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Abstract. A recent technique used in falsification methods for hybrid
systems relies on distance-based heuristics for guiding the search towards
a goal state. The question is whether the technique can be carried over
to reachability analyses that use regions as their basic data structure. In
this paper, we introduce a box-based distance measure between regions.
We present an algorithm that, given two regions, efficiently computes the
box-based distance between them. We have implemented the algorithm
in SpaceEx and use it for guiding the region-based reachability analysis
of SpaceEx. We illustrate the practical potential of our approach in a
case study for the navigation benchmark.

1 Introduction

The theory of hybrid systems provides a rich and popular framework for the
representation of systems which incorporate both continuous and discrete be-
havior [2, 29]. This framework has been utilized for the purpose of modeling
and analyzing a large range of practically relevant systems. In particular, hybrid
systems have been used for the analysis of automotive controllers [4], real-time
circuits [30], and biological systems [5, 1, 28, 35, 6, 18, 7, 21, 20].

An important problem in the context of hybrid systems is the problem to
determine whether a given set of bad states can be reached from an initial
state. If such a set cannot be reached, the hybrid system is called safe. Unfortu-
nately, this reachability analysis problem is decidable only for a restricted class
of hybrid systems [2, 22]. In order to be able to prove safety for richer classes of
hybrid systems, state-of-the-art reachability tools such as SpaceEx [16] make use
of over-approximations [34, 10, 16]. Furthermore, a lot of attention has recently
been devoted to falsification based on testing techniques. Testing techniques
are tuned to find unsafe behaviors rather than to prove safety [9, 8, 19, 11, 33,



31]. In general, falsification techniques are of great interest in industrial appli-
cations especially in the early phases of system development. The majority of
these techniques are inspired from motion planning, and construct in a numeric
execution-based way a rapidly exploring random tree (RRT). If the tree ends up
in an unsafe state, then one has found an unsafe behavior.

In this work, we propose a best-first symbolic-reachability analysis algorithm
(GBFS) which combines safety analysis and falsification. This algorithm has been
added as an alternative to the current DFS algorithm of SpaceEx. GBFS pro-
duces the same result, in similar amount of time as DFS, if the bad states of the
system cannot be reached from its initial states, despite SpaceEx inherent over-
approximations. However, GBFS is much faster than DFS on our benchmarks
in producing a symbolic counterexample if the system is potentially unsafe. The
heuristic used to guide the search is based on an appropriate cost measure for
hybrid systems based on dwell times.

For a given state s, the cost measure estimates the search effort to reach
an error state from s. The search preferably explores states with smaller esti-
mated costs, and thus avoids exploring unnecessary states. Obviously, to obtain
an overall efficient model checking approach, cost measures are both supposed
to guide the search accurately and to be efficiently computable. Guided search
has recently been successfully applied in the context of discrete and timed sys-
tems [13, 32, 25, 24, 27, 12, 36, 26]. In those contexts, the costs of a state s have
been defined as the smallest number of transitions in the state space to reach a
nearest error state from s. Overall, guided search has shown to be able to sig-
nificantly improve the efficiency of model checking for these classes of systems.

While measuring the costs of states in terms of transitions in the state space
is an appropriate method for discrete and timed systems, the situation becomes
slightly more complex for the more general class of hybrid systems. In the context
of hybrid systems, the overall model checking time specifically depends on the
operations to compute the continuous post of states because this operation is
most expensive during the exploration of the state space. Moreover, in contrast
to discrete and timed systems, the costs of the post operation depend on the
dwell time, i. e., the amount of time spent in the corresponding location. This
dependence occurs, at least in practice, because common tools like SpaceEx
compute the post operation based on iteratively computing the continuous image
of the region in intermediate points. Therefore, in the context of hybrid systems,
it is desirable to explore traces with low accumulated dwell time.

We theoretically show that, for a certain class of hybrid systems, our cost
measure provides desired search behavior. Moreover, although hard to compute
exactly, the representation of our cost measure lends itself to an accurate (box-
based) cost measure as an approximation. This approximation turns out to be
efficiently computable and, although surprisingly simple, to accurately guide the
search in the state space. Our experiments with SpaceEx show the practical
potential on challenging benchmarks.

