
HyRG: A Random Generation Tool for Affine
Hybrid Automata

Luan Viet Nguyen2, Christian Schilling1, Sergiy Bogomolov1, and Taylor T.
Johnson2

1 Albert-Ludwigs-Universität Freiburg, Germany
2 University of Texas at Arlington, USA

Abstract. In this paper, we describe methods for randomly generating
hybrid automata with affine differential equations, invariants, guards,
and updates. Selecting an arbitrary affine function from the set of all
affine functions results in a low likelihood of generating hybrid automata
with diverse and interesting behaviors, as there are an uncountable num-
ber of elements in the set of all affine functions. Instead, we partition the
set of all affine functions into potentially interesting classes and randomly
select random elements from these classes. For example, we partition the
set of all affine differential equations by using restrictions on eigenval-
ues such as those that yield stable, unstable, etc. equilibrium points.
We partition the components describing discrete behavior (guards, up-
dates, and invariants) to allow either time-dependent or state-dependent
switching, and in particular provide the ability to generate subclasses of
piecewise-affine hybrid automata. Our preliminary experimental results
with a prototype tool called HyRG (Hybrid Random Generator) illus-
trate the feasibility of this generation method to automatically create
standard hybrid automaton examples like the bouncing ball and ther-
mostat with acceptable likelihoods.

1 Introduction

In this paper, we describe methods for randomly generating hybrid automata
with affine (linear) differential equations, invariants, guards, and updates im-
plemented in a prototype tool called HyRG. While random generation of affine
vector fields (i.e., continuous linear systems, or a hybrid automaton with one lo-
cation and no transitions) has been used to evaluate reachability algorithms [1,2],
to the best of our knowledge, there has been no effort to randomly generate
hybrid automata with more complex discrete structure. Additionally, existing
methods for generating random continuous linear systems are relatively unso-
phisticated.3 We highlight there are many tools and methods for random pro-
gram generation in various languages (C, Java, etc.) [16]. Random generation
of models is useful for: (a) evaluating reachability algorithms, (b) testing vari-
ous components (from parsers to analysis algorithms) in hybrid analysis tools,

3 For instance, MathWorks Matlab includes a function rss to generate random linear
systems, http://www.mathworks.com/help/control/ref/rss.html.

http://www.mathworks.com/help/control/ref/rss.html


2

1 function randHA(m, n, d , Time, Opt)
AR ← ∅

3 // generate state variables
AR.Var ← { x1, . . . , xn}

5 // generate sets of locations and transit ions
{AR.Loc,AR.Trans} ← discreteStructure(m, Opt)

7 foreach location l in AR.Loc
// generate a flow over state variables

9 l.flow ← randFlow(n,AR.Var, Opt)
// generate time−dependent switched systems

11 if Opt.T 6= ∅ then l.flow ← l.flow ∪ {Time.β} // add time−flow
l.inv ← Time.θ // generate an invariant over time

13 // generate state−dependent switched systems
else

15 // generate an invariant over state variables
l.inv ← randInv(d,AR.Var, Opt)

17 AR.Flow ← AR.Flow ∪ {l.flow}
AR.Inv ← AR.Inv ∪ {l.inv}

19 foreach transition t in AR.Trans
if Opt.T 6= ∅ then t.grd ← Time.σ // generate a time−guard

21 t.rst ← Time.φ // generate a time−reset
else

23 // generate a guard condition over state variables
t.grd ← randGrd(l.inv ,AR.Var, Opt)

25 // generate an update action over state variables
t.rst ← randRst(n,AR.Var, Opt)

27 // overwrite transit ion with associated guard and update
AR.Trans.t ← t

29 // randomly generate an i n i t i a l condition
AR.Init ← randInit(n,AR.Var, Opt)

31 If Opt.T 6= ∅ then AR.Init← AR.Init ∧ Time.ι
return AR

Fig. 1: Pseudo-code overview of HyRG method to randomly generate hybrid
automata. The output hybrid automaton AR is generated as a tuple of random
locations, flows, invariants, transitions, guards, updates, and initial conditions.

(c) testing translators from hybrid systems modeling languages to other tools
like Mathworks Simulink/Stateflow (SLSF) [4], and (d) developing libraries of
examples with diverse continuous and discrete behaviors.

2 HyRG: Randomly Generating Hybrid Automata

We begin by defining the structure of a hybrid automaton.

