
Abstraction-Based Guided Search
for Hybrid Systems

Sergiy Bogomolov1, Alexandre Donzé2, Goran Frehse3, Radu Grosu4,
Taylor T. Johnson5, Hamed Ladan1, Andreas Podelski1, and Martin Wehrle6

1 University of Freiburg, Germany
{bogom,ladanh,podelski}@informatik.uni-freiburg.de

2 University of California, Berkeley, USA
donze@eecs.berkeley.edu

3 Université Joseph Fourier Grenoble 1 – Verimag, France
goran.frehse@imag.fr

4 Vienna University of Technology, Austria
radu.grosu@tuwien.ac.at

5 University of Illinois at Urbana-Champaign, USA
taylor.johnson@gmail.com

6 University of Basel, Switzerland
martin.wehrle@unibas.ch

Abstract. Hybrid systems represent an important and powerful formal-
ism for modeling real-world applications such as embedded systems. A
verification tool like SpaceEx is based on the exploration of a symbolic
search space (the region space). As a verification tool, it is typically opti-
mized towards proving the absence of errors. In some settings, e.g., when
the verification tool is employed in a feedback-directed design cycle, one
would like to have the option to call a version that is optimized towards
finding an error path in the region space. A recent approach in this di-
rection is based on guided search. Guided search relies on a cost function
that indicates which states are promising to be explored, and preferably
explores more promising states first. In this paper, an abstraction-based
cost function based on pattern databases for guiding the reachability
analysis is proposed. For this purpose, a suitable abstraction technique
that exploits the flexible granularity of modern reachability analysis al-
gorithms is introduced. The new cost function is an effective extension
of pattern database approaches that have been successfully applied in
other areas. The approach has been implemented in the SpaceEx model
checker. The evaluation shows its practical potential.

1 Introduction

Hybrid systems are extended finite automata whose discrete states correspond
to the various modes of continuous dynamics a system may exhibit, and whose
transitions express the switching logic between these modes [1]. Hybrid systems
have been used to model and to analyze various types of embedded systems [23,
28, 13, 7, 14, 4, 24].

A hybrid system is considered safe if a given set of bad states cannot be
reached from the initial states. Hence, reachability analysis is a main concern for
hybrid systems. Since the reachability analysis of hybrid systems is in general
undecidable [1], modern reachability-analysis tools such as SpaceEx [16] resort to
semi-decision procedures based on over-approximation techniques [10, 16]. In this
paper, we explore the utility of guided search in order to improve the efficiency
of such techniques.

Guided search is an approach that has recently found much attention for
finding errors in large systems [21, 9]. As suggested by the name, guided search
performs a search in the state space of a given system. In contrast to standard
search methods like breadth-first or depth-first search, the search is guided by
a cost function that estimates the search effort to reach an error state from the
current state. This information is exploited by preferably exploring states with
lower estimated costs. If accurate cost functions are applied, the search effort
can significantly be reduced compared to uninformed search. Obviously, the cost
function therefore plays a key role within the setting of guided search, as it
should be as accurate as possible on the one hand, and as cheap to compute as
possible on the other. Cost functions that have been proposed in the literature
are mostly based on abstractions of the original system. An important class of
abstraction-based cost functions is based on pattern databases (PDBs). PDBs
have originally been proposed in the area of Artificial Intelligence [11] and also
have successfully been applied to model checking discrete and timed systems
[26]. Roughly speaking, a PDB is a data structure that contains abstract states
together with abstract cost values based on an abstraction of the original sys-
tem. During the concrete search, concrete states s are mapped to corresponding
abstract states in the PDB, and the corresponding abstract cost values are used
to estimate the costs of s. Overall, PDBs have demonstrated to be powerful for
finding errors in different formalisms. The open question is if guided search can
be applied equally successfully to finding errors in hybrid systems.

A first approach in this direction [9] is to estimate the cost of a symbolic state
based on the Euclidean distance from its continuous part to a given set of error
states. This approach appears to be best suited for systems which behavior is
strongly influenced by the (continuous) differential equations. However, it suffers
from the fact that discrete information like mode switches is completely ignored,
which can lead to arbitrary degeneration of the search. To see this, consider the
example presented in Fig. 1. It shows a simple hybrid system with one continuous
variable which obeys the differential equation ẋ = 1 in every location (differential
equations are omitted in the figure). The error states are given by the locations
le1, . . . , len and invariants 0 ≤ x ≤ 8. In this example, the box-based distance
heuristic wrongly explores the whole lower branch first (where no error state
is reachable) because it only relies on the continuous information given by the
invariants. More precisely, for the box-based distance heuristic, the invariants
suggest that the costs of the “lower” states are equal to 0, whereas the costs of
the “upper” states are estimated to be equal to 4 (i. e., equal to the distance of
the centers of the bounding boxes of the invariants).

2

l1

l2 l3 le1 . . . len

l4 l5 l6 . . . ln

0 ≤ x ≤ 0 0 ≤ x ≤ 0 0 ≤ x ≤ 8 0 ≤ x ≤ 8

0 ≤ x ≤ 8 0 ≤ x ≤ 8 0 ≤ x ≤ 8 0 ≤ x ≤ 8

Fig. 1. A motivating example

In this paper, we introduce a PDB-based cost function for hybrid systems
to overcome these limitations. In contrast to the box-based approach based on
Euclidean distances, this cost function is also able to properly reflect the dis-
crete part of the system. However, compared to the “classical” discrete setting,
the investigation of PDBs for hybrid systems becomes more difficult for several
reasons. First, hybrid systems typically feature both discrete and continuous
variables with complex dependencies and interactions. Therefore, the question
arises how to compute a suitable (accurate) abstraction of the original system.
Second, computations for symbolic successors and inclusion checks become more
expensive than for discrete or timed systems – can these computations be per-
formed or approximated efficiently to get an overall efficient PDB approach as
well? In this paper, we provide answers to these questions, leading to an effi-
cient guided search approach for hybrid systems. In particular, we introduce a
technique leveraging properties of the set representations used in modern reach-
ability algorithms. By simply using much coarser parameters for the explicit
representation, we obtain suitable and cheap abstractions for the behaviors of a
given hybrid system. Furthermore, we adapt the idea of partial PDBs, which has
been originally proposed for solving discrete search problems [5], to the setting
of hybrid systems in order to reduce the size and computation time of “clas-
sical” PDBs. Our implementation in the SpaceEx tool [16] shows the practical
potential.

