
Eliminating Spurious Transitions in Reachability with
Support Functions

Goran Frehse
Université Grenoble 1 Joseph

Fourier - Verimag
Centre Equation, 2 av. de

Vignate
38610 Gières, France

goran.frehse@imag.fr

Sergiy Bogomolov
University of Freiburg

Georges-Köhler-Allee 52
79110 Freiburg, Germany

bogom@informatik.uni-
freiburg.de

Marius Greitschus
University of Freiburg

Georges-Köhler-Allee 52
79110 Freiburg, Germany

greitsch@informatik.uni-
freiburg.de

Thomas Strump
University of Freiburg

Georges-Köhler-Allee 52
79110 Freiburg, Germany

strumpt@informatik.uni-
freiburg.de

Andreas Podelski
University of Freiburg

Georges-Köhler-Allee 52
79110 Freiburg, Germany

podelski@informatik.uni-
freiburg.de

ABSTRACT
Computing an approximation of the reachable states of a
hybrid system is a challenge, mainly because representing
the solutions of ODEs with a finite number of sets does not
scale well. Using template polyhedra to cover the solution
greatly reduces the computational complexity, since it re-
places complex operations on sets by a small number num-
ber of optimization problems. However, the use of templates
may make the overapproximation too conservative. Spuri-
ous transitions (which are falsely considered reachable) are
particularly detrimental to performance and accuracy, and
may exacerbate the state explosion problem. In this pa-
per, we examine how spurious transitions can be avoided
with minimal computational effort. To this end, detecting
spurious transitions is reduced to the well-known problem of
showing that two convex sets are disjoint by finding a hyper-
plane that separates them. We generalize this to flowpipes
by considering hyperplanes that evolve with time in corre-
spondence to the dynamics of the system. The approach
is implemented in the model checker SpaceEx and demon-
strated on examples.

Categories and Subject Descriptors
G.1.7 [Numerical Analysis]: Ordinary Differential Equa-
tions—Initial value problems

Keywords
Hybrid systems, verification, reachability, tools

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’15, April 14-16, 2015, Seattle, Washington, USA.
Copyright 2015 ACM$15.00.

1. INTRODUCTION
A major bottleneck in computing the reachable states of a

hybrid automaton is the approximation of the states reach-
able by time elapse, i.e., approximating all solutions of the
ODEs with suitable sets. We call this flowpipe approxima-
tion. Support functions lead to a scalable algorithm that
can be arbitrarily precise [8], and similar techniques can be
applied using template polyhedra [11, 3]. The approxima-
tion error depends on the time step and the directions in
which the support function is evaluated.

In our experiences with applying scalable flowpipe approx-
imation algorithms, the number of continuous sets that are
produced tends to grow quickly and become a limiting fac-
tor. Clustering is usually applied to help reduce this number,
and optimal clustering can be carried out with support func-
tions [5]. This number of sets is aggravated dramatically by
spurious transitions, i.e., transitions that are enabled as an
artifact of the overapproximation. The approximation accu-
racy can be improved by reducing time steps and increasing
the number of directions, but if done indiscriminately this
leads to large computational cost: to guarantee a Hausdorff
error of ε in n dimensions, the support function must be
evaluated O(1/εn−1) times [9].

We propose a procedure to show that a transition is spu-
rious, i.e., its guard set is unreachable. It aims at using as
few directions as possible, and adjusting the accuracy au-
tomatically. We call this separating the guard set from the
flowpipe (as opposed to safety), in order to differentiate it
from showing safety over all runs of the hybrid automaton.
Our approach is based on the separation of two convex sets:
efficient algorithms are known that produce a hyperplane
separating the two sets, and its normal vector is a suitable
template direction for the support function algorithm.

We propose two different ways to turn the flowpipe sep-
aration problem into a sequence of convex separation prob-
lems. In a convexification-based approach, we approximate
the flowpipe with a finite number of convex set as in [5].
To each of these sets, we apply the above convex separa-
tion algorithm. In a point-wise approach, we run the convex

separation algorithm at discrete points in time. The result
(separation or overlap) is propagated along the time axis us-
ing continuous-time bounds on the support function of the
flowpipe computed as in [5]. The main contributions of the
paper are as follows:

• We propose a novel construction of inner approxima-
tions of convex sets based solely on support functions
(not support vectors). This construction is sound even
for approximate computations. (Sect. 2.2)

• We propose a novel procedure for separating convex
sets using only approximately computed values of sup-
port functions. To the best of our knowledge, this is
the first such procedure using only support functions
(not support vectors) and the first that is sound even
for approximate computations. (Sect. 4.1)

• For the point-wise approach, we incorporate both static
directions, where we check for how long the same hy-
perplane (possibly shifted) still separates the flowpipe
(Sect. 5.2.1), and dynamic directions, where we rotate
the separating hyperplane with the adjunct dynamics
of the system (Sect. 5.2.2). These methods are com-
plimentary since there are systems where either one or
the other technique, but not both, can show separation
over an infinite time horizon.

The problem of showing that a given “unsafe” set (in our
case, the guard set) is not reachable is known as the safety
problem. Various approaches exist, and due to lack of space
we cite only a small selection. In [2], predicate abstractions
are used to refute counter-examples of hybrid systems. The
separating hyperplanes that we construct can be viewed as
such predicates, although in our setting they need only be
satisfied over intervals of time. In [4], abstractions based on
eigenforms are refined using counter examples until safety
is shown. However the approach is limited to deterministic
dynamics, while we can handle additive nondeterminism in
the ODEs. Alternating forward and backward reachability
between the initial and the unsafe set can be used to show
safety, but there are inherent problems with numerical ac-
curacy, since a stable system becomes unstable when going
backwards in time [10]. The main difference to all these
approaches is that we are only looking for a technique to de-
tect as quickly as possible when a set is unreachable within
a location; the goal is not to decide the safety problem.

The remainder of the paper is organized as follows. In
the next section, we present approximate support functions,
which we use to represent convex sets that can be only com-
puted approximately. In Sect. 3, we briefly recall the flow-
pipe approximation from [5], which uses approximate sup-
port functions, and relate spurious transitions to flowpipe
separation. In Sect. 4, we present our algorithms for approx-
imating and separating convex sets based on approximately
computed support functions. These algorithms are applied
to flowpipe separation using convexification in Sect. 5.1, and
using point-wise separation in Sect. 5.2. Experimental re-
sults are shown in Sect. 6.