Definition 1. A hybrid automaton [3, 7] H is a tuple, H ∆
= 〈Loc, Var, Flow,

Inv, Trans, Init〉, consisting of following components: (a) Loc: a finite set of
discrete locations. (b) Var: a finite set of n continuous, real-valued variables,
where ∀x ∈ Var, v(x) ∈ R and v(x) is a valuation—a function mapping x to

a point in its type—here, R; and Q ∆
= Loc × Rn is the state space. (c) Inv:

a finite set of invariants for each discrete location, ∀ l ∈ Loc, Inv(l) ⊆ Rn.
(d) Flow: a finite set of derivatives for each continuous variable x ∈ Var, and
Flow(l, x) ⊆ Rn describes the continuous dynamics of each location l ∈ Loc.
(e) Trans: a finite set of transitions between locations; each transition is a tuple
τ = 〈src, dst, Grd, Rst〉, which can be taken from source location src to destina-
tion location dst when a guard condition Grd is satisfied, and a state is updated
by an update map Rst. (f) Init: an initial condition, Init ⊆ Q.



3

We denote a hybrid automaton H that has been randomly generated by AR. The
various syntactic components (as described in Definition 1) of AR are randomly
generated as shown in Figure 1. We use the standard dot (.) notation to refer
to different components of tuples, e.g., AR.Loc refers to the set of locations Loc
of AR. The inputs include: a number of locations m, a number of variables n,
a dimension of invariant polytopes d , a set of options Opt (Definition 2) for
generating different classes (i.e., to assign different classes of flows, invariants,
guards, and updates) of AR, and a set of time-dependent switching options Time
(Definition 3).

Definition 2. An option set Opt is a tuple Opt
∆
= 〈T, F, L, I, G, R〉 of different

tool options to generate: (a) T: time-dependent switched systems, (b) F: different
classes of flows, (c) L: self-loop transitions, (d) I: different classes of invariants,
(e) G: different classes of guards, and (f) R: different classes of update maps.

We randomly generate each syntactic component of the automaton to generate
AR. First, we generate a set of state variables AR.Var = {x1, . . . , xn} (line 4).
Next, we randomly generate sets of locations AR.Loc and transitions AR.Trans
based on an arbitrary discrete structure (line 6). For each location l ∈ AR.Loc
(line 7), we randomly generate its flow l .flow over the state variables AR.Var
(line 9). If AR is a time-dependent switched system, then the first order differen-
tial equation of time variable Time.β is added into l .flow (line 11). An invariant
l .inv will be assigned as a linear inequality Time.θ of time variable τ (line 12). If
AR is a state-dependent system, l .inv is only generated over AR.Var (line 16).
Different classes of random flows and invariants can be assigned for each loca-
tion using additional options. Next, we iterate over each transition t ∈ AR.Trans
(line 19). If AR is time-dependent, then a random linear inequality Time.σ is as-
signed to a guard condition t .grd (line 20). An update action t .rst is created
as an equation Time.φ (line 21). On the other hand, if AR is state-dependent,
then t .grd , and t .rst are randomly generated over AR.Var (lines 24 through 26).
Finally, we generate a random initial condition AR.Init for AR (line 30). If we
generate a random time-dependent switched system, we give an initial value for
a time variable (line 31).

Randomly Generating Continuous Flow Dynamics. A randomly gen-
erated affine hybrid automaton AR has continuous dynamics defined as ẋ =
Ax +B, x ∈ Rn , where n is a random number of state variables, x is an n-vector
of state variables, and ẋ is a vector of the first derivatives of these variables
w.r.t. time. Furthermore, A is an n × n-matrix of real coefficients and B is an
n-vector of real parameters. A linear differential equation ẋ = Ax , using the
eigen-decomposition theorem [10], may be expressed in the form: ẋ = Ceλvx
where λ is an n-vector containing the eigenvalues λi of matrix A, v is an n × n-
matrix in which each column vi is a corresponding eigenvector of A, and C is an
n-vector of coefficients. Continuous dynamics of linear systems may be described
as an exponential function of eigenvalues, so different stability scenarios for each
location of AR can be generated by adding constraints over the eigenvalues of a
randomly generated matrix A. Hence, we can randomly generate many classes
of continuous dynamics based on different sets of given eigenvalues.



4

x1 ≥ −0.5522
ẋ1 = 0.9670x2
ẋ2 = −3.1330

start

x1 ≤ −0.5522 ∧ x2 ≤ −1.0679
x1 := −0.5522 ∧ x2 := −0.6807x2

Fig. 2: A hybrid automaton randomly
generated by HyRG with similar behav-
ior to the bouncing ball (BB) example.