The remainder of the paper is organized as follows. After introducing the
necessary background for this work in Sec. 2, we present our PDB approach for
hybrid systems in Sec. 3. This is followed by a discussion about related work in
Sec. 4. Afterwards, we present our experimental evaluation in Sec. 5. Finally, we
conclude the paper in Sec. 6.

2 Preliminaries

In this section, we introduce the preliminaries that are needed for this work.

2.1 Notations

We consider models that can be represented by hybrid systems. A hybrid system
is formally defined as follows.

3

Definition 1 (Hybrid System) A hybrid system is a tuple H =
(Loc,Var , Init ,Flow ,Trans, Inv) defining

– the finite set of locations Loc,
– the set of continuous variables Var = {x1, . . . , xn} from Rn,
– the initial condition, given by the constraint Init(`) ⊂ Rn for each location
`,

– for each location `, a relation called Flow(`) over the variables and their
derivatives. We assume Flow(`) to be of the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U ,

where x(t) ∈ Rn, A is a real-valued n × n matrix and U ⊆ Rn is a closed
and bounded convex set,

– the discrete transition relation, given by a set Trans of discrete transitions;
a discrete transition is formally defined as a tuple (`, g, ξ, `′) defining

• the source location ` and the target location `′,
• the guard, given by a linear constraint g,
• the update, given by an affine mapping ξ, and

– the invariant Inv(`) ⊂ Rn for each location `.

The semantics of a hybrid system H is defined as follows. A state of H is
a tuple (`,x), which consists of a location ` ∈ Loc and a point x ∈ Rn. More
formally, x is a valuation of the continuous variables in Var . For the following
definitions, let T = [0, ∆] be an interval for some ∆ ≥ 0. A trajectory of H from
state s = (`,x) to state s′ = (`′,x′) is defined by a tuple ρ = (L,X), where
L : T → Loc and X : T → Rn are functions that define for each time point in T
the location and values of the continuous variables, respectively. Furthermore,
we will use the following terminology for a given trajectory ρ. A sequence of time
points where location switches happen in ρ is denoted by (τi)i=0...k ∈ T k+1. In
this case, we define the length of ρ as |τ | = k. Trajectories ρ = (L,X) (and the
corresponding sequence (τi)i=0...k) have to satisfy the following conditions:

• τ0 = 0, τi < τi+1, and τk = ∆ – the sequence of switching points increases,
starts with 0 and ends with ∆

• L(0) = `, X(0) = x, L(∆) = `′, X(∆) = x′ – the trajectory starts in
s = (`,x) and ends in s′ = (`′,x′)

• ∀i ∀t ∈ [τi, τi+1) : L(t) = L(τi) – the location is not changed during the
continuous evolution

• ∀i ∀t ∈ [τi, τi+1) : (X(t), Ẋ(t)) ∈ Flow(L(τi)), i.e. Ẋ(t) = AX(t) + u(t)
holds and thus the continuous evolution is consistent with the differential
equations of the corresponding location

• ∀i ∀t ∈ [τi, τi+1) : X(t) ∈ Inv(L(τi)) – the continuous evolution is consistent
with the corresponding invariants

• ∀i ∃(L(τi), g, ξ, L(τi+1)) ∈ Trans : Xend(i) = limτ→τ−
i+1

X(τ)∧Xend(i) ∈ g∧
X(τi+1) = ξ(Xend(i)) – every continuous transition is followed by a discrete

4

one, Xend(i) defines the values of continuous variables right before the dis-
crete transition at the time moment τi+1 whereas Xstart(i) = X(τi) denotes
the values of continuous variables right after the switch at the time mo-
ment τi.

A state s′ is reachable from state s if there exists a trajectory from s to s′.

In the following, we mostly refer to symbolic states. A symbolic state s =
(`, R) is defined as a tuple, where ` ∈ Loc, and R is a convex and bounded
set consisting of points x ∈ Rn. The continuous part R of a symbolic state is
also called region. The symbolic state space of H is called the region space. The
initial set of states Sinit of H is defined as

⋃
`(`, Init(`)). The reachable state

space R(H) of H is defined as the set of symbolic states that are reachable
from an initial state in Sinit , where the definition of reachability is extended
accordingly for symbolic states.

In this paper, we assume there is a given set of symbolic bad states Sbad that
violate a given property. Our goal is to find a sequence of symbolic states which
contains a trajectory from Sinit to a symbolic error state, where a symbolic error
state se has the property that there is a symbolic bad state in Sbad that agrees
with se on the discrete part, and that has a non-empty intersection with se on
the continuous part. A trajectory that starts in a symbolic state s and leads to
a symbolic error state is called an error trajectory ρe(s).

2.2 Guided Search

In this section, we introduce a guided search algorithm (Algorithm 1) along the
lines of the reachability algorithm used by the current version of SpaceEx [16].
It works on the region space of a given hybrid system. The algorithm checks if a
symbolic error state is reachable from a given set of initial symbolic states Sinit .
As outlined above, we define a symbolic state se in the region space of H to be
a symbolic error state if there is a symbolic state s ∈ Sbad such that s and se
agree on their discrete part, and the intersection of the regions of s and se is
not empty (in other words, the error states are defined with respect to the given
set of bad states). Starting with the set of initial symbolic states from Sinit ,
the algorithm explores the region space of a given hybrid system by iteratively
computing symbolic successor states until an error state is found, no more states
remain to be considered, or a (given) maximum number of iterations imax is
reached. The exploration of the region space is guided by the cost function such
that symbolic states with lower cost values are considered first.