The paper is organized as follows. In Sec. 2, we introduce the preliminaries
for the paper. Sec. 3 introduces the main contribution of this work based on a
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trajectory-based cost measure. This cost measure is experimentally evaluated in
Sec. 4. Finally, we conclude the paper in Sec. 5.

2 Preliminaries

In this section, we give the preliminaries for this paper. In Sec. 2.1, we introduce
our computational model. In Sec. 2.2, we present a basic reachability algorithm
for the state space exploration. Based on the reachability algorithm, guided
search and cost measures are introduced in Sec. 2.3.

2.1 Notation

In this paper, we consider models that can be represented by hybrid systems.

Definition 1 (Hybrid System). A hybrid system is formally a tuple H =
(Loc,Var , Init ,Flow ,Trans, Inv) defining

– the finite set of locations Loc,
– the set of continuous variables Var = {x1, . . . , xn} from Rn,
– the initial condition, given by the constraint Init(`) for each location `,
– the continuous transition relation, given by the expression Flow(`)(v) for

each continuous variable v and each location `. We assume Flow(`) to be of
the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U ,

where x(t) ∈ Rn, A is a real-valued n × n matrix and U ⊆ Rn is a closed
and bounded convex set.

– the discrete transition relation, given by a set Trans of discrete transitions;
a discrete transition is formally a tuple (`, g, ξ, `′) defining
• the source location ` and the target location `′,
• the guard, given by a linear constraint g,
• the update, given by a affine mapping ξ,

– the invariant, given by the linear constraint Inv(`) for each location `.

A state of the hybrid systemH is a tuple (`,x) consisting of a location ` ∈ Loc
and a point x ∈ Rn, i. e., x is an evaluation of the continuous variables in Var .

The semantics of a hybrid system is defined in terms of its trajectories. Let
T = [0, ∆] for ∆ ≥ 0. A trajectory of a hybrid system H from state s = (`,x)
to state s′ = (`′,x′) is defined by a tuple ρ = (L,X), where L : T → Loc and
X : T → Rn are functions that define for each time point in T the location
and values of the continuous variables, respectively. For a given trajectory ρ, we
define a sequence of time points where location switches happen by (τi)i=0...k ∈
T k+1. In such case we say that the trajectory ρ has discrete length |τ | = k.
Trajectories ρ = (L,X) (and the corresponding sequence (τi)i=0...k) have to
satisfy the following conditions:

• τ0 = 0, τi < τi+1, and τk = ∆ – the sequence of switching points increases,
starts with 0 and ends with ∆
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• L(0) = `, X(0) = x, L(∆) = `′, X(∆) = x′ – the trajectory starts in
s = (`,x) and ends in s′ = (`′,x′)

• ∀i ∀t ∈ [τi, τi+1) : L(t) = L(τi) – the location is not changed during the
continuous evolution

• ∀i ∀t ∈ [τi, τi+1) : X(t) ∈ Flow(L(τi)), i.e. Ẋ(t) = AX(t) + u(t) holds and
thus the continuous evolution is consistent with the differential equations of
the corresponding location

• ∀i ∀t ∈ [τi, τi+1) : X(t) ∈ Inv(L(τi)) – the continuous evolution is consistent
with the corresponding invariants

• ∀i ∃(L(τi), g, ξ, L(τi+1)) ∈ Trans : Xend(i) = limτ→τ−i+1
X(τ)∧Xend(i) ∈ g∧

X(τi+1) = ξ(Xend(i)) – every continuous transition is followed by a discrete
one, Xend(i) defines the values of continuous variables right before the dis-
crete transition at the time moment τi+1 whereas Xstart(i) = X(τi) denotes
the values of continuous variables right after the switch at the time mo-
ment τi.

We say that s′ is reachable from s if a trajectory from s to s′ exists. The
reachable state space R(H) of H is defined as the set of states such that a
state s is contained in R(H) iff s is reachable from Sinit . In this paper, we also
refer to symbolic states. A symbolic state s = (`, R) is defined as a tuple, where
` ∈ Loc, and R is a convex and bounded set consisting of points x ∈ Rn. The
symbolic part of a symbolic state is also called region. The symbolic state space
of H is called the region space. The initial set of states Sinit of H is defined as⋃
`(`, Init(`)).

