧ ¬u), which is equivalent to (¬xb ∨ u). Thus, this term contributes to the
production of the protein A whenever the protein B is absent or the stimulus is
present. Since the stimulus is time-dependent and decreasing, we can reformulate
the description and also state that the inhibitory effect of the protein B is only
relevant for the production of the protein A after 0.29s.

3 RoVerGeNe

The main idea behind RoVerGeNe is to generate a parameter space partition
and iteratively compute Kripke structures (KS) which approximate the system
dynamics for a particular set of parameters.

Constructing the states of a Kripke structure. In RoVerGeNe, the thresh-
olds θ are considered as fixed, elementary controls of the PMA dynamics. They
partition the state space of the system into hyper-rectangular regions. Each of
them is associated to a state of a KS. We can formally capture this associa-
tion by introducing the following equivalence relation: x∼=x′ iff x and x′ are
strictly inside the same hyper-rectangle. Let Hx be the equivalence class for x,
i.e., the hyper-rectangle strictly containing x. Note that the equivalence classes
are independent of p.

Example. In the two-genes example we get a 2D-partition by the planes at
xa = θia and xb = θjb . Parts of it and the associated KS are shown in Figure 2 (a).

Constructing the transitions of a Kripke structure. Defining the transitions
of the KS requires some formal machinery. In contrast to states, they depend
on p. Let A be a set of atomic propositions of the form xi ./ θi where ./ is in
{>,<} and θi is a threshold of xi. Let |= be the satisfaction relation with the



usual semantics. By definition, all states strictly inside a hyper-rectangle either
satisfy or do not satisfy an atomic proposition a ∈ A.

Definition 1. Given a parameter p and an MHA M(p) whose dynamics depend
on p, the embedding transition system TM (p) is defined as follows:

– x→p x
′ iff: 1) Hx and Hx′ are either equal or adjacent. 2) There is a solution

ξ of (1) and a positive time τ such that ξ(0) = x, ξ(τ) = x′ and for all t in
[0, τ ], ξ(t) stays within Hx and Hx′ .

– x |= a in TM (p) if x |= a in M(p).

Almost all trajectories in M(p) are also represented in TM (p). The exception
are trajectories not passing through a common facet of two hyper-rectangles.

Given TM (p), we can now formally capture the transitions of the Kripke
structure KM (p) by the quotient of TM (p) w.r.t. the state space partition.

Definition 2. The discrete abstraction KM (p) of the MHA M(p) is TM (p) /∼=.

From the properties of a quotient structure we can immediately infer that
KM (p) simulates TM (p). In particular, if KM (p) satisfies a safety property, then
so does TM (p), i.e., KM (p) is a conservative abstraction of TM (p).

Proposition 1. [7] TM (p)�KM (p).

An effective procedure for constructing transitions. Summarizing, Definition 2
captures the semantics of KM (p) and Proposition 1 shows that KM (p) conser-
vatively abstracts TM (p). However, they do not provide an effective way of com-
puting KM (p). For this purpose, we will use the fact that in M(p), the dynamics
f(x, p) are multiaffine in x. Let hull be the convex hull operator.

Theorem 1. [9] Let f : Rn→Rn be a multiaffine function, H be a hyper-
rectangle in Rn with corner set CH , and Q be the interior of H. Then

f(Q)⊆ hull{f(v) | v ∈CH}.
Intuitively, the theorem says that the behavior of f(x, p) inside a hyper-

rectangle is completely determined by its behavior in the corners of the hyper-
rectangle. As a consequence, the following proposition can be proven.

Proposition 2. [7] TM (p) and KM (p) have a transition between adjacent hyper-
rectangles H and H ′ only if the projection of f(x, p) on the H→H ′ direction is
positive in at least one corner of the facet separating H from H ′.

The direction and strength of the derivative ẋ= f(x, p) in a corner v of a
hyper-rectangle depends in an affine way on the parameter values p. As a con-
sequence, fi(v, p) = 0 is the hyperplane separating parameter values p where ẋi
is positive from the ones where ẋi is negative.