In the following, we provide a conceptual description of the algorithm using
the following terminology. A symbolic state s′ is called a symbolic successor state
of a symbolic state s if s′ is obtained from s by first computing the continuous
successor of s, and then by computing a discrete successor state of the resulting
(intermediate) state. Therefore, for a given symbolic state scurr , the function
continuousSuccessor (line 7) returns the symbolic state which is reachable
from scurr within the given time horizon according to the continuous evolution

5

Algorithm 1 A guided reachability algorithm

Input: Set of initial symbolic states Sinit , set of symbolic bad states Sbad , cost function
cost

Output: Can a symbolic error state be reached from a symbolic state in Sinit ?
1: compute cost(s) for all s ∈ Sinit

2: Push (Lwaiting , {(s, cost(s)) | s ∈ Sinit})
3: i := 0
4: while (Lwaiting 6= ∅ ∧ i < imax) do
5: scurr := GetNext (Lwaiting)
6: i := i + 1
7: s′curr := continuousSuccessor(scurr)
8: if s′curr is a symbolic error state then
9: return “Error state reached”

10: end if
11: Push (Lpassed , s

′
curr)

12: S′ := discreteSuccessors(s′curr)
13: for all s′ ∈ S′ do
14: if s′ /∈ Lpassed then
15: compute cost(s′)
16: Push (Lwaiting , (s

′, cost(s′)))
17: end if
18: end for
19: end while
20: if i = imax then
21: return “Maximal number of iterations reached”
22: else
23: return “Error state not reachable”
24: end if

described by the differential equations. Accordingly, the function discreteSuc-
cessor (line 12) returns the symbolic state that is reachable due to the outgoing
discrete transitions.

A symbolic state s is called explored if its symbolic successor states have been
computed. A symbolic state s is called visited if s has been computed but not
yet necessarily explored. To handle encountered states, the algorithm maintains
the data structures Lpassed and Lwaiting . Lpassed is a list containing symbolic
states that are already explored; this list is used to avoid exploring cycles in the
region space. Lwaiting is a priority queue that contains visited symbolic states
together with their cost values that are candidates to be explored next. The
algorithm is initialized by computing the cost values for the initial symbolic
states and pushing them accordingly into Lwaiting (lines 1 – 2). The main loop
iteratively considers a best symbolic state scurr from Lwaiting according to the
cost function (line 5), computes its symbolic continuous successor state s′curr
(line 7), and checks if s′curr is a symbolic error state (lines 8 – 10). (Recall that
s′curr is defined as a symbolic error state if there is a symbolic bad state s ∈ Sbad

such that s and s′curr agree on their discrete part, and the intersection of the

6

regions of s and s′curr is not empty.) If this is the case, the algorithm terminates.
If this is not the case, then s′curr is pushed into Lpassed (line 11). Finally, for
the resulting symbolic state s′curr , the symbolic discrete successor states are
computed, prioritized and pushed into Lwaiting if they have not been considered
before (lines 12 – 18). Obviously, the search behavior of Algorithm 1 is crucially
determined by the cost function that is applied. In the next section, we give a
generic description of pattern database cost functions.

2.3 General Framework of Pattern Databases

For a given system S, a pattern database (PDB) in the classical sense (i. e., in the
sense PDBs have been considered for discrete and timed systems) is represented
as a table-like data structure that contains abstract states together with abstract
cost values. The PDB is used as a cost estimation function by mapping concrete
states s to corresponding abstract states s# in the PDB, and using the abstract
cost value of s# as an estimation of the cost value of s. The computation of
a classical PDB is performed in three steps. First, a subset P of variables and
automata of the original system S is selected. Such subsets P are called pattern.
Second, based on P, an abstraction S# is computed that only keeps the variables
occurring in P. Third, the entire state space of S# is computed and stored in the
PDB. More precisely, all reachable abstract states together with their abstract
cost values are enumerated and stored. The abstract cost value for an abstract
state is defined as the shortest length of a path from that state to an abstract
error state. The resulting PDB of these three steps is used as the cost function
during the execution of Algorithm 1; in other words, the PDB is computed prior
to the actual model checking process, where the resulting PDB is used as an
input for Algorithm 1. In the next section, we will consider this PDB approach
as a basis for a cost function for hybrid systems.

3 Pattern Databases for Hybrid Systems

In Sec. 2.3, we have described the general approach for computing and using
a PDB for guiding the search. However, for hybrid systems, there are several
problems using the classical PDB approach. First, it is not clear how to effec-
tively compute suitable abstractions for hybrid systems with complex variable
dependencies. In Sec. 3.1, we address this problem with an abstraction technique
based on varying the granularity of the reachability analysis. Second, in Sec. 3.2,
we address the general problem that the precomputation of a PDB is often quite
expensive. Moreover, in many cases, only a small fraction of the PDB is actu-
ally needed for the search [18]. This is undesirable in general, and specifically
becomes problematic in the context of hybrid systems because reachability anal-
ysis in hybrid systems is typically much more expensive than, e. g., for discrete
systems. In Sec. 3.2, we introduce a variant of partial PDBs for hybrid systems
to address these problems.