0 20 40 60 80 100
0

2

4

6

8

10

Time (s)

x1

Fig. 3: The behavior of a randomly gen-
erated thermostat system.

0 5 10 15 20
-5

0

5

10

15

20

Time (s)

x1

(a)

0 5 10 15 20
-15

-10

-5

0

5

10

Time (s)

x2

(b)

Fig. 4: The reachable states showing x1 and x2 computed by the LGG algorithm
in SpaceEx (red) contain their SLSF simulation traces (blue) in Example 1.

3 HyRG Implementation and Experimental Results

We implemented the prototype HyRG tool in Java and Matlab and evaluated it
in in several scenarios.4

Example 1. For the input m = 1 (number of locations) and n = 2 (number
of variables), if we run the function randHA (in Figure 1) long enough, we can
randomly generate a hybrid system AR whose behavior is similar to the bouncing
ball (BB) system. A randomly generated instance is shown in Figure 2. The
initial values of its state variables are randomly generated as x1 = 10, x2 = 8.
Figure 4 shows the SpaceEx reachability analysis and SLSF simulations of AR,
where x1 and x2 represent the position and velocity of the BB system. We also
randomly generated 100 models similar to the BB system and collected data of
the generation process, shown in Table 1. As a result, for an automaton with a
single location and two variables, on average we will generate a BB model after
running the randHA function about 112 times. The average time to generate each
BB model is 17.022 seconds.
Example 2. Again, if we run the function randHA (in Figure 1) long enough,
this time with the input m = 2 (number of locations) and n = 1 (number of
variables), we can randomly generate a hybrid system AR whose behavior is
similar to the thermostat system. A random instance is shown in Figure 5. The
system AR starts at location Loc1, and an initial value of x1 is equal to 3. The

4 The tool and examples are available online: http://verivital.uta.edu/hyrg/

http://verivital.uta.edu/hyrg/


5

Table 1: HyRG trial table for randomly generating 100 bouncing ball examples.

Mean Median Std.Dev Min Max Total

Number of trials 111.63 65 120.26 1 661 11163

Generation time per trial (s) 17.022 9.824 18.615 0.0946 101.23 1702.2

Loc1
x1 ≤ 9

ẋ1 = 9.281− 0.6852x1

start

Loc2
x1 ≥ 2

ẋ1 = −0.1816x1

x1 ≥ 9

x1 ≤ 2

Fig. 5: A hybrid automaton randomly generated by HyRG with similar behavior
to the standard thermostat system example.

Table 2: HyRG trial table for randomly generating 100 thermostat examples.

Mean Median Std.Dev Min Max Total

Number of trials 2126.5 1481 2152.2 24 10710 212650

Generation time per trial (s) 216.35 152.13 219.15 2.4855 1091.5 21635

SpaceEx reachability analysis and SLSF simulation of AR are shown in in Fig-
ure 3, where x1 represents the temperature of a thermostat system. Again, we
generated 100 random hybrid models similar to the thermostat system. Table 2
shows the data collected from the generation process. The average number of
unsuccessful trials before we get one hybrid model similar to the thermostat sys-
tem is approximately 2127 trials, and an average generation time for this model
is 216.35 seconds. By comparison with the trial data for generating the BB ex-
ample in Table 1, we can see that the random generation function randHA runs
more than ten times longer to produce the thermostat system. Since increasing
the number of locations of AR leads to a larger number of choices for other
components (e.g., flow dynamics, invariants, transitions, etc.), more instances of
AR needed to be generated.

4 Conclusion

In this paper, we described methods for randomly generating hybrid automata
with affine differential equations, invariants, guards, and updates implemented
in a prototype software tool called HyRG. Rather than picking only random
matrices and vectors for the affine functions used in flows, guards, invariants,
updates, etc., we instead partition the classes of affine functions into interesting
classes, for example, by restricting the eigenvalues of the differential equations to
fall into stable or unstable classes. We illustrated the capability of the approach
and HyRG implementation by randomly generating hybrid automata with the
same qualitative behavior as standard examples like the bouncing ball and ther-
mostat (heater) with reasonable numbers of iterations and runtime. In future



6

work, we plan to improve the HyRG prototype and define theoretical notions of
qualitatively similar behavior using e.g., simulation relations. With such notions
of qualitatively similarity, we plan to investigate possible completeness of ran-
dom generation methods to enumerate every qualitatively equivalent automata
with a fixed number of variables and locations.