Note to reviewers: For lack of space, the proofs omitted
from this paper are available for anonymous download at
http://www-verimag.imag.fr/~frehse/hscc15_proofs.pdf

2. REPRESENTING SETS WITH APPROX-
IMATE SUPPORT FUNCTIONS

A convex set can be represented by its support function,
which attributes to each direction in Rn the signed distance
of the farthest point of the set to the origin. Computing the
value of the support function for a given set of directions,
one obtains a polyhedron that overapproximates the set. In
this paper, we consider this computation to be approxima-
tive, i.e., only a lower and an upper bound on the support
function can be computed.

We recall some basics. A halfspace H ⊆ Rn is the set
of points satisfying a linear constraint, H =

{
x | aTx ≤ b

}
,

where a = (a1 · · · an) ∈ Rn and b ∈ R. A polyhedron P ⊆ Rn

is the intersection of a finite number of halfspaces

P =
{
x
∣∣∣ ∧m

i=1
aTix ≤ bi

}
,

where ai ∈ Rn and bi ∈ R. A polytope is a bounded polyhe-
dron. The convex hull CH(X) ⊆ Rn of a set X is

CH(X) =
{ m∑

i=1

λivi

∣∣∣ vi ∈ X,λi ∈ R≥0,

m∑
i=1

λi = 1
}
.

The support function of a closed and bounded continuous
set X ⊆ Rn with respect to a direction vector ` ∈ Rn is

ρX (`) = max{`Tx | x ∈ X}.

The set of support vectors (or maximizers) of X in direction
` is denoted by

σX (`) = {x∗ ∈ X | `Tx∗ = ρX (`)}.

2.1 Approximate Support Functions
An approximate support function is a function support that

given a direction ` and an accuracy ε > 0 produces an upper
bound on the support function. We require the bound to be
within ε of the true value:

support(X , `, ε)− ε ≤ ρX (`) ≤ support(X , `, ε). (1)

Computing an approximate support function for a given set
of directions provides an outer and an inner approximation
of the set. Consider a set of directions L = {`1, . . . , `N} and
values s+k = support(X , `k, ε) for i = 1, . . . , N . This gives
the outer approximation

dXeL =
⋂

k=1,...,K

{`Tkx ≤ s+k }, (2)

which satisfies X ⊆ dXeL. As shown in Fig. 1, at least one
point x ∈ X is inside the facet slab associated with `k,

bXck = dXeL ∩ {`
T
kx ≥ s+k − ε}. (3)

Using these constructs, we have the following bounds on the
support function of X .

Lemma 2.1. [5] Given a set of directions L = {`1, . . . , `N}
and values s+k = support(X , `k, ε) for i = 1, . . . , N , the sup-
port function is bounded by ρ−X (`) ≤ ρX (`) ≤ ρ+X (`), where

ρ+X (`) = ρdXe(`), (4)

ρ−X (`) = max
k=1,...,N

−ρbXck (−`). (5)

The above bounds on the support function can be used to
compute an inner approximation, i.e., a set of points that
are guaranteed to be inside the set. This will be discussed
next.

http://www-verimag.imag.fr/~frehse/hscc15_proofs.pdf

` `

X
"

dRe

bRc
k

`>x = ½R
+(`)

`>x = ½R
{(`)

Figure 1: The outer approximation dXe (solid grey)
for a convex set X in the positive and negative axis
directions. The facet slab bXck (dashed), contains
at least one point of X . The support function of X
is is bounded by the interval [ρ−R(`), ρ+R(`)]

2.2 Inner Approximation of Approximate Sup-
port Functions

Once the support function of a set X has been evaluated
a number of times, the obtained values can be used to con-
struct facet slabs. From these facet slabs we can derive an
underapproximation of X by using the following criterion: a
point x is in X if

∀x1 ∈ bXc1 , . . . , xN ∈ bXcN : x ∈ CH(x1, . . . , xN). (6)

However, this set is costly to compute because it involves
quantifier alternation and bilinear constraints.

To obtain an underapproximation of X with (relatively)
little cost, we first estimate a point for each facet, then con-
struct their convex hull, and finally shrink this set suffi-
ciently to be sure that it is an underapproximation.

To estimate a point for a facet of the approximation, we
use a center. A point x ∈ X is a Chebyshev center of X if it
is the center of the largest ball that lies inside X . The set
of Chebyshev centers satisfies all constraints when they are
tightened by the same amount, and as long as they are sat-
isfiable. If the polyhedron is flat, i.e., its constraints contain
equalities, these centers degenerate. We therefore compute
them regarding the relative interior of P. Assuming P has
k equalities, let P = {

∧k
i=1a

T
ix = bi ∧

∧m
i=k+1a

T
ix ≤ bi}. The

relative Chebyshev center x∗ and its radius z∗ are

< x∗, z∗ >= argmax
x,z≥0

z s.t.
∧k

i=1
aTix = bi∧∧m

i=k+1
aTix+ ‖ai‖z ≤ bi. (7)

Given any points c1, . . . , cN ∈ dXeL, we define our un-
derapproximation by shrinking their convex hull as follows.

Proposition 2.2. Given a set of points c1, . . . , cN ∈ dXeL,
let ai be the normal vectors of their convex hull, i.e.,

CH(c1, . . . , cN) = {
∧M

i=1
aTix ≤ bi}.

Let Ji be the indices of the points that lie on the border of
the i-th constraint, i.e., Ji = {j | aTicj = bi}, and let

b−i = min
j∈Ji

−ρbXcj (−ai).

Then the set C− = {c |
∧M

i=1a
T
ic ≤ b−i } is a subset of X .

3. REACHABILITY WITH SUPPORT FUNC-
TIONS

We consider hybrid systems modeled by a hybrid automa-
ton. An approximation of its reachable states can be ob-
tained by computing successor states with respect to time
elapse and discrete transitions (jumps), and repeating the
process until all of the successors states have been encoun-
tered in a previous step. This procedure need not terminate,
and the problem is undecidable in general. Since the details
of the reachability algorithm have been reported elsewhere
and are not essential for the results of this paper, we provide
a brief summary and refer the reader to [6].

In the the following section, we define the class of hy-
brid automata we consider in this paper. We then recall the
scalable flowpipe approximation algorithm from [5], which
is extensively used in the remainder of the paper. The im-
age computation with respect to a discrete transitions is
presented since it relates eliminating spurious transitions to
the problem of separating the flowpipe from a convex set.