7

3.1 Abstractions Based on Coarse-Grained Space Exploration

A general question in the context of PDBs is how to compute suitable abstrac-
tions of a given system. For hybrid systems, one could apply one of the ab-
straction techniques that have been proposed based on simplifying the dynam-
ics [17, 6]. In this paper, we propose a simpler yet elegant way to obtain a coarse
grained and fast analysis: For the computation of the PDB, we observe that the
LeGuernic-Girard (LGG) algorithm implemented in SpaceEx [16] uses support
function representation (based on the chosen set of template directions) to com-
pute and store over-approximations of the reachable states. Therefore, a reduced
number of template directions and an increased time step results in an abstrac-
tion of the original region space in the sense that the dependency graph of the
reachable abstract symbolic states is a discrete abstraction of the system. The
granularity of the resulting abstraction is directly correlated with the parame-
ter selection: Choosing coarser parameters in the reachability algorithm makes
this abstraction coarser, whereas finer parameters lead to finer abstractions as
well. This is a significant difference compared to the classical approaches that
have been proposed in the literature for pattern databases (see Sec. 2.3): Instead
of computing a (projection) abstraction based on a subset of all variables, we
keep all variables (and hence, the original system), and instead choose a coarser
exploration of the region space.

3.2 Partial Pattern Databases

A classical PDB for a hybrid system H is represented by a data structure that
contains abstract states together with corresponding abstract cost values of a
suitable abstraction H# of H (according to Sec. 3.1). The abstract states and
corresponding cost values are obtained by a region space exploration of H#. The
abstract cost value of an abstract state s# is defined as the length of the shortest
found trajectory in H# from s# to an abstract error state. The PDB computes
the cost function

costP (s) := cost#(s#),

where s is a symbolic state, s# is a corresponding abstract state to s in the
PDB (see below for a more detailed description of corresponding abstract state),
and cost# is the length of the corresponding trajectory from s# to an abstract
error state as defined above. In this context, an abstract state s# is called a
corresponding state to s if s and s# agree on their discrete part, the symbolic
part of s is included in the symbolic part of s#, and s# is an abstract state with
minimal abstract costs that satisfies these requirements.

As already outlined, a general drawback of classical PDBs is the fact that
their precomputation might become quite expensive. Even worse, in many cases,
most of this precomputation time is often unnecessary because only a small frac-
tion of the PDB is actually needed during the symbolic search in the region space
[18]. One way that has been proposed in the literature to overcome this prob-
lem is to compute the PDB on demand: So-called switchback search maintains a
family of abstractions with increasing granularity; these abstractions are used to

8

compute the PDB to guide the search in the next-finer level [22]. In the following,
we apply a variant of partial PDBs for hybrid systems to address this problem:
Instead of computing the whole abstract region space for a given abstraction,
we restrict the abstract search to explore only a fraction of the abstract region
space while focusing on those abstract states that are likely to be sufficient for
the concrete search.

Definition 2 (Partial Pattern Database) Let H be a hybrid system. A par-
tial pattern database for H is a pattern database for H that contains only ab-
stract state/cost value pairs for abstract states that are part of some trajectory
of shortest length from an initial state to an abstract error state. The partial
pattern database computes the function

costPP (s) :=

{
cost#(s#) if there is corresponding s# to s
+∞ otherwise

where s, s#, and cost# are defined as above, and +∞ is a default value indicating
that no corresponding abstract state to s exists.

Informally, a partial PDB for a hybrid system H only contains those abstract
states of H# that are explored on some shortest trajectory (instead of containing
all abstract states of a complete abstract region space exploration to all abstract
error states as it would be the case for a classical PDB). In other words, partial
PDBs are incomplete in the sense that there might exist concrete states with
no corresponding abstract state in the PDB. In such cases, the default value
+∞ is returned with the intention that corresponding concrete states are only
explored if no other states are available. Obviously, this might worsen the overall
search guidance compared to the fully computed PDB. However, in special cases,
a partial PDB is sufficient to obtain the same cost function as obtained with
the original PDB. For example, this is the case when only abstract states are
excluded from which no abstract error state is reachable anyway. More generally,
a partial PDB suffices to deliver the same search behavior as the original PDB
if at least one abstract error trace is feasible in the original, i. e., in the concrete
region space. The search behavior is defined as the sequence of symbolic states
the search algorithm explores.

Proposition 1. Let H be a hybrid system. If there is a symbolic abstract error
state sp = (l,R) in the partial PDB such that there is an error state s = (l,x)
with x ∈ R, where s is reachable in H from some initial state of H, and the
length of a shortest trajectory in H to reach s is equal to the length of a shortest
abstract trajectory to reach s in the partial PDB, then the search behavior of
Algorithm 1 with costPP is equal to the search behavior of Algorithm 1 with
costP , i.e., with respect to the fully computed PDB.

Intuitively, if the preconditions of Prop. 1 are satisfied, then the abstract
states in the partial PDB suffice to guide the search in the same way as the fully
computed PDB would do (because we never “leave” the partial PDB). If the

9

requirements are not satisfied, we can end up with less accurate cost functions.
However, in practice, partial PDBs turn out to be powerful because even if
Prop. 1 does not apply, they can often be computed significantly faster than full
PDBs, and still contain enough abstract states to accurately guide the search.
Overall, although in case the requirements of Prop. 1 are not fulfilled, partial
PDBs can still be a good heuristic choice that lead to cost functions that are
efficiently computable on the one hand, and that accurately guide the concrete
search on the other hand. We will come back to this point in the evaluation
section.

3.3 Discussion

Abstraction techniques for verification of hybrid systems have been studied in-
tensively. Our pattern database approach for finding error states is based on a
similar idea, but exploits abstractions in a different way than in common ap-
proaches for verification. Most notably, the main focus of our abstraction is to
provide the basis for the cost function to guide the search, rather than to prove
correctness (although, under certain circumstances, it can be efficiently used for
verification as well – we will come back to this point in the experiments section).
As a short summary of the overall approach, we first compute a symbolic ab-
stract region space (as described in Sec. 3.1), where the encountered symbolic
abstract states s# = (L#, R#) are stored in a table together with the corre-
sponding abstract cost values of s#. To avoid the (costly) computation of an
entire PDB, we only compute the PDB partially (as described in Sec. 3.2). This
partial PDB is then used as the cost function of our guided reachability algo-
rithm. As in many other approaches that apply abstraction techniques to reason
about hybrid systems, the abstraction that is used for the PDB is supposed to
accurately reflect the “important” behavior of the system, which results in ac-
curate search guidance of the resulting cost function and hence, of our guided
reachability algorithm.