In the following, by polytope we always refer to a convex polytope. The instan-
tiation of f(x, p) in every corner v of the state space leads to a parameter space
partition into polytopes. The theorem below provides an efficient way to com-
pute the image of f(x, p) for a particular state space corner v and a parameter
vector p ∈ P where P is a polytope.



Theorem 2. [19] Let f : Rn→Rn be an affine function, P be a convex polytope
in Rn with corner set CP , and Q be the interior of P . Then

f(Q)⊆ hull{f(v) | v ∈CP }.
Determining the parameters of interest. Given an MHA M with system dy-

namics ẋ= f(x, p) and a property ϕ, we can find parameter sets P such that
M(p) satisfies ϕ for all p ∈ P as follows:

1. Construct a hyper-rectangular partition ΠS of the state space of M .
2. Use ΠS to construct the states of a KS K, and to obtain a partition ΠP of
M ’s parameter space D.

3. For each pair of adjacent hyper-rectangles Hi and Hj in ΠS , and for each
polytope Q in ΠP , construct the transitions of K between the states corre-
sponding to Hi and Hj by examining f(x, p) in the corners of Q, and the
corners of the facet separating Hi from Hj .

4. Call SMV with input K and the abstraction of ϕ, and add Q to the desired
parameter set if SMV reports that ϕ is satisfied.

By abstraction of ϕ we mean the following. Note that a Kripke structure does
not allow to state quantitative properties, e.g., whether a particular threshold
can be exceeded. Therefore, we abstract the originally quantitative property by
mapping it to the corresponding regions in ΠS .

While sound, this approach is, however, too naive, as in general the number
of polytopes in ΠP is very large. Therefore, RoVerGeNe explores larger groups
of polytopes in ΠP in a tree-like fashion. To reduce the depth of the search tree,
an additional pruning technique is employed.

The exploration makes use of two KS: K∀M (P ) is an under-approximation of
KM (p), and K∃M (P ) is an over-approximation of KM (p), where P is a polytope
in the parameter space containing p.

Definition 3. Let KM (p) be the KS associated to MHA M(p), where p is a
parameter vector in the polytope P . The states of the KS K∀M (P ) and K∃M (P )
are the same as for KM (p). The transitions of K∀M (P ) and K∃M (P ) differ and
are defined as follows:

– H1→∃P H2 iff H1→pH2 in KM (p) for some p∈P .
– H1→∀P H2 iff H1→pH2 in KM (p) for all p∈P .

Proposition 3. [7] K∀M (P )�KM (p)�K∃M (P ).

To construct the transitions of K∃M (P ) and K∀M (P ), we apply the following
steps for each pair of adjacent hyper-rectangles H1 and H2 and each corner v
on their respective separating facet F :

– Let g(H1, H2) = ∪v∈F {p ∈ P | f(v, p)> 0}.
– Add H1→∀PH2 and H1→∃PH2 if H1 =H2.

– Add H1→∀PH2 to K∀M (P ) if P ⊆ g(H1, H2).

– Add H1→∃PH2 to K∃M (P ) if P ∩ g(H1, H2) 6= ∅.



Note that we use Theorem 2 to construct the parameter set satisfying the
constraint f(v, p)> 0. The above construction uses the following operations on
polytopes: union, intersection, and test for equality, inclusion and emptiness.

From Propositions 1 and 3, and the transitivity of the simulation relation,
we can immediately infer that K∃M (P ) simulates TM (p) for any p∈P . Hence, if
SMV returns true for K∃M (P ), the parameter set P can be safely added to the
set of parameters of interest.

Proposition 4. [7] TM (p)�K∃M (P ).

However, we cannot infer that TM (p) simulates K∀M (P ). Hence, while K∀M (P )
is an under-approximation of KM (p) for p ∈ P , it is not an under-approximation
of TM (p). The role of K∀M (P ) is to prune the search tree in the parameter space
exploration. In particular, RoVerGeNe prunes the parameter sets for which the
abstraction KM (p) is too coarse for every p ∈ P . This renders the consideration
of subsets of such a parameter set P useless as the violation of the property ϕ
by K∀M (P ) already implies a property violation by KM (p) for every p ∈ P .

Hierarchical parameter search. In more detail, RoVerGeNe works as follows:

1. Construct a list Ψ of all constraints f(v, p) = 0 where v is a corner in the
hyper-rectangular state space partition of M .