In this paper, we assume there is a given set of error states that violate a
given property. Our goal is to find a trajectory from Sinit to an error state. A
trajectory that starts in a state s and leads to an error state is called an error
trajectory ρe(s). As already outlined in the introduction, the time to compute an
error trajectory ρe(s) can significantly depend on the accumulated dwell times
of the locations in ρe(s). Therefore, we define the costs of a state s as

cost(s) := min
ρe(s)

|τ |−1∑
i=0

δi,

i. e., as the minimal sum of dwell times ranged over the error traces that start
in s, where δi = τi+1 − τi. Error trajectories can be found by searching in the
state space. We will give a short introduction to this search-based approach in
the next section.

2.2 Finding Error States Through Search

We introduce a standard basic reachability algorithm along the lines of the reach-
ability algorithm used by SpaceEx. It works on the region space of a given hybrid
system. The algorithm checks if a symbolic error state in a given set Serror is
reachable from a given set of symbolic initial states Sinit. We define a symbolic
state s in the region space of H to be an error state if there is a symbolic state

4



se ∈ Serror such that s and se agree on their discrete part, and the intersection
of the regions of s and se is not empty.

Algorithm 1 Basic reachability algorithm

Input: Set of initial symbolic states Sinit, set of error states Serror

Output: Can a symbolic state in Serror be reached from a symbolic state in Sinit ?
1: Push (Lpassed , Sinit)
2: Push (Lwaiting , Sinit)
3: i← 0
4: while (Lwaiting 6= ∅ ∧ i < imax) do
5: scurr = GetNext (Lwaiting)
6: i← i + 1
7: if scurr ∈ Serror then
8: return ”Error state reached”
9: end if

10: S′ ← ComputeSuccessors(scurr)
11: for all s′ ∈ S′ do
12: if s′ /∈ Lpassed then
13: Push (Lpassed , s

′)
14: Push (Lwaiting , s

′)
15: end if
16: end for
17: end while
18: return ”Error state not reachable”

Starting with the set of initial symbolic states from Sinit , the algorithm
explores the region space of a given hybrid system by iteratively computing
symbolic successor states until an error state is found, no more states remain to
be considered, or a (given) maximum number of iterations imax is reached.

In the following, we explain Alg. 1 in more detail. Symbolic states for which
the successor states have been computed are called explored, whereas symbolic
states that have been computed but not yet explored are called visited. Both
visited and explored states are stored in a dedicated data structure Lpassed .
Symbolic states in Lpassed are used to detect cycles in the region space (see
below). Moreover, there is a data structure Lwaiting that contains visited states
that have not necessarily been explored yet. An iteration of the algorithm consists
of several steps. First, a symbolic state s is taken from Lwaiting and checked if s
is an error state. If this is the case, the algorithm terminates. If s is not an error
state, the symbolic successor states of s are computed (which in turn is a 2-
step operation consisting of the computation of the discrete and continuous post
state; we omit a more detailed description here). To avoid exploring cycles in
the region space, symbolic successor states that are already contained in Lpassed

are not considered again; the others are stored in Lwaiting .

The order in which the region space is explored by Alg. 1 depends on the
implementation of Lwaiting (e. g., a queue-based implementation corresponds to
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breadth-first search). Specifically, guided search preferably explores states that
appear to be more promising according to a cost measure. We will describe this
approach in more detail in the next section.

2.3 Guided Search

Guided search is an instantiation of the basic reachability algorithm that has
been introduced in the previous section. As a first characteristic of guided search
algorithms, Lwaiting is implemented as a priority queue. Therefore, the Push
function additionally requires a priority (cost) value for the pushed state, and the
GetNext function (line 5 in Alg. 1) returns a state with best priority according
to the cost measure. In the following, we discuss a desirable property of cost
measures in the context of guided search. As already outlined, we intend to
design a cost measure that guides the search well in the region space. To achieve
good guidance, the relative error of a cost measure h to the cost function as
defined in the previous section is not necessarily correlated to the accuracy of
h. In other words, h may accurately guide the search although the relative error
of h’s cost estimations is high. This is because it suffices for h to always select
the “right” state to be explored next.1 Based on this observation, we give the
definition of order-preserving.

Definition 2 (Order-Preserving). Let H be a hybrid system. A cost measure
h is order-preserving if for all states s and s′ with cost(s) < cost(s′), then also
h(s) < h(s′).