References

1. Althoff, M., Krogh, B.: Zonotope bundles for the efficient computation of reachable
sets. In: Decision and Control and European Control Conference (CDC-ECC), 2011
50th IEEE Conference on. pp. 6814–6821 (Dec 2011)

2. Althoff, M., Krogh, B.H., Stursberg, O.: Analyzing reachability of linear dynamic
systems with parametric uncertainties. In: Rauh, A., Auer, E. (eds.) Modeling,
Design, and Simulation of Systems with Uncertainties, Mathematical Engineering,
vol. 3, pp. 69–94. Springer Berlin Heidelberg (2011)

3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3–34 (1995)

4. Bogomolov, S., Johnson, T.T., Nguyen, L.V., Schilling, C.: Compositional design
of Simulink/Stateflow models with hybrid automata. In: NASA Formal Methods.
Springer Berlin / Heidelberg (2015 (Under Review))

5. Cobb, J.D., DeMarco, C.L.: The minimal dimension of stable faces required to
guarantee stability of a matrix polytope. Automatic Control, IEEE Transactions
on 34(9), 990–992 (1989)

6. Eppstein, D., Löffler, M.: Bounds on the complexity of halfspace intersections when
the bounded faces have small dimension. Discrete & Computational Geometry
50(1), 1–21 (2013)

7. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Computer Aided Verification (CAV). LNCS, Springer (2011)

8. Godsil, C., Royle, G.: Algebraic graph theory, volume 207 of Graduate Texts in
Mathematics. Springer-Verlag, New York (2001)

9. Grunbaum, B., Klee, V., Perles, M.A., Shephard, G.C.: Convex polytopes.
Springer, second edn. (1967)

10. Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge university press, second
edn. (2012)

11. Kloetzer, M., Belta, C.: A fully automated framework for control of linear sys-
tems from temporal logic specifications. Automatic Control, IEEE Transactions
on 53(1), 287–297 (2008)

12. Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston, MA, USA
(2003)

13. Michel, A.N., Hou, L., Liu, D.: Stability of dynamical systems: continuous, discon-
tinuous, and discrete systems. Springer (2007)

14. Soh, C.: Necessary and sufficient conditions for stability of symmetric interval
matrices. International Journal of Control 51(1), 243–248 (1990)

15. Waterhouse, W.C.: The structure of alternating-hamiltonian matrices. Linear Al-
gebra and its Applications 396(5), 385–390 (2005)

16. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in c
compilers. In: Proceedings of the 32Nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. pp. 283–294. PLDI ’11, ACM, New
York, NY, USA (2011)



7

A Appendix: Additional Random Generation Details

In this appendix, we describe additional details on the random generation meth-
ods used in HyRG, described previously in the high-level overview of Section 2, Fig-
ure 1. HyRG takes as inputs the options specified in Figure 1. As output, HyRG
may produce a hybrid automaton in the input XML format of the SpaceEx
tool [7]. Additionally, HyRG is integrated with SLSF via a hybrid automaton to
SLSF translation procedure [4].

Time-Dependent Switching Options A Time set includes all necessary
components for randomly generating a time-dependent switched system [12].

Definition 3. A time-dependent switching set Time is a tuple Time
∆
= 〈τ, β, θ, σ, φ〉,

where (a) τ : a time variable. (b) β: a first order linear equation over the time
variable, β ← τ̇ = 1. (c) θ: an invariant randomly generated as θ ← aτ ≤ b.
(d) σ: a guard condition randomly generated as σ ← cτ ≤ d. (e) φ: an update
map randomly generated as φ ← τ = e. (f) ι: a initial condition generated as
ι← τ = f , where a, b, c, d, e, f are random constant numbers such that ab ≥ 0,
bc ≥ 0, and e, f ≥ 0.

Randomly Generating Discrete Structure. The discrete structure of a
hybrid automata is a set of locations and transition lines connected some pairs of
locations. It can be randomly generated using random adjacency matrices [8]. If
a hybrid automata has a random m number of locations, so its transition graph
is an m×m random adjacency matrix adjMatrix , whose elements equal to either
0 or 1. If an element adjMatrix[i, j] is equal to 1, there is a transition from ith

location to jth location. Otherwise, there is no connection between these two
locations. An example of a discrete structure’s graph randomly generated by
a random adjacency matrix AG is shown in Figure 6. If any diagonal element
adjMatrix[i, i] is equal to 1, the ith location will be connected to itself. In other
words, it has a self-loop transition. Moreover, a number of transitions can also
be controlled by restricting the sum of rows and columns of adjacency matrix
less than some arbitrary constants.