2. Start with the parameter set P equal to the whole parameter space D.
3. Call SMV to check whether K∃M (P ) |=ϕ holds. If this is the case, then add
P to the list of valid parameter sets. Otherwise, let SMV check whether
K∀M (P ) 6|=ϕ holds. In this case, prune the considered search subtree.

4. If K∃M (P ) 6|=ϕ and K∀M (P ) |=ϕ, split polytope P into P1 and P2 using the
next constraint in Ψ . Recursively continue from step 3 for both P1 and P2.

4 SpaceRover

Although very encouraging, the RoVerGeNe results are too conservative, because
RoVerGeNe loses almost all information about the continuous dynamics during
the abstraction process to the Kripke structures.

In our novel approach we keep the continuous dynamics of the original MHA
by abstracting it to an LHA. Furthermore, we incorporate RoVerGeNe within
the SpaceRover framework to leverage different abstraction levels.

In a nutshell, the LHA are constructed as follows. We decorate the states and
transitions of the KS K∃M (P ) and K∀M (P ) with continuous variables, invariants
and flows, respectively. In this way, we obtain the LHA L∃M (P ) and L∀M (P ) which
play the same role in the hierarchical parameter search. We have implemented
this approach in the tool SpaceRover which uses SpaceEx for the LHA analysis.

The state space of the LHA. Given a parameter vector p in a parameter set
P , the states of the LHA LM (p) consist of pairs (`, x), where ` is a location of the
LHA, and x is a value of the continuous variables. The locations are the same
as the states of the KS KM (p). The continuous state variables x correspond to
the ones of the MHA M(p). The LHA L∃M (P ) and L∀M (P ) have the same state
space as the LHA LM (p).



The location invariants. The invariant associated to location ` of the LHA
LM (p), L∃M (P ) and L∀M (P ) is given by the facets of the hyper-rectangle H`

corresponding to this location.

The location flows. The flows of the LHA LM (p), L∃M (P ) and L∀M (P ) are
computed in such a way that these LHA are in simulation relations similar
to the ones for KM (p), K∃M (P ) and K∀M (P ). The computation again uses the
multiaffine dependence of f(x, p) on x and the affine dependence of f(x, p) on p.

For a fixed parameter vector p and a fixed hyper-rectangle H with corner
set CH , Theorem 1 states that f(x, p) ∈ Q= hull({f(v, p) | v ∈CH}) for each
x ∈ H. In other words, f(x, p) is within the convex hull Q of the hyper-rectangle
corners v. Therefore, we end up with a polytope bounding the flow, i.e., the
dynamics are represented in the form of differential inclusion.

We lift the definition of the LHA LM (p) to parameter sets by introducing
the LHA L∃M (P ) and L∀M (P ). Here, we proceed similarly to the KS abstractions
K∃M (P ) and K∀M (P ).

To obtain the flows, we take advantage of Theorem 2. For fixed continuous
state x, polytope P with corner set CP , and parameter vector p∈P , it states
that f(x, p) ∈ Q= hull({f(x, d) | d∈CP }).

Putting Theorems 1 and 2 together, we obtain an algorithm for computing
the flows of the LHA L∃M (P ) and L∀M (P ), given a hyper-rectangle H and a
polytope P with corner sets CH and CP , respectively.

– For each d∈CP compute polytope Q(d) by traversing all vertices v ∈CH

and collecting f(v, d).
– For L∃M (P ), the polytope Q∃(P ) = hull(∪d∈CP

Q(d)) is the convex hull of all
polytopes Q(d) where d∈CP .

– For L∀M (P ), the polytope Q∀(P ) = ∩d∈CP
Q(d) is the intersection of all

polytopes Q(d) where d∈CP .

Note that similarly to the LHA LM (p) we end up with LHA whose dynamics
are defined by differential inclusions.

Using Theorems 1 and 2, we obtain the following relation between the poly-
topes Q(p), Q∀(P ) and Q∃(P ) for some parameter vector p of a polytope P .

Proposition 5. Q∀(P ) ⊆ Q(p) ⊆ Q∃(P ).