3.1 Hybrid Automata
A hybrid automaton H = (Loc, Inv ,Flow ,Trans, Init) is

defined as follows [1]. It has a set of discrete states Loc
called locations. Each l ∈ Loc is associated with a set of dif-
ferential equations (or inclusions) Flow(l) that defines the
time-driven evolution of the continuous variables. A state
s ∈ Loc × Rn consists of a location and values for the n
continuous variables. A set of discrete transitions Trans
defines how the state can jump between locations and in-
stantaneously modify the values of continuous variables. A
jump can take place when the state is inside the transition’s
guard set, and the target states are given by the transition’s
assignment. The system can remain in a location l while
the state is inside the invariant set Inv(l). All behavior
originates from the set of initial states Init .

In this paper, we consider Flow(l) to be continuous dy-
namics of the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U , (8)

where x(t) ∈ Rn is an n-dimensional vector, A ∈ Rn × Rn

and U ⊆ Rn is a closed and bounded convex set. Transition
assignments are of the (deterministic) affine form

x′ = Rx+ w, (9)

where x′ ∈ Rm denotes the values after the transition, R ∈
Rm × Rn and w ∈ Rm.

We compute the reachable states by recursively computing
the image of the initial states with respect to time elapse and
discrete transitions until a fixpoint is reached. Before we can
discuss the image computation, we present how we describe
sets of states with approximate support functions.

3.2 Flowpipe Approximation
In a given location of the hybrid automaton, we refer to

the states reachable from an initial set X0 by time elapse as
the flowpipe of X0. Given an initial set X0, the reachable
states at time t is the set of values of the solutions of (8)
with initial condition x(0) ∈ X0. We denote this set with

Reacht(X0, A,U) = eAtX0 ⊕
∫ t

0

eAsUds. (10)

To simplify the notation, let Xt = Reacht(X0, A,U). For
affine dynamics, Xt is convex for any given t, so Xt can
be represented by its support function. The flowpipe from
the initial states X0 over the time interval [t1, t2] is the set
Xt1,t2 =

⋃
t1≤t≤t2

Xt.
We now summarize the flowpipe approximation algorithm

in [5]. It is based on approximating the support function of
Xt over time as follows. Given a time interval [t1, t2], a
direction d, and an accuracy bound ε > 0, it constructs a
piecewise linear function

s+d,ε(t) = sReach(X0, A,U , [t1, t2], d, ε)

such that for all t ∈ [t1, t2],

s+d,ε(t)− ε ≤ ρXt(d) ≤ s+d,ε(t) (11)

Let D = {d1, . . . , dm} be a set of directions for which
s+di,ε(t) has been computed. This defines a flowpipe approx-
imation pointwise in time,

Ωt =
⋂

di∈D

{dTix ≤ s+di,ε(t)}, with Xt ⊆ Ωt

so the union Ωt1,t2 =
⋃

t1≤t≤t2
Ωt contains Xt1,t2 . It can be

shown that Ωt1,t2 is always a finite union of convex polyhe-

dra, Ωt1,t2 =
⋃N

j=0 Ωj . Each Ωj approximates Xt over an

interval of time [tj , tj+1], and it is possible to construct the
smallest number N of such sets for a given bound on the
total approximation error.

Each Ωj can be refined in the following sense: Given
an additional direction d′ and accuracy ε′, one computes
sd′,ε′(t). Then either (a) it is possible to add (convex) con-
straints to Ωj such that it reflects these bounds, i.e.,

Ω′j =
⋃

t1≤t≤t2

⋂
di∈D

{dTix ≤ s+di,ε(t)} ∪ {d′Tx ≤ s+d′,ε′(t)},

or (b) Ωj needs to be replaced by more than one convex set
in order to maintain the desired accuracy.

3.3 Eliminating Spurious Transitions
Let G be the guard set of the transition, I− the invari-

ant of the source location, I+ the invariant of the target
location, and let the transition assignment be (9). We as-
sume G,I−,I+ to be polyhedra and assume that the set of
template directions L contains the normal vectors of the
constraints of these polyhedra. Let the target invariant be

I+ =
{
x
∣∣∣ ∧m

i=1
āTix ≤ b̄i

}
.

The image of a set X with respect to the transition is

postd (X) =
(
R
(
X ∩ G ∩ I−

)
⊕ w

)
∩ I+. (12)

Let G∗ be the intersection of the guard, the source invariant
and the back-transformed target invariant,

G∗ = G ∩ I− ∩
{
x
∣∣∣ ∧m

i=1
āTiRx ≤ b̄i − wTāi

}
. (13)

Using G∗, the image operator can be simplified so that it
involves a single intersection operation [7]:

postd (X) = R
(
X ∩ G∗

)
⊕ w. (14)

This has the following important consequence: We can
eliminate spurious transitions by deciding whether the flow-
pipe intersects with G∗. We call this flowpipe separation,

and our approach is to reduce the problem to separating a
number of convex sets, which is the topic of Sect. 4. The
flowpipe separation will then be discussed in Sect. 5.

4. SEPARATING CONVEX SETS USING
SUPPORT FUNCTIONS

A classic way to show that two convex sets do not overlap
is to find a hyperplane that separates them (the sets lie on
opposites sides of the plane). Efficient algorithms for finding
a separating hyperplane are known, e.g., closest points al-
gorithms like the Gilbert-Johnson-Keerthi (GJK) algorithm
or the Chung-Wang algorithm, see [12]. We refer to these
as convex separation algorithms. In this section, we propose
convex separation algorithms that differ in two aspects:

• We consider the case where only the value of the sup-
port function can be computed, while classical meth-
ods are based on computing points in the set (support
vectors).

• We take into account that the support function is com-
puted with finite accuracy, i.e., up to an interval that
contains the exact value.

The following well-known lemma expresses separation with
support functions.

Lemma 4.1 (Separation of convex sets).
Given two compact convex sets R,S, let Q = R ⊕ (−S),
i.e.,ρQ(d) = ρR(d) + ρS(−d). R and S are separated if and
only if 0 /∈ Q, or, equivalently, there is a d∗ ∈ Rn with

ρQ(d∗) < 0. (15)

If d∗ exists, any hyperplane H = {x | d∗Tx = b} with b in
the open interval (ρR(d∗),−ρS(−d∗)) separates R and S.

In the following, we present separation algorithms adapted
to approximately computing support functions.

4.1 Separation using Directed Approximation
We now propose a procedure for deciding the separation

problem, based on iteratively constructing inner- and outer
approximations ofQ. It is based on a polyhedral approxima-
tion algorithm called Mutually Converging Polytopes (MCP)
by Kamenev [9], which approximates a convex set with the
asymptotically optimal number of evaluations of the support
function.