Cost measures that are order-preserving lead to perfect search behavior with
respect to the cost function. Therefore, it is desirable to have cost measures that
satisfy this property. We will come back to this point in the next section.

3 The Box-Based Distance Measure

In this section, we present the main contribution of this work. In Sec. 3.1, we
provide a conceptual description of an idealized distance measure based on the
length of trajectories. This idealized distance measure is used as the basis for
our box-based distance measure which is presented in Sec. 3.2.

3.1 A Trajectory-Based Distance Measure

In this section, we formulate a distance measure dist that can be expressed in
terms of the length of trajectories (see below for a justification of the name). For
states s and s′, the distance measure dist(s, s′) is defined as the minimal length

1 As a simple example, consider two states s and s′ with real costs 100 and 200,
respectively. Furthermore, consider a cost measure that estimates the costs of these
states as 1 and 2, respectively. We observe that the relative error is high, but the
better state is determined nevertheless.
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of a trajectory ρ that is obtained from the continuous flow and discrete switches
of trajectories that lead from s to s′. To define this more formally, we denote
the set of trajectories that lead from s to s′ with T (s, s′). Moreover, disteq(x,x

′)
denotes the Euclidean distance between points x and x′. Using this notation, we
give the definition of our trajectory-based distance measure.

Definition 3 (Trajectory-Based Distance Measure). Let H be a hybrid
system, let s and s′ be states of H. We define the distance measure

dist(s, s′) := min
ρ∈T (s,s′)

|τ |−1∑
i=0

(∫ τi+1

τi

√
ẋ21(t) + · · ·+ ẋ2n(t) dt+ disteq(i, i+ 1)

)
,

where ρ = (L,X), X(t) = (x1(t), . . . , xn(t)), and disteq(i, i+ 1) is a short-hand
for disteq(Xend(i),Xstart(i+ 1)).

Informally speaking, the distance between states s and s′ is defined as the
length of a shortest trajectory ρ from s to s′ induced by the differential equa-
tions and discrete updates of the visited locations L(τi) in ρ. Obviously, the
trajectory-based distance measure can be applied to error states in a straight-
forward way by setting s′ to an error state. We call the trajectory-based error
distance measure distE(s) := minse dist(s, se), where se ranges over the set of
given error states of H.

In the following, we show that for a certain class of hybrid systems H, dist(s)
is indeed correlated to the costs of s for all states s of H. In fact, this correlation
can be established for hybrid systems such that

1. all differential equations inH are of the form ẋi(t) = ±ci for every continuous
variable xi ∈ Var and a constant ci ∈ N, and

2. all guards in H do not contain discrete updates.

We call hybrid systems that satisfy the above requirements restricted systems.
Specifically, we observe that a necessary condition for hybrid system H to be a
restricted system is that for every continuous variable xi in H, there is a global
constant ci ∈ N such that all differential equations in H that talk about xi only
differ in the sign. It is not difficult to see that for the class of restricted systems,
the length of the obtained flow is linearly correlated with the time. Therefore,
the error distance measure distE is order-preserving.

Proposition 1. For restricted systems H, distE is order-preserving.

Proof. We show that from cost(s) < cost(s′), it follows that distE(s) < distE(s′).
As H is a restricted system, the square root of ẋ21(t)+ · · ·+ ẋ2n(t) is constant and
disteq(i, i + 1) is equal to zero. Therefore, distE(s) = minse minρ∈T (s,se) c

∑
δi,

which is equal to c · cost(s). This proves the claim.

Prop. 1 leads to an interesting and important observation. Roughly speak-
ing, we have reduced the problem of computing (dwell time) costs in the state
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space to the problem of computing “shortest” flows between regions. Therefore,
Prop. 1 shows that under certain circumstances, we can choose between cost
and dist without loosing precision. However, although still hard to compute, the
representation of dist based on lengths of flows lends itself to an approximation
based on estimated flow lengths. This approximation is presented in the next
section.

3.2 The Box-Based Approximation

In the following, we propose an effective approximation of the dist function that
we have derived in the last section. While the dist measure has been defined for
concrete states, our box-based approximation is defined for symbolic states. The
approximation is based on the following two ingredients.