Example. Consider the state space rectangle H and the parameter space
rectangle P in Figure 2(c). The state equation ẋ= f(x, p) is:

ẋa = fa(x, p) =κa − xa ẋb = fb(x, p) =κb − 2xb.

Hence the dynamics f(v, d), for v and d in the corner sets CH and CP of H and
P , respectively, are of the form: (κia − θja, κkb − 2θ`b).

Let the corners of the parameter space rectangle P in Figure 2(b) be denoted
in anti-clockwise order as d1, d2, d3 and d4. Now construct the state space
rectangles Q(d1), Q(d2), Q(d3) and Q(d4). The intersection of all these rectangles



results in the state space rectangle Q∀(P ), while the union is the rectangle
Q∃(P ). Since it is already convex, hull is the identity operation in this case.

The transitions of the LHA. The transitions of the LHA LM (p) are the same
as the ones of KM (p). Similarly, the transitions of L∃M (P ) and L∀M (P ) are the
same as the transitions of K∃M (P ) and K∀M (P ), respectively. We do not add any
constraints (guards) on the transitions, because the invariants already guarantee
that a transition between two locations can only be taken if the continuous state
is a point on the facet (which is the intersection of the invariants).

The simulation relations. On the one hand, Kripke structures and LHA we
construct share the same discrete structure. On the other hand, LHA additionally
define continuous dynamics in every location. Therefore, by construction we
obtain the following simulation relation.

Proposition 6. TM (p)�LM (p)�KM (p).

This proposition states that the LHA LM (p) is a conservative abstraction of
the transition system TM (p), and that the KS KM (p) is in turn a conservative
abstraction of LM (p).

Proposition 7. L∀M (P )�LM (p)�L∃M (P ).

This proposition states that L∀M (P ) is an under-approximation of LM (P ) and
L∃M (p) is an over-approximation of LM (P ). It follows from Propositions 3 and 5
and the construction of the LHA. In particular, Proposition 3 states that every
transition in K∃M (p) is also present in KM (p) and likewise every transition in
KM (p) is also present in K∀M (P ). Furthermore, by construction, the LHA L∃M (P )
and L∀M (P ) have the same transitions as K∃M (P ) and K∀M (P ), respectively. In
a similar fashion, Proposition 5 states that the flows of L∀M (P ) are included in
the flows of LM (P ), which again are included in the flows of L∃M (p). Finally,
we note that all the three LHA we consider have the same sets of locations and
the location invariants do not depend on the parameters. Therefore, for every
particular location, the invariants are the same for LM (p), L∃M (P ) and L∀M (p).

From Propositions 6 and 7 we can finally derive the following statement.

Proposition 8. TM (p)�L∃M (P ).

This proposition is important as it justifies the use of L∃M (P ) when searching
for parameters for which TM (p) satisfies a given property ϕ.

Proposition 9. L∀M (P )�K∀M (P ) and L∃M (P )�K∃M (P ).

This proposition relates the LHA and KS abstractions. It states that K∃M (P )
and K∀M (P ) are conservative abstractions of the LHA abstractions and thus
allow more behavior than L∃M (P ) and L∀M (P ), respectively. Similarly to the case
of KS, while L∀M (P ) is an under-approximation of LM (p) for p ∈ P , it is not an
under-approximation of TM (p).
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Fig. 3. (a) Summary of simulation relations for some p in P . (b) Search tree in the
parameter space. L∃M satisfies the property ϕ in the nodes P00 and P1 whereas K∃M
violates it. L∀M satisfies the property ϕ in the node P0 whereas K∀M violates it. P00 and
P01 are only explored by SpaceRover. P10 and P11 are only explored by RoVerGeNe.

The simulation relationship between all the transition systems considered in
this paper are shown in Figure 3(a). An arrow Si→Sj in this figure means that
transition system Sj simulates transition system Si.

Stimulus treatment. We consider a time-dependent stimulus in our Space-
Rover framework. It is handled in the following way. As already outlined, we
assume the stimulus function to be a ramp function of time. Therefore, the
stimulus induces the new dimension time. We note that the nature of the time
dimension is different from other state dimensions in the sense that the time can
only grow. In other words, the flow for time is always ṫ = 1. Based on the time
partition and the time flow, SpaceRover can compute L∃M (P ) and L∀M (P ) and
analyze them in a precise manner.