An essential feature of the PDB-based cost function is the ability to reflect
the continuous and the discrete part of the system. To make this more clear,
consider again the motivating example from the introduction (Fig. 1). As we
have discussed already, the box-based distance function first wrongly explores
the whole lower branch of this system because no discrete information is used to
guide the search. In contrast, a partial PDB is also able to reflect the discrete
behavior of the system. In this example, the partial PDB consists of an abstract
trajectory to the first reachable error state, which is already sufficient to guide
the (concrete) region space exploration towards to first reachable error state as
well. In particular, this example clearly shows the advantage of partial PDBs
compared to fully computed PDBs (recall that fully computed PDBs would in-
clude all error states, whereas the partial PDB only contains the trajectory to
the shortest one). In general, our PDB-approach is well suited for hybrid sys-
tems with a non-trivial amount of discrete behavior. However, the continuous
behavior is still considered according to our abstraction technique as introduced
in Sec. 3.1. Overall, partial PDBs appear to be an accurate approach for guided

10

search because they accurately balance the computation time for the cost func-
tion on the one hand, and lead to efficient and still accurately informed cost
functions on the other hand.

Finally, let us discuss the relationship of PDBs to counterexample-guided
abstraction refinement (CEGAR) [3, 2]. Our approach shares with CEGAR the
general idea of using an abstraction to analyze a concrete system. However, in
contrast to CEGAR, where abstract counterexamples have to be validated and
possibly used in further abstraction refinement, abstractions for PDBs are never
refined and only used as a heuristic to guide the search within the concrete
automaton. In other words, in contrast to CEGAR, the accuracy of the abstrac-
tion influences the order in which concrete states are explored and therefore the
performance of the resulting model checking algorithm. Therefore, a crucial dif-
ference lies in the fact that CEGAR does the search in the abstract space, replays
the counterexample in the concrete space, and stops if the error path cannot be
followed. In contrast, our approach does the search in the concrete space and
uses the PDBs for guidance, only. If an abstract path cannot be followed, the
search does not stop, but tries other branches until either a counterexample is
found, or all paths have been exhausted.

4 Related Work

Techniques to efficiently find error states in faulty hybrid systems have recently
found increasing attention in the hybrid systems community. Bhatia and Frazzoli
[8] propose using rapidly exploring random trees (RRTs). In the context of hybrid
systems, the objective of a basic RRTs approach is to efficiently cover the region
space in an “equidistant” way in order to avoid getting stuck in some part of
the region space. Recently, RRTs were extended by adding guidance of the input
stimulus generation [12]. However, in contrast to our approach, RRTs approaches
are based on numeric simulations, rather than symbolic executions. Applying
PDBs to RRTs would be an interesting direction for future work. In a further
approach, Plaku, Kavraki and Vardi [25] propose to combine motion planning
with discrete search for falsification of hybrid systems. The discrete search and
continuous search components are intertwined in such a way that the discrete
search extracts a high-level plan that is then used to guide the motion planning
component. In a slightly different setting, Ratschan and Smaus [27] apply search
to finding error states in hybrid systems that are deterministic. Hence, the search
reduces to the problem of finding an accurate initial state. SpaceEx [16] is a
recently developed, yet already prominent model checker for hybrid systems. As
suggested by the name, it explores the region space by applying search. The
most related approach to this paper has recently been presented by Bogomolov
et al. [9], who propose a cost function based on Euclidean distances of the regions
of the current state and error states. The resulting guided search algorithm is
implemented in SpaceEx and has demonstrated to achieve significant guidance
and performance improvements compared to the uninformed search of SpaceEx.

11

Table 1. Experimental results for the navigation benchmarks. Abbreviations: Unin-
formed DFS: Uninformed depth-first search, Box-heuristic: box-based distance heuris-
tic, PDB: our PDB cost function costPP , #loc: number of locations, #it: number of
iterations, length: length of the found error trajectory, time: total time in seconds in-
cluding any preprocessing. For our PDB approach, the fraction of the total time that
is needed for the PDB computation is additionally reported in parenthesis.

Inst. #loc Uninformed DFS Box-heuristic PDB
#it length time #it length time #it length time (time abs.)

1 400 122 15 145.756 62 15 70.548 16 15 20.04 (1.984)
2 400 183 33 186.93 86 33 120.428 34 33 53.998 (7.553)
3 625 75 33 70.717 34 33 36.609 34 33 44.718 (7.472)
4 625 268 158 261.86 231 158 209.637 159 158 127.458 (10.458)
5 625 85 79 118.8 26 25 37.775 26 25 42.117 (3.728)
6 625 96 53 110.816 101 53 104.938 54 53 76.296 (9.849)
7 625 227 34 198.95 105 34 96.978 35 34 47.612 (9.385)
8 625 178 25 266.142 86 25 137.291 26 25 43.541 (7.09)
9 625 297 17 356.042 102 17 131.965 18 17 30.789 (7.595)
10 625 440 30 534.041 136 30 201.843 31 30 60.91 (13.64)
11 900 234 72 269.314 129 21 149.086 22 21 32.744 (8.107)
12 900 317 43 339.093 174 61 198.326 44 43 62.829 (15.764)
13 900 367 37 421.902 148 37 190.355 38 37 70.748 (20.132)
14 900 411 32 434.555 278 32 297.89 33 32 57.692 (10.934)
15 900 379 44 445.863 107 44 137.757 45 44 69.912 (9.011)

Moreover, guided search has been intensively and successfully applied to find-
ing error states in a subclass of hybrid systems, namely to timed systems. In par-
ticular, PDBs have been investigated in this context [20, 21]. In contrast to this
paper, the PDB approaches for timed systems are “classical” PDB approaches,
i. e., a subset of the available automata and variables are selected to compute
a projection abstraction. To select this subset, Kupferschmid et al. [20] com-
pute an abstract error trace and select the automata and variables that occur
in transitions in this abstract trace. In contrast, Kupferschmid and Wehrle [21]
start with the set of all automata and variables (i. e., with the complete system),
and iteratively remove variables as long as the resulting projection abstraction
is “precise enough” according to a certain quality measure. In both approaches,
the entire PDB is computed, which is more expensive than the partial PDB
approach proposed in this paper.