Given Q and a given number of iterations kmax, the MCP
algorithm constructs an outer approximation Qk with at
most k facets and an inner approximation Ck with at most
k vertices as follows:

1. Start with n+ 1 affinely independent directions di. In
each direction di, compute the support vector ci of Q.
Let k := n+ 1.

2. Compute the outer approx. Qk :=
⋂k

i=1{d
T
ix ≤ dTici}.

3. Compute the inner approx. Ck := CH(c1, . . . , ck) in
constraint representation, and let L be its set of con-
straints.

4. For each constraint aTix ≤ bi in L, compute the di-
rectional distance δi between the inner and the outer
approximation, δi := (ρQk (ai)− bi)/||ai||.
Let dk+1 := aimax with imax = argmaxi δi.

5. Compute the support vector in the new direction dk+1.

6. If k = kmax, stop. Otherwise, let k := k + 1 and go to
step 2.

The MCP algorithm has optimal convergence rate, see [9]
for details. The Haussdorff distance between the outer and
inner approximation is bounded by the value of δimax , and
converges to 0; in this sense, the algorithm is complete.

The main steps of the MCP algorithm are inherited by
our algorithm, but it differs in three important ways:

• Instead of support vectors, we use an inner estimation,
i.e., points which might not actually be in Q. This
makes the algorithm applicable to using only support
function values and to approximate computations.

• The inner estimation is used for choosing the next di-
rection, while the inner approximation (points which
are known to be in Q), is used only as a termination
criterion in case of overlap.

• We refine only in directions that are still necessary to
decide whether Q contains 0.

We use the following notation: Throughout, we use the in-
dex k to indicate the iteration. Let dk be the direction in
which the approximation is refined in the k-th iteration. Let
r+k be a bound on the support of Q in direction di, and with
accuracy εk, r+k = support(Q, dk, εk). Let Qk be the outer
approximation, i.e.,

Qk = dQeDk
=
⋂k

i=1
{dTix ≤ r+i }.

Let Sk,i be the facet slab of Qk in direction di,

Sk,i = Qk ∩ {dTi x ≥ r+i − εi},

and let ck,i be a point in Sk,i lying on a facet of Qk, i.e.,

ck,i ∈ Sk,i ∩ {dTi x ≥ ρQk (di)}.

Note that ck,i can be any point in Sk,i, e.g., the relative
Chebyshev center. We choose them on the border of Qk be-
cause this allows for an efficient, incremental, construction
of their convex hull. Let Ck = CH(ck,1, ..., ck,k) be the con-
vex hull of the centers represented in constraint form. Let ei
be the n-dimensional vector with its i-th entry being 1 and
all other entries being zero. Let ε ≥ 0 be the accuracy used
when evaluating the support function evaluation, and let
εmin ≥ 0 be a minimum accuracy that serves as termination
criterion in case separation can not be decided.

Our Directed Approximation algorithm takes as inputs
Q = R⊕ (−S), an initial accuracy ε0, a termination thresh-
old accuracy εmin, and an eagerness parameter α > 1 that
represents the trade-off between sampling more directions
and using a higher accuracy. The algorithm proceeds as
follows:

1. Initialization: Choose as initial directions the normal
vectors of a regular simplex: Let di := ei for i =
1, ..., n, and dn+1 := −

∑n
i=1 ei. Let k := n + 1.

Compute r+i = support(Q, di, εi) for i = 1, . . . , k, with
εi := ε0.

2. Construct the outer approximation Qk, its facet slabs
Sk,1, . . . , Sk,k, and points on the facets ck,1, ..., ck,k.

3. Compute the convex hull Ck in constraint represen-
tation. Decide, which constraints of Ck are relevant

by measuring the directional distance between the in-
ner approximation and zero. The constraints are con-
tracted to obtain an inner approximation of Q.

(a) For each constraint aTix ≤ bi of Ck do

i. Ji := {j | aTicj = bi}. (indices of adjacent ci)

ii. b−i := minj∈Ji −ρSk,i(−ai).

(b) Let L = {aTix ≤ b−i | b
−
i < 0}. (constraints al-

ready satisfied by x = 0 need not be refined)

(c) If L = {}, stop with result “overlap”

4. Decide in which direction to refine, based on the dis-
tance δ between the relevant constraints and the outer
approximation.

(a) For each constraint aTix ≤ bi in L, let
δi := (ρQk (ai)− bi)/||ai||.

(b) Let dk+1 := aimax with imax = argmaxi δi.

(c) If δimax ≤ αεk, let εk+1 := εk/10, else εk+1 := εk.

(d) If δimax ≤ εmin, stop with result “unknown”.

5. Compute an upper bound on the support function in
the new direction and with maximum error ε.

(a) r+k+1 := support(Q, dk+1, ε).

(b) If r+ < 0, stop with result “separation”.

6. Let k := k + 1 and go to step 2.

The eagerness parameter α is motivated as follows: Even
assuming that Ck converges to within distance εk of Q (we
have no guarantee), we have that δimax → εk, which may
lead to infinitely many iterations without ever satisfying
δimax ≤ εk. Thus we must decrease εk at some point while
δimax > εk still holds, which is guaranteed by choosing
α > 1. Larger values of α lead to a faster decrease of εk.

Lemma 4.2. There result of the Directed Approximation
algorithm is sound if it returns “separation” or “overlap”.
If it returns “unknown”, the distance between R and S is
bounded above by

δ = min
x
‖x‖2 s.t.

k⋂
i=1

{aTix ≤ b−i }.

Proof. The soundness of the result “separation” follows
directly from (15). The soundness of the result “overlap”

follows from Prop. 2.2, which states that C− =
⋂k

i=1{a
T
ix ≤

b−i } ⊆ Q. L contains all aTix ≤ b−i with b−i . Since “overlap”
results only when L = {}, we have that all b−i > 0, and
therefore 0 ∈ C− ⊆ Q. With Prop. 4.1, this implies overlap.

With C− ⊆ Q it follows that δ ≥ minq ‖q‖2 s.t. q ∈ Q.
Let q∗ be such a minimizer. Since Q = R⊕(−S), this means
that there exists r ∈ R and s ∈ S such that q∗ = r− s, and
therefore ‖r − s‖2 ≤ δ.

A demonstration of the directed approximation algorithm
can be seen in Fig. 2. On the left hand side, R and S are
shown. On the right hand side, the according Qk and all Ck
are shown. Fig. 3 shows the set of Ck in the iteration before
finding the separation. We observe that most of the points
are concentrated around the origin.