Determining the parameters of interest. Given an MHA M with ẋ= f(x, p),
a safety property ϕ and the domain of uncertain parameters D, SpaceRover
explores the parameter space of M in a hierarchical way similar to RoVerGeNe.

The pseudocode of the algorithm is given in Figure 4. In the following, we
explain the main steps of the algorithm. Initially, SpaceRover investigates the
corners of the state space partition and collects the constraints Ψ over the pa-
rameters in the function CollectConstraintsList (line 2). Now, the algorithm
moves on to the main function Synthesis (line 4) which actually implements
the search in the parameter space. This function successively builds a number
of abstractions of the MHA for a considered parameter set in order to find valid
parameter sets. It takes a list L of constraints which encodes hyperplanes used
to define the current parameter set. We initially call the synthesis function with
L = ε as we first consider the whole parameter space. Now we look at the
function Synthesis in more detail. We start by calling the function Polytope-
FromConstraintsList (line 7) which builds a parameter polytope P based on
the provided list L of constraints over parameters and the parameter space do-
main D. In line 8 we build the KS K∃M ,K

∀
M and the LHA L∃M , L

∀
M . Note that

on the implementation level we compute them only on demand. The computed
approximations are analyzed in the following way:



1 SpaceRover(M,ϕ,D ) %MHA M , property ϕ , uncertain parameters D
2 Ψ := CollectConstraintsList(M,D ) ;
3 global V := ∅ ;
4 Synthesis(ε, Ψ,M,ϕ,D ) ; % start at root (ε)
5 return V ; % found valid parameters

6 Synthesis(L, Ψ,M,ϕ,D ) % constr . l i s t L . . .
7 P := PolytopeFromConstraintsList(L,D ) ;

8 K∃M ,K
∀
M , L

∃
M , L

∀
M = ConstructSystems(M,P ) ;

9 i f (SMV(K∃M , ϕ) )
10 V := V ∪ P ; return ; % valid set

11 e l s e i f (SpaceEx(L∃M , ϕ) )
12 V := V ∪ P ; return ; % valid set

13 e l s e i f (¬SMV(K∀M , ϕ) )

14 i f (¬SpaceEx(L∀M , ϕ) )
15 return ; % no future valid sets
16 % descend to child nodes in search tree
17 c := first(Ψ ) ; Ψ := rest(Ψ ) ;
18 Synthesis(concatenate(L,¬c), Ψ,M,ϕ,D ) ;
19 Synthesis(concatenate(L, c), Ψ,M,ϕ,D ) ;

Fig. 4. The SpaceRover algorithm in pseudocode.

1. If the property ϕ holds for the KS K∃M (line 9), we conclude that the current
parameter set P is valid. Therefore, we add P to the set of valid parameters
V and stop considering the current branch in the search tree (line 10).

2. If RoVerGeNe was not able to prove the validity of P , we continue with the
finer analysis using L∃M . We forward it to SpaceEx to check the property ϕ
(line 11). Similarly to the step 1, in case of the property satisfaction we add
P to the valid parameters (line 12).

3. If the parameter set validity has not been shown up to now, we proceed to
the pruning phase by considering K∀M and L∀M . If both of them violate the
property ϕ, we prune the search tree as no valid parameter sets can be found
for the subsets of P . In more detail, the LHA L∀M for the parameter set P
has the behavior of all LM (p) for p ∈ P . Therefore, if SpaceEx reports a
property violation for the set P , the property will not hold for all LM (p).

Note that due to efficiency reasons we first analyze K∀M (line 13) and move
on to L∀M (line 14) only if the KS K∀M is safe with respect to the property
ϕ. Furthermore, we observe that the property satisfaction for either K∀M or
L∀M does not lead to the property satisfaction for the original system as the
K∀M/L∀M neither over- nor under-approximate the original dynamics.

4. Otherwise, we partition the parameter set P into two subsets by considering
a further constraint from the list Ψ (line 17). Those two subsets correspond
to the positive and negative values of the chosen constraint, respectively. We
proceed by recursively analyzing both subsets (lines 18–19).