1. Instead of computing the exact length of trajectories between two points x
and x′ (as required in Def. 3), we use the Euclidean distance between x and
x′.

2. As we are working in the region space, we approximate a given region R
with the smallest box B such that R is contained in B. This corresponds to
the well-known principle of Cartesian abstraction.

In the following, we will discuss these ideas and make them precise. As stated,
we define the estimated distance between points x and x′ as the Euclidean
distance between x and x′. Unfortunately, the Euclidean distance is not order-
preserving for restricted systems, but only for even more restricted systems that
allow even less behavior. This is formalized in the following proposition. For a
state s = (`,x), we define disteqE (s) := minse disteq(x,xe), where se = (`e,xe)
ranges over the error states, and disteq is the Euclidean distance function as
introduced earlier.

Proposition 2. For restricted systems H with ẋi(t) = ci, i. e., for restricted
systems where all locations have the same continuous behavior, disteqE is order-
preserving.

Proof. We show that from cost(s) < cost(s′), it follows that disteqE (s) <
disteqE (s′). By assumption, H is a restricted system where every location has
the same continuous dynamics. Therefore, the Euclidean distance disteq(s, se)

is equal to
∫ τk
0

√
ẋ21(t) + · · ·+ ẋ2n(t) dt, where τk is equal to the accumulated

dwell time of the trajectory from s to se. Furthermore, the square root of
ẋ21(t) + · · · + ẋ2n(t) is some constant c. Thus disteqE (s) = minse disteq(s, se) =
minse c · τk = c ·minse τk which in turn is equal to c · cost(s).

The above proposition reflects that the Euclidean distance is a coarse approx-
imation of the trajectory-based distance measure because it is effectively only
order-preserving for systems that allow behavior that corresponds to systems
with only one location. Indeed, it is the coarsest approximation one can think
of on the one hand. However, on the other hand, we have shown that there exist
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systems for which it is order-preserving, which suggests (together with Prop. 1)
that the Euclidean distance could be a good heuristic to estimate distances also
for richer classes of hybrid systems. Moreover, it is efficiently computable which
is particularly important for distance heuristics that are computed on-the-fly
during the state space exploration. (Obviously, one can think of arbitrary more
precise approximations based on piecewise linear functions; however, such ap-
proximations also become more expensive to compute. We will come back to this
point in the conclusions.)

For our distance heuristic, we approximate a given symbolic state s = (`, R)
with the smallest box B(s) that contains R. Formally, this corresponds to the
requirement

R ⊆ B(s) = [x1, x
′
1]× . . . [xn, x′n] ⊆ Rn ∧ ∀B′ 6= B(s) : R ⊆ B′ ⇒ B(s) ⊆ B′.

In order to be efficiently computable, it is essential that tight over-approximating
boxes can be computed efficiently. This can be achieved using linear program-
ming techniques. Our distance heuristic heq is defined as the Euclidean distance
between the center of two boxes. Formally, for a symbolic state s = (`, R), we
define

heq(s) := minsedisteq(Center(B(R)),Center(B(Re))),

where se = (`e, Re) ranges over the set of error states ofH, disteq is the Euclidean
distance metric, and Center(B) denotes the central point of box B. Obviously,
central points of boxes can be computed efficiently as the arithmetic average of
its lower and upper bounds for every dimension.

Overall, our distance heuristic heq determines distance estimations for sym-
bolic states s = (`, R) by first over-approximating R with the smallest box B
that contains R, and then computing the minimal Euclidean distance between
B’s center and the center of an error state. This procedure is summed up by
Alg. 2.

Algorithm 2 Compute Distance Heuristic heq

Input: State s = (`, R)
Output: Estimated distance to a closest error state in Serror

1: dmin ←∞
2: B ← B(R)
3: for all s′ = (`′, R′) ∈ Serror do
4: B′ ← B(R′)
5: dcurr ← disteq(Center(B),Center(B′))
6: if dcurr < dmin then
7: dmin ← dcurr
8: end if
9: end for

10: return dmin
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4 Experiments

We have implemented our box-based distance heuristic heq in SpaceEx and com-
pare the resulting guided search algorithm to the standard depth-first search
(DFS) algorithm of SpaceEx. The experiments have been performed on a ma-
chine with an Intel Core i3 2.40GHz processor and with 4 GB of memory. For
both search settings (i. e., for guided search as well as for uninformed DFS),
SpaceEx has been run with the same parameters (see Sec. 4.2).