Loc1 Loc2

Loc3Loc4

AG =


1 1 0 1

0 0 1 0

0 1 1 1

1 0 0 0



Fig. 6: An example of the transition graph of the hybrid automaton model ran-
domly generated by the random adjacency matrix AG.



8

function discreteStructure(m)
2 adjMatrix ← randAdjMatrix(m, Opt)

foreach row element i in adjMatrix
4 // generate a corresponding location

AR.Loc ← AR.Loc ∪ {li}
6 foreach row element j in adjMatrix

// generate a transit ion from location i to location j
8 if adjMatrix[i, j] = 1 then AR.Trans ← AR.Trans ∪ {ti,j}

return AR.Loc, AR.Trans

Fig. 7: Randomly generated discrete structure pseudo-code. The input is a num-
ber of locations m. And, the output are random sets of locations AR.Loc and
transitions AR.Trans.

1 function randAdjMatrix(m, Opt)
adjMatrix ← ∅

3 flag ← 1
while flag = 1

5 flag ← 0
adjMatrix ← randi([0, 1],m) // Figure 6

7 foreach row element i in adjMatrix
// without se l f−loop implementation , zero a l l diagonal elements

9 if Opt.F = ∅ then adjMatrix[i, i]← 0
// generate at l eas t one ingoing transit ion

11 if
∑

adjMatrix[i, :] = 0 then flag ← 1
// generate at l eas t one outgoing transit ion

13 foreach column element j in adjMatrix
if

∑
adjMatrix[:, j] = 0 then flag ← 1

15 return adjMatrix

Fig. 8: Randomly generated adjacency matrix pseudo-code. The input includes
a number of locations m, and a set of options Opt. The output is an adjacency
matrix adjMatrix.

The pseudo-code for generating a random discrete structure by creating an
arbitrary adjacency matrix shown in Figure 7—called from randHA (Figure 1,
line 6). We first call the function randAdjMatrix (line 2) to get a random adjacency
matrix adjMatrix. Next, we iterate over each row element i of an adjacency matrix
adjMatrix (line 3), and then create a corresponding location li (line 5). For each
row element i of adjMatrix , we iterate over each row element j of adjMatrix
(line 6), and then generate a corresponding transition ti,j (line 8) when the
value of adjMatrix[i, j] is equal to one.

The pseudo-code of randomly generating an arbitrary adjacency matrix shown
in Figure 8. A function randi([0, 1],m) (line 6) generates an m×m random ma-
trix whose elements are equal to either 0 or 1. We use a boolean variable flag
to keep generating adjMatrix until we get our desired matrix (line 4), which pro-
vides at least one pair of ingoing and outgoing transitions for each location. We
can generate this desired matrix by putting constraints on the sum of each row
and column of adjMatrix (lines 7 through 14). Additionally, If we want to gener-
ate a random hybrid automaton without self-loop transition (line 9), we set all
diagonal elements of adjMatrix equal to zero.

The continuous dynamic of each location can be randomly generated by
different classes of matrices. Suppose that A is a symmetric real matrix with all
of its eigenvalues are real numbers. If A is considered as: (a) positive definite (pd),



9

1 function randFlow(n,AR.Var, Opt, optFlw)
X ← AR.Var // assign a vector of state variables

3 if Opt.F 6= ∅ then randomly select ζ ∈ optFlw
// return a random matrix for a corresponding random flow

5 A ← Λ(n, ζ)
// generate a new continuous flow

7 flow ← {Ẋ = AX + B}
return flow

Fig. 9: Randomly generated flow pseudo-code. The input includes the number of
variables n, a set of state variables AR.Var, a set of options Opt, and a set of
different classes of matrix’s definiteness optFlw.

then all of its eigenvalues are positive, (b) negative definite (nd), then all of its
eigenvalues are negative, (c) semipositive definite(psd), then all of its eigenvalues
are non-negative, (d) seminegative definite(nsd), then all of its eigenvalues are
non-positive, (e) and indefinite (ind), then its eigenvalues have both positive
and negative values. More generally, if A is equal to its self-adjoin. Then A is a
Hermitian matrix, and its definiteness is considered based on the real part of its
eigenvalues [10,13].