4.2 Adapted GJK Algorithm
Given compact convex sets R,S, a closest point algorithm

computes the (not necessarily unique) pair of points r∗ ∈ R

−2 −1 0 1 2

−2

−1

0

1

2

−5 −4 −3 −2 −1 0 1

−4

−2

0

−2 −1 0 1 2

−2

−1

0

1

2

−5 −4 −3 −2 −1 0 1

−4

−2

0

−2 −1 0 1 2

−2

−1

0

1

2

−5 −4 −3 −2 −1 0 1

−4

−2

0

Figure 2: Demonstration of the directed approximation

algorithm (top to bottom). The left column shows the set

R (black outline), its overapproximation (dark green),

and the guard set S (red box). The right column shows

Q = R⊕ (−S) (black outline) the outer approximation Qk

(dark green) and the vertices of the inner approximation

Ck (red circles). The last iteration shows separation since

the origin (black x) lies outside of Qk

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

−3 −2 −1 0 1

−3

−2

−1

0

1

Figure 3: Example that shows the directed fashion of

the algorithm: facets in the lower left hand corner of R
are no longer refined, since it was shown that refining

them will not improve the separation result.

and s∗ ∈ S that are closest to each other. Finding such r∗, s∗

can be reduced to finding the (unique) q∗ ∈ Q in closest to
0. If q∗ = 0, then R and S overlap. Otherwise, d = q∗ is the
normal vector of a separating hyperplane as in Lemma 4.1.

The Gilbert-Johnson-Keerthi (GJK) algorithm finds such
a q∗ iteratively by computing maximizers. It takes advan-
tage of the following property: Any q ∈ Q is closest to 0 if
and only if q is the minimizer of Q in direction d = q, and
this point is unique. Note that a minimizer of Q in direction
d is a maximizer (support vector) of Q in direction −d. A
rudimentary form of the algorithm goes as follows:

1. Start from an arbitrary direction d0. Let k = 0.

2. Compute a point qk that maximizes dTkq for q ∈ Q.

3. Let q∗k be the point in CH{q0, . . . , qk} closest to 0, and
let dk+1 = −q∗k.

4. If dTkdk+1 = ‖dk‖‖dk+1‖, then stop. The point in Q
closest to 0 is q∗k.

5. Let k ← k + 1 and go to step 2.

The GJK algorithm is guaranteed to converge towards the
closest point, and terminate if Q is a polytope. Note that
if 0 ∈ CH{q0, . . . , qk}, then R and S overlap, and the algo-
rithm terminates with q∗k = 0. The termination criterion in
step 4 is usually relaxed to

|dTkdk+1 − ‖dk‖‖dk+1‖| ≤ ε

for some given tolerance level ε ≥ 0. If one is only interested
in showing separation, the criterion (15) can be used to ter-
minate early. Several efficiency improvements are known,
but are omitted here for lack of space.

The GJK algorithm is not directly applicable in our set-
ting, because we can only compute approximate support
functions, not the corresponding support vectors. We now
present a variation of the GJK algorithm that is solely based
on approximate support functions.

Because we can not compute maximizers of Q, we use
centers of facet slabs instead. Since these points may not
actually be in Q, we must find new directions even if 0 ∈
CH{q0, . . . , qk}. In this case, we choose the closest point on
the border of CH{q0, . . . , qk}, which tends to “push” facets
outwards in a way similar to the Directed Approximation
algorithm. Since we need bounded facet slabs, we start with
a bounded initial approximation. Given the set Q and a
termination threshold accuracy µmin ≥ 0, our modified GJK
algorithm proceeds as follows:

1. Construct an initial, bounded outer approximation to
get facet slabs.

(a) Let Dinit = {d0, . . . , dm−1} be a set of directions
that span Rn, e.g., the normals of a regular sim-
plex or a bounding box.

(b) Start from an arbitrary direction dm. Let k = m.

2. Estimate a point qk that maximizes dTkq for q ∈ Q.

• Compute r+k = support(Q, dk, ε). If r+k < 0, stop
with result “separation”.

• Choose qk ∈ bQck, e.g., the relative Chebyshev
center.

3. Let q∗k be the point on the border of CH{qm, . . . , qk}
closest to 0. If 0 /∈ CH{qm, . . . , qk}, let dk+1 = −q∗k
(like GJK). Otherwise, let dk+1 = q∗k.

4. If dk+1 ∈ D, abort since an infinite cycle may take
place. Otherwise, add dk+1 to D.
If |dTkdk+1−‖dk‖‖dk+1‖| ≤ µmin, stop with result “un-
known”.

5. Let k ← k + 1 and go to step 3.

This modified GJK algorithm may not terminate, or even
converge to the point closest to 0. It is presented here be-
cause it can detect separation often much faster than Di-
rected Approximation. This will be examined closer in the
experimental section.

5. TIMED FLOWPIPE SEPARATION
The timed flowpipe separation problem is to identify the

time points where the flowpipe is separated from a given
(guard) set S. We limit our discussion to a bounded guard
set S and a finite time horizon T . If S is unbounded, one can
render it bounded by computing a coarse flowpipe approxi-
mation that is bounded due to finite T , and intersecting S
with this coarse approximation.

Definition 5.1 (Timed flowpipe separation).
Given compact convex sets X0,S ⊂ Rn and a time interval
[t1, t2], a separating time domain T is a subset of [t1, t2]
such that for all t ∈ T , Xt ∩ S = ∅.

Knowing the time intervals in which the system enters and
leaves the guard can be used to improve the flowpipe ap-
proximation. Similarly, timed flowpipe separation can iden-
tify at what time t′ all trajectories have left the invariant
I. Then t′ can be taken as time horizon for a more precise
flowpipe approximation. The smaller T , the more precise
(and cheaper) the flowpipe approximations can be.

In this section, we present algorithms to decide flowpipe
separation with as little computational effort as possible.

5.1 Flowpipe Separation using Convexification
Flowpipe separation using convexification is a straight-

forward application of the convex separation algorithms to
a flowpipe approximation consisting of a finite number of
convex sets. For each set in the approximation, a convex
separation algorithm is executed. If it shows separation on
all sets in the sequence, the flowpipe is separated. However,
it must be decided when a convex set is accurate enough, or
whether it requires being split in several parts.

We now present a separation procedure for a given initial
set X0, a guard set S and a time interval [t1, t2]. It uses
the convexified flowpipe approximation from Sect. 3.2 and
a convex separation algorithm from Sect. 4.1, and returns a
set of convex sets that could not be separated from S.