In the following, we first introduce our benchmark problems in Sec. 4.1.
Afterwards, the experimental results are presented and discussed in Sec. 4.2.

4.1 Case Studies

For the evaluation of our approach, we used several problem instances of the two
case studies Navigation benchmark and System of Tanks.

Navigation benchmark As a first case study, we apply the navigation bench-
mark that has been proposed in the literature [14]. In the scope of this bench-
mark, we consider an object moving in the plane. The plane is divided into the
grid of squares where some initial state is given (i. e., region, velocity in direction
x and velocity in direction y). Furthermore, for each square, some differential
equations are defined which govern the system in the considered square. Finally,
some square A which should be reached and some square B which is to be
avoided are defined. We will look for a path from the initial state to square A.
We consider different problem instances of this benchmark with different sizes
of the grid.

System of tanks As a second benchmark which is similar to the one presented
by Frehse and Maler [17], we consider a network of tanks which are connected
by channels. Tanks have a fixed capacity, channels are characterized by their
throughputs. We have several kinds of tanks with different functionality, namely
production, buffer, delivery buffer, and reactor. The functionality of these tanks is
as follows. Liquid can be delivered from the production to one of the buffers B1,
B2 or B3. In particular, liquid can be stored in those buffers for some time.
Furthermore, liquid is forwarded to reactors R1, R2 and R3. Liquid can be
transferred only from Bi to Ri. Finally, liquid is transferred from the reactors
to the delivery buffer BD from which it is directly delivered to the customer.

For a given control strategy, it must be ensured that the delivery buffer BD
never gets empty according to this strategy (i. e., requirements of the customer
are satisfied). For a fixed i ∈ {1, 2, 3}, we have equal throughput vi from pro-
duction to Bi, from Bi to Ri, and from Ri to BD. Finally, the transmission rate
from BD to the customer is defined by vout.

We will investigate the behavior of the following controller. The controller
has the following phases which are characterized by constant m defining the
length of the time period when liquid is transferred between tanks:
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1. time = 0: open(Production,Bi) - transfer of liquid from Production to Bi
starts

2. time ∈ [0,m]: Production→ Bi - buffer Bi is filled
3. time = m: close(Production,Bi) - stop filling Bi
4. time = m: open(Bi, Ri) - start transfer to Ri
5. time ∈ [m, 2m]: Bi → Ri - liquid is transferred from the buffer Bi to the

reactor Ri
6. time = 2m: close(Bi, Ri) - stop transferring to Ri
7. time = 2m: open(Ri, BD) - start transfer to BD
8. 2m sec - 3m sec: Ri → BD - liquid is transferred from the reactor Ri to the

delivery buffer BD, i.e. delivery buffer is refilled.
9. time = 3m: close(Ri, BD) - stop refilling BD. After this phase the controller

goes back to the phase 1.

The controller can non-deterministically choose which buffer (and reactor) to
use in each iteration. Thus the number of trajectories grows exponentially with
time. We assume the consumption to be constant. Thus it is essential to transfer
to the delivery buffer enough liquid so it does not get empty within phases in
which the level of liquid in the delivery buffer sinks.

Our goal is to check whether the presented controlled may fail, i. e., may lead
to the drainage of the production buffer, and to discover the possible failure as
soon as possible. For our test, we set v1, v2, v3 such that v3 > v1 > v2, and vout
such that the delivery buffer will get empty no matter which buffer is chosen
by the controller. However, choosing B2 with the smallest throughput (and thus
refillment) rate v2 will obviously lead to the faster drainage of the delivery buffer
and therefore to the faster discovery of the controller failure. Contrarily, the
unfortunate choice of v3 will lead to the delay in the controller failure discovery.

4.2 Experimental Results

The experimental results for the largest problem instances in the navigation
benchmark (NAV25, . . . , NAV30) are provided in Table 1. The results have
been obtained using the LGG support function scenario of SpaceEx. Template
polyhedra are represented using 32 uniform directions. Furthermore, the max-
imal number of iterations is set to 200, and the continuous sampling time is
set to 0.1 seconds. Finally, the local time horizon for the continuous post op-
eration is set to 40. We compare the number of iterations, the search time, as
well as the overall accumulated dwell time during the exploration of the state
space of SpaceEx. The accumulated dwell time serves as an additional measure
to compare the “quality” of the search guidance because, as argued in the previ-
ous sections, this time is correlated with overall search effort, and our distance
heuristic tries to minimize it.