5 Evaluation

We have implemented costPP in the SpaceEx tool [16] and evaluated it on a
number of challenging benchmarks. The implementation and the benchmarks are
available at http://www.informatik.uni-freiburg.de/~bogom/spin2013.

12

Table 2. Experimental results for the satellite benchmarks. Abbreviations: Uninformed
DFS: Uninformed depth-first search, Box-heuristic: box-based distance heuristic, PDB:
our PDB cost function costPP , #loc: number of locations, #it: number of iterations,
length: length of the found error trajectory, time: total time in seconds including any
preprocessing, OOM: out of memory. For our PDB approach, the fraction of the total
time that is needed for the PDB computation is additionally reported in parenthesis.

Inst. #loc Uninformed DFS Box-heuristic PDB
#it length time #it length time #it length time (time abs.)

1 36 116 32 27.112 75 10 13.44 16 10 10.317 (7.413)
2 36 464 24 101.252 473 13 116.991 30 13 16.306 (12.24)
3 64 718 87 31.514 278 87 11.04 263 121 20.362 (9.543)
4 100 111 107 38.085 44 15 21.073 23 14 14.802 (6.029)
5 100 109 104 262.944 45 15 178.617 23 14 62.985 (5.893)
6 159 2170 ∞ 78.95 1352 ∞ 49.853 0 ∞ 15.587 (15.587)
7 324 323 102 105.589 1289 106 457.702 25 24 32.102 (8.767)
8 557 1637 42 45.76 936 42 26.297 156 42 44.147 (39.674)
9 574 7113 41 223.648 561 10 17.45 14 10 6.607 (6.224)
10 575 9092 4 284.783 387 5 12.315 15 4 2.439 (2.032)
11 576 5693 3769 816.596 257 13 36.479 15 13 9.937 (5.866)
12 576 32966 13 7059.52 826 13 118.947 15 13 10.012 (5.813)
13 576 n/a n/a OOM 579 52 579.738 58 52 163.206 (82.013)
14 1293 13691 ∞ 436.164 7719 ∞ 249.554 0 ∞ 135.507 (135.507)
15 1296 n/a n/a OOM 1806 142 1869.72 206 139 617.423 (434.675)

5.1 Benchmarks

We consider benchmark problems with problem spaces with a large discrete part,
with a large branching factor and paths with dead-ends where search involves
heavy backtracking.

As a first set of benchmarks, we consider a variant of the well-known navi-
gation benchmark [15]. This benchmark models an object moving on the plane
which is divided into a grid of cells. The dynamics of the object’s planar position
in each cell is governed by the differential equations ẋ = v, v̇ = A(v− vd) where
vd stands for the targeted velocity in this location. Compared to the originally
proposed navigation benchmark problem, we address a slightly more complex
version with the following additional constraints. First, we add inputs allowing
perturbation of object coordinates, i. e., the system of differential equations is
extended to: ẋ = v + u, v̇ = A(v − vd), umin ≤ u ≤ umax. Second, to make the
search task even harder, the benchmark problems also feature obstacles between
certain grid elements. This is particularly challenging because, in contrast to the
original benchmark system, one can get stuck in a cell where no further transi-
tions can be taken, and consequently, backtracking might become necessary. The
size of the problem instances varies from 400 to 900 locations, and all instances
feature 4 variables.

Second, we consider benchmarks that result from hybridization. For a hy-
brid system H with nonlinear continuous dynamics, hybridization is a technique

13

for generating a hybridized hybrid automaton from H. The hybridized automa-
ton has simpler continuous dynamics (usually affine or rectangular) that over-
approximate the behavior of H [6], and can be analyzed by SpaceEx. For our
evaluation, we consider benchmarks from this hybridization technique applied to
nonlinear satellite orbital dynamics [19], where two satellites orbit the earth with
nonlinear dynamics described by Kepler’s laws. The orbits in three-dimensional
space lie in a two-dimensional plane and may in general be any conic section,
but we assume the orbits are periodic, and hence circular or elliptical. Fixing
some orbital parameters (e.g., the orientations of the orbits in three-space), the
states of the satellites in three-dimensional space x1, x2 ∈ R3 can be completely
described in terms of their true anomalies (angular positions). Likewise, one
can transform between the three-dimensional state description and the angular
position state description. The nonlinear dynamics for the angular position are
ν̇i =

√
µ/p3i (1 + ei cos νi)

2 for each satellite i ∈ {1, 2}, where µ is a gravita-
tional parameter, pi = ai(1− e2i) is the semi-latus rectum of the ellipse, ai is the
length of the semi-major axis of the ellipse, and 0 ≤ ei < 1 is the eccentricity
of the ellipse (if ei = 0, then the orbit is circular and pi simplifies to the radius
of the circle). These dynamics are periodic with a period of 2π, so we consider
the bounded subset [0, 2π]2 of the state-space R2, and add invariants and tran-
sitions to create a hybrid automaton ensuring νi ∈ [0, 2π]. For the benchmark
cases evaluated, we fixed µ = 1 and varied pi and ei for several scenarios. For
more details, we refer to the work of Johnson et al. [19]. The size of the problem
instances varies from 36 to 1296 locations, and all instances feature 4 variables.