1. Start with an initial accuracy ε0 and an initial set of di-
rections D = {d1, . . . , dm} that spans Rn, which guar-
antees that the approximation is bounded.

2. Apply the flowpipe approximation from Sect. 3.2 to
compute the flowpipe approximation consisting of con-
vex sets Ω0,Ω1, . . ., using directions D and accuracy
ε0.

3. For each Ωj , run a convex separation algorithm to sep-
arate it from S, where each call to support(Ωi, d, ε) is
implemented as follows:

(a) Compute upper and lower bounds on the support
function of Xt:
(s+d,ε(t), s−d,ε(t)) = sReach(X0, A,U , [tj , tj+1], d, ε).

(b) Let ŝ(t) be the concave hull of s+d,ε(t) over the

time interval [tj , tj+1]. This corresponds to con-
vexifying the set over this time interval.

(c) Let s+ = maxt∈[tj ,tj+1] ŝ(t),

let εresult = maxt∈[tj ,tj+1] ŝ(t)− s
−
d,ε(t).

(d) If εresult ≤ ε, use s+ as support value for the
support function of Ωj .

(e) Otherwise, a single set does not suffice to repre-
sent the flowpipe with sufficient accuracy. Divide

[tj , tj+1] into subintervals such that on each inter-
val, the concave hull of s+d,ε(t) satisfies the condi-
tions of step 3c and 3d. Replace Ωj by restrictions
of Ωj to those subintervals. For each, apply the
convex separation algorithm again.

4. Return the Ωj , for which separation could not be shown.

5.2 Flowpipe Separation Point-Wise over Time
A convex separation algorithm can solve the flowpipe sep-

aration problem for any given point in time t∗, since we
know that Xt∗ is convex. However, we need to extend sepa-
ration to intervals of time. With Lemma 4.1, the following
criterion is straightforward.

Lemma 5.2. The flowpipe Xt1,t2 is separated from a con-
vex set S if and only if for all t ∈ [t1, t2] there exists a
direction dt ∈ Rn such that

ρXt(dt) + ρS(−dt) < 0. (16)

The question is therefore how to find a suitable direction dt
for each point in time. We present two ways for applying
separation over an interval of time: first, keeping the direc-
tion d fixed over time, and second, letting dt evolve over
time according to the dynamics of the system.

5.2.1 Separating with Fixed Direction

We use the bounds on the support function of Xt as de-
scribed in Sect. 3.2. Given a time interval [t1, t2], a direction
d, and a precision ε > 0, we construct a piecewise linear
function s+d,ε(t) = sReach(X0, A,U , [t1, t2], d, ε), so that for

all t ∈ [t1, t2], ρXt(d) ≤ s+d,ε(t). Applying (16), the flowpipe

is separated from S for any t ∈ [t1, t2] for which

s+d,ε(t) + ρS(−d) < 0. (17)

Note that the direction d is fixed and does not change with
time.

The following example shall illustrate that there are cases
where only a single, fixed, direction (or an arbitrarily small
neighborhood around it) can show separation.

Example 5.3. Consider the example shown in Fig. 4(a).
The initial set X0 consists of a single point, and the flow-
pipe consists of the point moving around the origin in a cir-
cle. The direction d = (1, 0) shows separation even over an
unbounded time horizon, as indicated by the green arrows.
By making S large enough in the vertical direction, we can
reduce the set of separating directions to an arbitrarily small
neighborhood of d. A guard may not be separable by a sin-
gle fixed direction over the entire time horizon, as shown in
Fig. 4(b).

5.2.2 Separating with Dynamic Direction

Instead of keeping the direction fixed over time, we can
let it evolve according to the dynamics of the system. Given

a direction d0, let dt = e−ATtd0. The dynamic direction dt
evolves with the system in the following sense. If d0 is a
normal vector of X0 at a point x∗(0) (meaning it is tangent
to X0 and touches at x∗0), then dt is a normal vector of Xt

at a point x∗(t). E.g., if X0 is a polytope and d0 is a facet
normal of X0, then dt is a facet normal of Xt. The following
example shall illustrate where a single dynamic direction can
show separation over the entire time horizon.

(a) Keeping the direction
that separates the initial
set shows separation over
the entire time horizon

(b) Dynamically adapting
the direction that sepa-
rates the initial set shows
separation over the entire
time horizon

Figure 4: In both examples, separation can be shown
for the entire flowpipe after finding a separating di-
rection for the initial set

Example 5.4. Consider the example shown in Fig. 4(a).
Starting from a direction that separates the initial set, the
dynamic direction (red arrows) shows separation for only a
small amount of time, which is even smaller if the guard set
is larger in the vertical direction. For the guard set shown
in Fig. 4(b), the dynamic direction separates over the entire
time horizon, while no fixed direction can do so.

We can reduce the separation along a dynamic direction
to the separation of a fixed direction, which allows us to
apply the techniques from the previous section.

Lemma 5.5. Let Ŝt = Reacht(−S,−A,U). Xt is sepa-

rated from S in direction dt = e−ATtd0 if and only if Ŝt is
separated from X0 in direction d0. Indeed,

ρXt(dt)− ρ−S(dt) = ρX0(d0) + ρŜt(d0).

Proof. The proof is a simple calculation on support func-
tions, using the solution (10) for the reachable set at time t.
Note that through variable substitution one can show that∫ t

0

eAsUds =

∫ t

0

eA(t−s)Uds = eAt

∫ t

0

e−AsUds.

With dt = e−ATtd0 and applying ρR(MTd) = ρMR(d),

ρXt(dt) + ρ−S(dt) = ρXt(e
−ATtd0) + ρ−S(e−ATtd0)

= ρe−AtXt
(d0) + ρ−e−AtS(d0)

= ρe−AteAtX0
(d0) + ρe−AteAt

∫ t
0 e−AsUds(d0) + ρ−e−AtS(d0)

= ρX0(d0)+ρ−e−AtS⊕
∫ t
0 e−AsUds(d0) = ρX0(d0)+ρŜt(d0).

The above lemma allows us to compute the separating time
intervals for a dynamic direction as follows. Let p+d,ε(t) =

sReach(−S,−A,U , [t1, t2], d, ε), so that for all t ∈ [t1, t2],
ρŜt(d) ≤ p+d,ε(t). Applying Lemma 5.5 and (16), the flow-

pipe is separated from S for any t ∈ [t1, t2] for which

ρX0(d) + p+d,ε(t) < 0. (18)

5.2.3 Pointwise Separation Algorithm

We now describe an algorithm that uses a convex sepa-
ration algorithm pointwise in time to separate the flowpipe
from a guard set S over a time interval [t1, t2].