First, we observe that in all these problem instances, the guided search al-
gorithm with our box-based distance heuristic could significantly improve the
overall performance of the model checking process. Specifically, we observe that
the overall accumulated dwell time is reduced when guiding the search, which
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Table 1. Experimental results of SpaceEx for the navigation benchmark with unin-
formed depth-first search and guided search. Abbreviations: DFS: depth-first search,
DTime: overall accumulated dwell time for all explored states, time in s: overall search
time of SpaceEx in seconds

Benchmark instance DFS Guided search
#iterations DTime time in s #iterations DTime time in s

NAV25 200 245.7 160.157 43 111.1 44.891
NAV26 200 391.5 327.66 44 110.2 57.95
NAV27 200 539.6 366.621 49 121.4 59.212
NAV28 47 96.3 63.176 34 99.8 50.528
NAV29 162 410.5 217.521 42 133.1 66.479
NAV30 174 308.6 176.457 40 129.4 69.779

apparently results in a lower search effort. Furthermore, the number of itera-
tions of SpaceEx reduces. As a side remark, for NAV25, NAV26 and NAV27, the
standard depth-first search did not find a solution after the maximal number of
200 iterations.

Let us consider the results for the largest navigation benchmark problem,
NAV30, in more detail. Fig. 1 and Fig. 2 graphically compare the way of the
object in NAV30 while moving over the 25 × 25 grid and searching for the target
state. The initial region of the object is on the left above, the goal region is on
the right below. We observe that, using depth-first-search as shown in Fig. 1,
the object reaches the target state on a trace with a considerable (circle-shaped)
detour on the one hand. On the other hand, using guided search with the heq

distance heuristic as shown in Fig. 2, the way of the object apparently becomes
more straight. As a consequence, with uninformed depth-first search, SpaceEx
needs 174 iterations and over 176 seconds to reach the target state. In contrast,
with guided search, SpaceEx finds the target state within only 40 iterations,
resulting in a remarkable speed-up considering the overall search time.

Considering the experimental results for the benchmark problems based on
the system of tanks, we first report that our heq distance heuristic does not pro-
vide further guidance information for the state space exploration in the classical
search setting. More precisely, for a symbolic state s of that system, all succes-
sor states of s are equally evaluated by heq . This shows that, unsurprisingly,
heq does not fire appropriately in all problem domains. However, heq can still
give benefits compared to uninformed depth-first search in the context of look-
aheads in the state space. For a given state s, a look-ahead works by not only
considering heuristic values of the direct successor states of s, but also by con-
sidering heuristic values of successor states in a fixed depth greater than one. In
Table 2, we report experimental results within this search setting. We have used
the PHAVer scenario of SpaceEx. In addition, the maximal number of iterations
is set to 250000, and the continuous sampling time is set to 1 second. Finally, the
local time horizon for the continuous post operation is set to 200. The problems
TANK01, . . . , TANK04 are benchmark instances of increasing complexity that
differ in the initial level of liquid in the delivery buffer.

12



0 5 10 15 20 25
0

5

10

15

20

25
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Fig. 2. Guided search with heq

Table 2. Experimental results of SpaceEx for the tank benchmark with uninformed
depth-first search and guided search with look-ahead. Abbreviations: DFS: depth-first
search, DTime: overall accumulated dwell time for all explored states, time in s: overall
search time of SpaceEx in seconds

Benchmark instance DFS Guided search
#iterations DTime time in s #iterations DTime time in s

TANK01 1396 34900 7.356 207 3850 3.962
TANK02 3712 92800 42.179 526 9850 8.952
TANK03 6034 150850 105.22 846 15850 14.876
TANK04 8349 208750 196.69 1166 21850 21.311

Considering these results, we again observe that guided search can signifi-
cantly outperform uninformed depth-first search of SpaceEx. In particular, the
number of iterations and the overall search time could be considerably reduced.