Example. In Figure 3(b), we illustrate the impact of the LHA L∃M/L∀M on
the structure of the search tree. We observe that L∃M satisfies the property ϕ in
the node P1 whereas K∃M violates the property. SpaceRover benefits in two ways
from this result. Firstly, it finds a large parameter set P1, whereas RoVerGeNe
can at most find valid sets in some of the child nodes, which are subsets of P1.
Secondly, SpaceRover does not explore the children of P1 in the search tree, which
improves the algorithm performance. Moreover, L∀M satisfies the property ϕ in
the node P0 whereas K∀M violates the property. Therefore, RoVerGeNe prunes
the subtree P0 although a valid parameter set P00 can be found by SpaceRover.

5 Implementation and Results

We use SpaceEx v0.9.8 for the analysis of the LHA constructed by SpaceRover.
Note that the default version of SpaceEx is meant primarily for the verification
setting and thus does not stop immediately after having found a property vio-
lation. Therefore, we have modified the version of SpaceEx so that it stops as
soon as a property violation has been detected. This adjustment lets us improve
the analysis performance. We apply the PHAVer scenario of SpaceEx, which
is particularly suited for the analysis of LHA. In our evaluation, we compare
the parameter identification results of SpaceRover and RoVerGeNe. furthermore
investigate the benefits of the RoVerGeNe integration

Two-genes network model. In this section, we first evaluate our tool Space-
Rover on a number of models from the class of genetic regulatory networks.
We have implemented SpaceRover in MATLAB. The tool relies on the library
PPL [4] for the operations on polytopes. The SpaceRover implementation and
the models we used for the evaluation are available online1. The experiments
have been performed on a notebook running Fedora on an Intel Core 2 Duo @
2.26GHz processor with 4 GB RAM.

For the evaluation purpose, we consider two classes of the two-genes network
model introduced in Section 2. The first model class is the original system, while
the second class is augmented by a stimulus. For every model class, we present
two model instances. We look for parameters which lead to the repression of
a given protein. For every instance and parameter identification algorithm, we
report the following data: the coverage of the parameter domain, the number of
the valid parameter sets found, the number of nodes in the search tree considered,
the number of KS and LHA analyzed, and finally the runtime in seconds. By the
term parameter coverage we denote the relation of the volume of the found valid
parameters to the volume of the whole parameter domain D. The results are
provided in Table 1. The instances 1–2 correspond to the model class without a
stimulus whereas the other two instances belong to the class with a stimulus.

We first observe that the valid parameter regions found by SpaceRover are
usually much larger than the ones found by RoVerGeNe for both the models
with and without the stimulus. Instance 2 provides a particularly illustrative

1 http://swt.informatik.uni-freiburg.de/tool/spacerover
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1 60 85 7 5 23 23 23 9 21 16 5 10 11 32

2 0 38 0 5 1 79 1 1 79 1 1 62 2 95

3 65 73 3 5 9 15 9 9 12 5 5 3 6 22

4 60 84 4 3 13 9 13 7 7 9 4 1 8 18

Table 1. model ID: 1–2: without stimulus; 3–4: with stimulus; granularity: granular-
ity of considered model (High/Low); % valid: percentage of parameter space verified;
# sets: number of parameter sets found; # nodes: number of nodes in the search
tree; # ∃-KS/∃-LHA: number of K∃M/L

∃
M analyzed; # ∀-KS/∀-LHA: number of

K∀M/L
∀
M analyzed; runtime: runtime in seconds;