The verification problem is conjunction avoidance, i. e., to determine whether
there exists a trajectory where the satellites come too close to one another and
may collide. Some of the benchmark instances considered are particularly chal-
lenging because they feature several sources of non-determinism, including sev-
eral initial states and several bad states. As an additional source of nondetermin-
ism, some benchmarks model thrusting. A change in a satellite’s orbit is usually
accomplished by firing thrusters. This is usually modeled as an instantaneous
change in the orbital parameters ei and ai. However, the angular position νi in
this new orbit does not, in general, equal the angular position in the original
orbit, and a change of variables is necessary, which can be modeled by a re-
set of the νi values when the thrusters are fired. The transitions introduced for
thrusting add additional discrete nondeterminism to the system.

5.2 Experiments

The experiments have been performed on a machine running under Ubuntu 11.10
with a four-core Intel Core i3 2.4GHz processor and 4GB memory. In the fol-
lowing, we report results for our PDB implementation of costPP in SpaceEx.
For the navigation benchmarks, while conducting search in the concrete state
space, we use octagonal template directions and sampling time equals to 0.05.
In the abstract run, we use box template directions and sampling time equals
to 0.5. For different satellite benchmark instances, we used different choices of
the directions and sampling times for the concrete and abstract runs, based on

14

0 100 200 3000

50

100

150

200

250

300

350

ν1

ν 2

Fig. 2. Uninformed search
error trajectory

0 100 200 3000

50

100

150

200

250

300

350

ν1

ν 2

Fig. 3. Box-based heuris-
tic search error trajectory

0 100 200 3000

50

100

150

200

250

300

350

ν1

ν 2

Fig. 4. PDB search error
trajectories (abstract: light
gray, concrete: dark gray)

the choice of the ei and pi parameters in the nonlinear dynamics prior to hy-
bridization, since higher values of ei result in greater overapproximation error
from hybridization. We compared costPP with uninformed depth-first search as
implemented in SpaceEx, and with the recently proposed box-based distance
function [9]. We compare the number of iterations of SpaceEx, the length of the
error trajectory found as well as the overall search time (including the computa-
tion of the PDB for costPP) in seconds. For the PDB approach, we also report
the fraction of the total time to compute the PDB in parenthesis. The results
are reported in Table 1 and Table 2. Considering the overall run-time, the best
results are given in bold fonts.

Our results in Table 1 and Table 2 show that the precomputation time for the
PDB mostly pays off in terms of guidance accuracy and overall run-time. Specif-
ically, the overall run-time could (sometimes significantly) be reduced compared
to uninformed search and also compared to the box-based heuristic. For exam-
ple, in satellite instance 5, the precomputation for the PDB only needs around
6 seconds, leading to an overall run-time of around 60 seconds, compared to
around 178 seconds with the box-based heuristic and about 263 seconds with
uninformed search. This search behavior for instance 5 is also visualized in Fig. 2,
Fig. 3, and Fig. 4, where we observe that the part of the covered search space
with our PDB approach is lower compared to the box-based heuristic and un-
informed search. Fig. 4 particularly shows the part of the search space that is
covered by the abstract run (which can be performed efficiently due to our ab-
straction as described in Sec. 3.1), showing that our partial PDB approach finds
an accurate balance between the computation time and the accuracy of the re-
sulting cost function. Generally, in our benchmarks, we observed a large range
of computation time savings when using partial PDBs compared to full PDBs
(approximately, up to a factor of 1.5 in the navigation benchmarks, and up to a
factor of 350 in the satellite benchmarks).

Looking at the results in more detail, we first observe that the number of
iterations of SpaceEx and also the length of the found error trajectories are
mostly at most as high with PDB as with uninformed search and the box-

15

based heuristic. In particular, our PDB approach could solve instances from the
satellite problem where uninformed search ran out of memory. In some cases,
the precomputation of the PDB does not pay off compared to the box-based
heuristic (recall that the box-based heuristic does not have any precomputation
time at all), however, in these cases, the pure search time is still similar to the
pure search time of the box-based approach. Second, we observe that the length
of the trajectories found by the box-based heuristic and the PDB heuristic is
often similar or even equal, while the number of iterations is mostly decreased.
This again shows that the search with the PDB approach is more focused than
with the box-based heuristic in such cases, and less backtracking is needed.
In particular, the box-based heuristic always tries to find a direct path to an
error state, while ignoring possible obstacles. Therefore, the search can get stuck
in a dead-end state if there is an obstacle, and as a consequence, backtracking
becomes necessary. Furthermore, the box-based heuristic can perform worse than
the PDB if several bad states are present. In such cases, the box-based heuristic
might “switch” between several bad states, whereas the better accuracy of the
PDB heuristic better focuses the search towards one particular bad state. In
contrast, in problems that are structured more easily (e. g., where no “obstacles”
exist and error states are reachable “straight ahead”), the box-based heuristic
might yield better performance because the precomputation of the PDB does
not pay off.

Finally, we remark that our approach is also able to effectively and efficiently
verify systems where no bad states exist – this is the case in the satellite in-
stances 6 and 14. In these instances, the abstract run (which is supposed to
build the PDB) does not reveal any reachable error state. As our abstraction is
an over-approximation, we can safely conclude that no reachable error state in
the concrete system exists either, and do not need to start the concrete search
at all. Being able to efficiently verify hybrid systems with PDBs (that are rather
supposed to guide the search) is a significant advantage compared to the box-
based heuristic.