We conclude the section with a short discussion for which kind of systems
our approach is suited best. First, we observe that our heuristic is especially
accurate when the system dynamics depends only on the continuous state. In
particular, this is the case for the navigation benchmark. In general, systems
of that kind occur in practice when complex dynamics is approximated with a
simpler one through state space partitioning: For example, the phase portrait
approximations [23], the approximation techniques employed by PHAVer [15]
and hybridization techniques [3] fall into this category. Additionally considering
look-aheads (i. e., considering not only heuristic values of direct successor states,
but also of states in a fixed depth greater than one) is useful when crucial changes
of a system state may arise after performing several steps (as it is the case in
the system of tanks).
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5 Conclusions

In this paper we have introduced a best-first symbolic-reachability analysis al-
gorithm (GBFS) for a particular class of hybrid systems, the ones that have
a linear behavior (in the control-theoretic sense) in each mode. The algorithm
has been added as an additional reachability-analysis engine to SpaceEx, the
state-of-the-art reachability-analysis tool for this class of systems [16].

GBFS takes advantage of the symbolic-computation routines of SpaceEx,
and in particular of its efficient computation of the smallest box enclosing a
symbolic region. As a consequence, the algorithm has a similar time-complexity
for reachability analysis as the depth-first search algorithm (DFS) of this tool.

GBFS is tuned for efficient falsification, where it considerably outperforms
DFS on our benchmarks. The improved efficiency is achieved by choosing the
successor region which has the smallest Euclidean distance between the center
of its enclosing box and the center of the box enclosing the bad-region. We have
shown that for a particular class of hybrid systems, this metric is an appropriate
approximation of an idealized trajectory metric. Our experimental evaluation
additionally shows that this metric can serve as an informed cost heuristic even
for richer classes of hybrid systems.

For the future, it will be interesting to further refine our box-based distance
metric. In this paper, we have chosen the most canonical way as an approx-
imation; however, we also have already outlined that arbitrary more precise
approximations based on piecewise linear functions are possible. In this context,
an important topic for future research will be the question how much precision
can be gained while still being efficiently computable.
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24. S. Kupferschmid, K. Dräger, J. Hoffmann, B. Finkbeiner, H. Dierks, A. Podelski,
and G. Behrmann. Uppaal/DMC – abstraction-based heuristics for directed model
checking. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 679–682, 2007.

25. S. Kupferschmid, J. Hoffmann, H. Dierks, and G. Behrmann. Adapting an AI
planning heuristic for directed model checking. In International SPIN Workshop,
pages 35–52, 2006.

26. S. Kupferschmid and M. Wehrle. Abstractions and pattern databases: The quest
for succinctness and accuracy. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 276–290, 2011.

27. S. Kupferschmid, M. Wehrle, B. Nebel, and A. Podelski. Faster than Uppaal? In
Computer Aided Verification, pages 552–555, 2008.

28. P. Lincoln and A. Tiwari. Symbolic systems biology: Hybrid modeling and analysis
of biological networks. In Hybrid Systems: Computation and Control, pages 660–
672, 2004.

29. N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O automata. Inf. and Comp.,
185(1):103–157, 2003.

30. O. Maler and S. Yovine. Hardware timing verification using kronos. In Israeli
Conference on Computer Systems and Software Engineering, 1996.

31. E. Plaku, L. Kavraki, and M. Vardi. Hybrid systems: From verification to falsifi-
cation. In Computer Aided Verification, pages 463–476, 2007.

32. K. Qian and A. Nymeyer. Guided invariant model checking based on abstraction
and symbolic pattern databases. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 497–511, 2004.

33. S. Ratschan and J.G. Smaus. Verification-Integrated falsification of Non-
Deterministic hybrid systems. In Analysis and Design of Hybrid Systems, 2006.

34. B. Silva, O. Stursberg, B. Krogh, and S. Engell. An assessment of the current
status of algorithmic approaches to the verification of hybrid systems. In IEEE
Conf. on Decision and Control, pages 2867––2874, 2001.

35. A. Singh and J. Hespanha. Models for generegulatory networks using polynomial
stochastic hybrid systems. In CDC05, 2005.

36. M. Wehrle and M. Helmert. The causal graph revisited for directed model checking.
In Symposium on Static Analysis, pages 86–101, 2009.

16