example for the difference between RoVerGeNe and SpaceRover. Here, RoVer-
GeNe does not find any valid parameters, whereas SpaceRover discovers valid
parameter regions covering 38% of the whole parameter domain. This behavior
can be justified as follows. On the one hand, RoVerGeNe reports that both the
root ∀-KS and ∃-KS have intersection with the bad states. This results in the
analysis termination of RoVerGeNe. On the other hand, SpaceRover proceeds
in-depth with the analysis of the parameter state space and detects 5 valid pa-
rameter regions. In instance 3, we see similar impact of taking LHA into account.
In particular, we see that both RoVerGeNe and SpaceRover consider 5 ∀-KS.
However, SpaceRover additionally considers 3 ∀-LS which allow to extra unfold
the parameter state space. In this way, SpaceRover analyzes 15 nodes and finds
5 valid regions compared to 9 nodes and 3 valid regions for RoVerGeNe, respec-
tively. At the same time, the refined precision of LHA might shrink the search
space. For example, in instance 4, SpaceRover achieves the parameter coverage
of 84% vs. 60% by RoVerGeNe having considered only 9 nodes vs. 13 nodes in
case of RoVerGeNe. We note that the valid parameter sets which are near the
search tree root lead to larger parameter coverage with only a few parameter
sets. This fact is confirmed by instance 4 where SpaceRover finds 3 valid sets vs.
4 valid sets for RoVerGeNe, whereas the coverage of SpaceRover is still higher
than the one of RoVerGeNe as outlined above.

Myocyte model. A fundamental question in the treatment of cardiac disorders,
such as tachycardia and fibrillation [12], is the identification of circumstances un-
der which such a disorder arises. Cardiac contraction is electrically regulated by
particular cells, known as myocytes. For each electric stimulus originating in the
sino-atrial node of the heart (its natural pacemaking unit), the myocytes prop-
agate this stimulus and enforce the contraction of the cardiac muscle, known as
a heart beat. Grosu et al. [18] have identified an MHA model for human ven-



tricular myocytes, and recasted the biological investigation of lack of excitability
to a computational investigation of the parameter ranges for which the MHA
accurately reproduces lack of excitability. We apply SpaceRover to this model
and compare its performance with RoVerGeNe. The model has 4 continuous
variables and 4 parameters. In our setting, a valid parameter set ensures that
the myocyte is not excited.

We remark that our parameter identification approach has a large potential
with respect to the parallelization as induced LHA and KS can be analyzed
independently. We make use of this property and utilize a parallel version of our
SpaceRover algorithms for the analysis of the myocyte model. We have run our
experiments on a machine running Debian with a 32 cores AMD @ 2.3Ghz and
256GB RAM. We analyze the model behavior within a biologically reasonable
time span of 1 ms. We note that the stimulus and particularly its length require
a special treatment as the stimulus strongly impacts the myocyte behavior. The
stimulus in our model starts with the value one and linearly drops to zero. We
explore the impact of the stimulus length on the myocytes excitement.

SpaceRover empirically shows that the whole parameter domain is valid for
all stimuli of length up to approximately 0.12 ms. For this purpose, we have
discretized the stimulus length with a step of 0.1 ms, i.e., we have considered
the stimuli of the length 0, 0.1, ..., 1 ms. Having identified an interval of interest
[0.1; 0.2], we have discretized it in a finer way with a step of 0.02 ms. The Space-
Rover analysis takes 187 seconds and detects that the whole parameter domain
is valid for the stimulus of length 0.12 ms, whereas RoVerGeNe reports the
coverage of 29% after 48 seconds. The parameter coverage computed by Space-
Rover drops to 30% for the stimulus length of 0.14 ms and the analysis takes
1785 seconds. RoVerGeNe achieves 29% of the parameter coverage in this setting
and takes 48 seconds. We note that the coverage computed by RoVerGeNe stays
the same for all the stimuli length, as it cannot reason about their length. This
is a conceptual improvement of SpaceRover over RoVerGeNe in the sense that
RoVerGeNe cannot take time-dependent properties of the stimulus into account.

6 Conclusion

In this paper, we have presented a novel parameter identification algorithm for
multiaffine hybrid automata. The proposed algorithm has been implemented in
the tool SpaceRover. We compute equivalence classes in the parameter space and
explore them in a hierarchical way. The approximation of the system dynamics
with LHA lets us keep the timing information in our abstraction. This allows
us to precisely treat time-dependent properties such as a stimulus. We have
evaluated SpaceRover on a model of a genetic regulatory network and a myocyte
model and demonstrated its improvement over RoVerGeNe. For the future, it
will be interesting to investigate the application of hybrid model checkers which
support more expressive continuous dynamics. For this purpose, we need to look
at the ways to approximate the parametrized system dynamics with a hybrid
automaton class featuring dynamics beyond the ones of LHA.
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