6 Conclusion

We have explored the application of pattern databases (PDBs) for hybrid sys-
tems. For a given safety property and hybrid system with linear dynamics in
each location, we compute an abstraction by coarsening the over-approximation
SpaceEx computes in its reachability analysis. The abstraction is used to con-
struct a PDB, by associating to each abstract symbolic state the distance in
number of transitions to the symbolic error state. This distance is then used in
guiding SpaceEx in the concrete search. Given a concrete symbolic state, the
guiding heuristics returns the smallest distance to the error state of an enclosing
abstract symbolic state. This distance is used to choose the most promising con-
crete symbolic successor. In our implementation, we have taken advantage of the
SpaceEx parametrization support, and were able to report a significant speedup
in counterexample detection and even for verification. Our new PDB support for

16

SpaceEx can be seen as a nontrivial extension of our previous work on guided
reachability analysis for hybrid systems where the discrete system structure was
ignored completely [9]. For the future, it will be interesting to further refine and
extend our approach by, e. g., considering even more fine grained abstraction
techniques, or by combinations of several abstraction techniques and therefore,
by combining several PDBs. We expect that this will lead to even more accurate
cost functions and better model checking performance.

Acknowledgments

This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.
org/), by the Swiss National Science Foundation (SNSF) as part of the project
“Abstraction Heuristics for Planning and Combinatorial Search” (AHPACS)
and by STARnet, a Semiconductor Research Corporation program sponsored
by MARCO and DARPA.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicolin, A. Oliv-
ero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theo-
retical Computer Science, 138:3–34, 1995.

2. R. Alur, T. Dang, and F. Ivancic. Counter-example guided predicate abstraction
of hybrid systems. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 250–271, 2003.

3. R. Alur, T. Dang, and F. Ivancic. Progress on reachability analysis of hybrid
systems using predicate abstraction. In Hybrid Systems: Computation and Control,
pages 4–19, 2003.

4. R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specifications of hybrid
systems in charon. In Hybrid Systems: Computation and Control, pages 6–19,
2000.

5. K. Anderson, R. Holte, and J. Schaeffer. Partial pattern databases. In Symposium
on Abstraction, Reformulation, and Approximation, pages 20–34, 2007.

6. E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis of
nonlinear systems. Acta Informatica, 43(7):451–476, 2007.

7. A. Balluchi, L. Benvenuti, M. D. D. Benedetto, C. Pinello, and A. L. Sangiovanni-
Vincentelli. Automotive engine control and hybrid systems: challenges and oppor-
tunities. Proceedings of the IEEE, 88(7):888–912, July 2000.

8. A. Bhatia and E. Frazzoli. Incremental search methods for reachability analysis
of continuous and hybrid systems. In Hybrid Systems: Computation and Control,
pages 142–156, 2004.

9. S. Bogomolov, G. Frehse, R. Grosu, H. Ladan, A. Podelski, and M. Wehrle. A box-
based distance between regions for guiding the reachability analysis of SpaceEx.
In Computer Aided Verification, pages 479–494, 2012.

10. C. Chutinan and B. Krogh. Computational techniques for hybrid system verifica-
tion. IEEE Transactions on Automatic Control, 48(1):64–75, 2003.

17

11. J. C. Culberson and J. Schaeffer. Pattern databases. Computational Intelligence,
14(3):318–334, 1998.

12. T. Dang and T. Nahhal. Coverage-guided test generation for continuous and hybrid
systems. Formal Methods in System Design, 34(2):183–213, 2009.

13. A. Deshpande, D. Godbole, A. Göllü, and P. Varaiya. Design and evaluation of
tools for automated highway systems. In Hybrid Systems III, pages 138–148, 1996.

14. M. Egerstedt. Behavior-based robotics using hybrid automata. In Hybrid Systems:
Computation and Control, pages 103–116, 2000.

15. A. Fehnker and F. Ivančić. Benchmarks for hybrid systems verification. In Hybrid
Systems: Computation and Control, pages 381–397, 2004.

16. G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable verification of hybrid systems.
In Computer Aided Verification, pages 379–395, 2011.

17. T. Henzinger and H. Wong-Toi. Linear phase-portrait approximations for nonlinear
hybrid systems. Hybrid Systems III, pages 377–388, 1996.

18. R. C. Holte, J. Grajkowski, and B. Tanner. Hierarchical heuristic search revisited.
In Symposium on Abstraction, Reformulation and Approximation, pages 121–133,
2005.

19. T. T. Johnson, J. Green, S. Mitra, R. Dudley, and R. S. Erwin. Satellite rendezvous
and conjunction avoidance: Case studies in verification of nonlinear hybrid systems.
In Formal Methods, pages 252–266. 2012.

20. S. Kupferschmid, J. Hoffmann, and K. G. Larsen. Fast directed model checking
via russian doll abstraction. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 203–217, 2008.

21. S. Kupferschmid and M. Wehrle. Abstractions and pattern databases: The quest
for succinctness and accuracy. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 276–290, 2011.

22. B. J. Larsen, E. Burns, W. Ruml, and R. Holte. Searching without a heuristic:
Efficient use of abstraction. In AAAI Conference on Artificial Intelligence, 2010.

23. C. Livadas, J. Lygeros, and N. A. Lynch. High-level modelling and analysis of tcas.
In IEEE Real-Time Systems Symposium, pages 115–125, 1999.

24. J. Lygeros, G. J. Pappas, and S. Sastry. An approach to the verification of the
center-tracon automation system. In Hybrid Systems: Computation and Control,
pages 289–304, 1998.

25. E. Plaku, L. Kavraki, and M. Vardi. Hybrid systems: From verification to falsifi-
cation. In Computer Aided Verification, pages 463–476, 2007.

26. K. Qian and A. Nymeyer. Guided invariant model checking based on abstraction
and symbolic pattern databases. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 497–511, 2004.

27. S. Ratschan and J.-G. Smaus. Finding errors of hybrid systems by optimising an
abstraction-based quality estimate. In Tests and Proofs, pages 153–168, 2009.

28. P. Varaiya. Smart cars on smart roads: problems of control. IEEE Trans. Automatic
Control, 38(2), 1993.

18