The algorithm takes as input the system description, the
initial set X0, the guard set S, a time interval [t1, t2]. It
returns a set of time intervals for which separation could
not be shown.

1. Picking some t∗ ∈ [t1, t2], e.g., the midpoint, we use a
convex separation algorithm on Xt∗ to detect or refute
separation at time t∗. If separation cannot be shown,
stop. Otherwise, we obtain a separating direction d
and a bound ε on the required accuracy.

2. Compute s+d,ε(t) = sReach(X0, A,U , [t1, t2], d, ε) and

p+d,ε(t) = sReach(−S,−A,U , [t1, t2], d, ε).

3. Remove from [t1, t2] the t where s+d,ε(t) + ρS(−d) < 0

or ρX0(d) + p+d,ε(t) < 0 (separation holds).

4. For each of the remaining sub-intervals, apply the point-
wise separation algorithm recursively and return the
obtained intervals.

The algorithm has the weakness that it may stop prema-
turely if the separation time t∗ is poorly chosen. We propose
two improvements: First, the algorithm may be repeated on
the subintervals [t1, t

∗] and [t∗, t2], until their size falls below
a given threshold. Second, the algorithm may be applied a
second (and third) time, choosing t∗ to be the start (and
end) times of the intervals instead.

Indeed, separating on start and end times may reduce the
size of the flowpipe segments, for which discrete successor
states are computed, and thus improve the approximation
accuracy of the reachability algorithm even in cases where
separation could not be shown.

6. EXPERIMENTAL RESULTS
In this section, we evaluate the presented algorithms on

two classes of benchmarks. We have implemented the al-
gorithms in the SpaceEx hybrid model checker. We con-
ducted the experiments on a machine with an Intel i7 3.4
GHz processor and 16 GB of RAM. We illustrate the re-
sults for the convex separation algorithms from Section 4 on
the sphere benchmark. Here, we consider an overapproxi-
mation of an n-dimensional sphere by a polytope with m
constraints. The guard is a single point. Recall that with
Lemma 4.1, any convex separation problem can be reduced
to separating one convex set from a single point (the ori-
gin). Our benchmark is thus equivalent to separating two
sphere-approximations (each with half the radius), which we
consider to be a challenging instance.

We consider a number of benchmark instances by varying
the dimension of the sphere n, the number of constraints
m as well as the distance to the guard. By varying those
parameters we can flexibly adjust the benchmark instance
complexity. The guard is defined based on the distance
and the normal of the guard hyper-plane. For every tu-
ple (n,m, distance) we pick 10 random vectors to be used as
guard normals. We analyze every instance using the adapted
GJK algorithm and the directed approximation algorithm.
Note that we accumulate the results over those randomly
selected vectors. In particular, we report the relation of
the number of the benchmark instances where the convex
separation algorithm has found the right answer before the
time-out (success rate), the minimum, maximum and aver-
age numbers of direction refinements and run-time, respec-
tively (see Table 1). We terminate the analysis when either

the timeout of 500 s or the maximum number of 500 refine-
ment iterations has been reached.

We observe that the time needed to show separation gener-
ally increases with the sphere dimensionality and the num-
ber of constraints. Furthermore, the number of direction
refinements to show separation increases as well. The dis-
tance to the guard plays an important role: The smaller the
distance, the more complex it becomes to find a separating
plane. The success rate goes from 5% for instance 24 with
the distance equal to 0.1 up to 100% for distance 1.

The GJK algorithm proves separation in most cases in a
short time. The DA algorithm performed very well for the
smaller dimensions and number of constraints, still scales
worse than the GJK algorithm. We note that the DA algo-
rithm provides more guarantees compared to the GJK algo-
rithm. Furthermore, the DA algorithm can provide sound
results for the cases with overlap.

We examine the flowpipe separation algorithms from Sec-
tion 5 based on the circle benchmark. In this setting, we it-
eratively call the convex separation algorithm for every time
interval where the system is expected to enter and leave the
guard. In the circle benchmark, we model an object which
moves on a circle orbit in 2D space, i.e, its dynamics are pro-
vided by the following differential equations: ẋ = −y∧ẏ = x.
The system behavior is illustrated in Figure 4. We take a
segment between two points on the orbit as an initial re-
gion. We consider two positions of a rectangular guard: the
guard is inside the circular orbit (GI; see Figure 4(b)) and
the guard is outside (GO; see Figure 4(a)). The results for
the circle benchmark are presented in Table 2.

We observe that with the GO-instances, we need to con-
sider much less time intervals. Furthermore, the number of
directions to prove the separation drastically differs. For
example, the directed approximation algorithm with flow-
pipe separation using convexification needs 5 direction re-
finements if the guard is outside. However, the number of
refinements increases to 108 if the guard is located inside.
Note that the algorithm also cannot prove the separation in
this case. We can explain this behavior as follows. For the
GO-instances, there exists at least one separating plane for
all the time intervals. At the same time, if the guard is lo-
cated inside, we observe that no plane exists which separates
the guard from the flow-pipe for all time intervals. There-
fore, the algorithm needs to search for an individual separat-
ing plane for every time interval for the GI-instances. There-
fore, we expect the flowpipe separation using convexification
to be useful for GO-instances. This hypothesis is confirmed
by our experiments where all the convex separating algo-
rithms require only one interval refinement. However, due
to the same reasons, the flowpipe separation performs badly
on the GI-instances. Moreover, the convex separating algo-
rithms cannot even find the separating plane because the
convexification leads to rather over-approximative results.

7. REFERENCES
[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A.

Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science,
138(1):3–34, 1995.

[2] R. Alur, T. Dang, and F. Ivancic.
Counterexample-guided predicate abstraction of
hybrid systems. Theor. Comput. Sci., 354(2):250–271,
2006.

ID Algorithm # IR # d Runtime Res.
1 CH, GJK 1 7 0.038s SEP
2 CH, DA 1 5 0.046s SEP
3 PW, GJK 1 6 0.042s SEP
4 PW, DA 1 6 0.060s SEP

5 CH, GJK 9 1767 37.903s INT
6 CH, DA 14 108 0.749s INT
7 PW, GJK 19 258 0.960s SEP
8 PW, DA 18 128 0.791s SEP

Table 2: Experimental results of the circle bench-
mark with static interval refinement. Abbreviations:
ID: benchmark instance number, Algorithm: the
convex separation algorithm used, # IR: number of
interval refinements, # d: number of considered di-
rections over all the interval refinements, Runtime:
algorithm runtime, Res.: result of the algorithm.
Note that the separating plane exists in all the in-
stances. The GO-instances are in the upper block of
the table. The GI-instances are in the lower block.
CH stands for the flowpipe separation using con-
vexification. PW stands for the pointwise flowpipe
separation. GJK stands for the adapted GJK al-
gorithm. DA denotes the directed approximation
algorithm.

[3] E. Asarin, T. Dang, O. Maler, and R. Testylier. Using
redundant constraints for refinement. In Automated
Technology for Verification and Analysis, pages 37–51.
Springer, 2010.

[4] P. S. Duggirala and A. Tiwari. Safety verification for
linear systems. In EMSOFT’13, pages 1–10. IEEE,
2013.

[5] G. Frehse, R. Kateja, and C. Le Guernic. Flowpipe
approximation and clustering in space-time. In
Proceedings of the 16th international conference on
Hybrid systems: computation and control, pages
203–212. ACM, 2013.

[6] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton,
R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. SpaceEx: Scalable verification of hybrid
systems. In G. Gopalakrishnan and S. Qadeer, editors,
CAV, volume 6806 of LNCS, pages 379–395. Springer,
2011.

[7] G. Frehse and R. Ray. Flowpipe-guard intersection for
reachability computations with support functions. In
IFAC ADHS, pages 94–101, 2012.

[8] C. Le Guernic and A. Girard. Reachability analysis of
hybrid systems using support functions. In
A. Bouajjani and O. Maler, editors, CAV, volume
5643 of LNCS, pages 540–554. Springer, 2009.

[9] A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev.
Interactive Decision Maps, volume 89 of Applied
Optimization. Kluwer, 2004.

[10] I. M. Mitchell. Comparing forward and backward
reachability as tools for safety analysis. In HSCC’07,
pages 428–443, 2007.

[11] S. Sankaranarayanan, T. Dang, and F. Ivančić.
Symbolic model checking of hybrid systems using
template polyhedra. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 188–202.
Springer, 2008.

[12] G. van den Bergen. Collision detection in interactive
3D computer animation. PhD thesis, Eindhoven
University of Technology, 1999.

ID Algorithm n m Distance 3 %
Direction Ref. Runtime

min. max. avg. min. max. avg.
1 GJK 2 16 0.01 100% 2 52 13.550 0s 0.077s 0.015s
2 GJK 3 36 0.01 95% 7 54 30.789 0.008s 0.125s 0.061s
3 GJK 4 64 0.01 85% 20 110 67.588 0.056s 0.895s 0.446s
4 GJK 5 100 0.01 55% 105 162 133.909 1.402s 6.689s 3.027s
5 GJK 2 16 0.1 95% 1 19 7.157 0s 0.021s 0.005s
6 GJK 3 36 0.1 100% 2 34 12.000 0s 0.067s 0.017s
7 GJK 4 64 0.1 95% 2 56 18.263 0.001s 0.241s 0.057s
8 GJK 5 100 0.1 65% 9 40 18.833 0.027s 0.288s 0.104s
9 GJK 2 16 0.5 100% 1 3 1.900 0s 0.002s 0s
10 GJK 3 36 0.5 100% 1 11 3.800 0s 0.015s 0.003s
11 GJK 4 64 0.5 100% 1 21 6.300 0s 0.057s 0.013s
12 GJK 5 100 0.5 95% 2 27 7.000 0.001s 1.300s 0.089s
13 GJK 2 16 1 100% 1 2 1.650 0s 0.001s 0s
14 GJK 3 36 1 100% 1 3 2.150 0s 0.002s 0s
15 GJK 4 64 1 100% 1 8 2.850 0s 0.015s 0.002s
16 GJK 5 100 1 100% 2 8 3.150 0.001s 0.026s 0.004s

17 DA 2 16 0.01 100% 2 10 6.500 0.003s 0.047s 0.023s
18 DA 3 36 0.01 95% 30 116 46.368 0.707s 33.642s 3.553s
19 DA 4 64 0.01 40% 150 210 180.875 142.302s 470.624s 309.943s
20 DA 5 100 0.01 0% 500 500 — — 0s —s
21 DA 2 16 0.1 100% 2 7 3.750 0s 0.027s 0.008s
22 DA 3 36 0.1 100% 7 40 18.800 0.030s 1.421s 0.306s
23 DA 4 64 0.1 95% 13 161 88.210 0.207s 188.231s 51.952s
24 DA 5 100 0.1 5% 116 116 116.000 188.580s 188.580s 188.580s
25 DA 2 16 0.5 100% 2 4 2.450 0s 0.010s 0.002s
26 DA 3 36 0.5 100% 2 13 5.500 0s 0.103s 0.028s
27 DA 4 64 0.5 100% 2 83 22.900 0.001s 23.274s 2.704s
28 DA 5 100 0.5 85% 2 113 28.000 0.001s 179.145s 20.968s
29 DA 2 16 1 100% 2 2 2.000 0s 0.002s 0s
30 DA 3 36 1 100% 2 10 3.150 0s 0.079s 0.009s
31 DA 4 64 1 100% 2 31 7.300 0s 1.396s 0.182s
32 DA 5 100 1 100% 2 40 9.050 0s 7.546s 0.671s

Table 1: Results for the sphere benchmark. Abbreviations: ID: benchmark instance ID, Algorithm: convex
separation algorithm, n: dimension of the sphere, m: number of facets in the over-approximation of the
sphere, Distance: distance between the guard and the polytope which over-approximates the sphere, 3
%: the relation of the number of the benchmark instances where a convex separation algorithm has found
the right answer (until OOT = 500 s.) to the total number of benchmarks in this class (success rate),
Direction Ref.: number of directions the separation algorithm has tried out (minimum, maximum and
average values), Runtime: runtime in seconds (minimum, maximum and average values), DA denote the
directed approximation algorithm, GJK stands for the adapted GJK algorithm.

	Introduction
	Representing Sets with Approximate Support Functions
	Approximate Support Functions
	Inner Approximation of Approximate Support Functions

	Reachability with Support Functions
	Hybrid Automata
	Flowpipe Approximation
	Eliminating Spurious Transitions

	Separating Convex Sets Using Support Functions
	Separation using Directed Approximation
	Adapted GJK Algorithm

	Timed Flowpipe Separation
	Flowpipe Separation using Convexification
	Flowpipe Separation Point-Wise over Time
	Separating with Fixed Direction
	Separating with Dynamic Direction
	Pointwise Separation Algorithm

	Experimental Results
	References