Definition 4. Let A ∈ Cn×n be an Hermitian matrix, and U ,U ∗ ∈ Cn be
a complex vector and its conjugate transpose vector respectively. (a) For every
nonzero vector U (i) if U ∗AU > 0, then A is pd (ii) if U ∗AU < 0, then A is
nd (b) For every vector U (i) if U ∗AU ≥ 0, then A is psd (ii) if U ∗AU ≤ 0,
then A is nsd

According to Definition 4, suppose that (λ, v) is an eigenpair of A, so v∗Av =
λv∗v = λ. Thus a sign of λ depends on a definiteness of A. For example, if A is
negative define, then λ = v∗Av < 0 for all eigenpairs (λ, v) of A. In other words,
a Hermitian matrix A is considered negative define. This type of Hermitian
matrix is also considered as a Hurwitz matrix that has all negative real part
eigenvalues [14]. Correspondingly, the continuous dynamic of each location in
system AR generated based this matrix will be exponentially asymptotically
stable [13]. Otherwise, if A is randomly generated as a skew-Hamiltonian matrix
[15], then all eigenvalues of A have only imaginary parts.

The pseudo-code of a randomly generated flow dynamic for each location
l ∈ AR.Loc shown in Figure 9—called from randHA(Figure 1, line 9). The inputs
include a set of different classes of matrix’s definiteness optFlw that includes all
possible classes of flows for every location in AR. We define optFlw as a tuple

optFlw
∆
= 〈pd ,nd , psd ,nsd , ind〉. For each definiteness ζ ∈ optFlw, Λ(n, ζ) is a

function that returns an n × n random matrix corresponding ζ. For randomly
generating a flow of location l, we first generate the vector of state variable X

(line 2). Next, we randomly select a different classes of definiteness in optFlw

(line 3), and then assign a random matrix corresponding to this class of defi-
niteness (line 5). The continuous dynamics flow is generated by the first order
differential equation {Ẋ = AX + B} (line 7), where Ẋ is an n × 1 vector of the
first derivatives of state variables X, and B is an n×1 arbitrary constant vector.



10

function randInv(d,AR.Var, Opt, optInv)
2 if Opt.I 6= ∅ then randomly select ρ ∈ optInv

//returns a set of random linear inequa l i t i es
4 inv ← Γ(d,AR.Var, ρ)

return inv

Fig. 10: Randomly generated invariant pseudo-code. The input includes a dimen-
sion d of a invariant polytope, a set of variable x , a set of option choices Opt,
and a set of different d dimensional polytopes optInv.

1 function randGrd(inv ,AR.Var, Opt)
Opt.G 6= ∅ then grd ← Ω(inv ,AR.Var)

3 return grd

Fig. 11: Randomly generated guard condition pseudo-code. The input are an
invariant polytope inv , a set of option choices Opt and a set of variable AR.Var.

Randomly Generating Invariants. An invariant for each location of AR
is randomly generated based on the concept of convex polytopes. Let x ∈ Rn is
a vector of state variables of AR, then a convex polytope is defined as a solution
set of a finite system of linear inequalities Cx ≤ D where C is an k×n constant
matrix, k is a number of linear inequalities, D is either an k×1 vector of constants
or symbolic expression algebra of state variables. Each linear inequality divides
the whole space in two separately halves called a half-space [9]. Suppose that we
have an k number of half-spaces generated by an k random linear inequalities. An
invariant Inv ∈ Rd of a hybrid system AR is an d dimensional convex polytope
randomly generated as an intersection of k half-spaces. We investigate a polytope
generated from system of linear inequalities, which is not full-dimensional. Then,
there exists at least one state variable missing from all linear inequalities. Thus,
this polytope contains a ray, and is unbounded [9]. An unbounded polytope (upo)
can be randomly generated as a slab between two arbitrary parallel hyperplanes,
an arbitrary infinite prism, or an arbitrary infinite cone. On the other hand, we
also investigate several bounded polytopes including: (a) d dimensional simplex
polytope (spo): the convex hull of d + 1 affinely independent points in Rd , or an
intersection of d + 1 half-spaces. (b) d dimensional cubical polytope (opo): the
family of polytopes that analogues to a cube, and is defined as an intersection of
2d half-spaces. (c) d dimensional cross polytope (cpo): the family of polytopes
that analogues to a octahedron, and is defined as an intersection of 2d + 2
half-spaces [6]. The pseudo-code of randomly generated invariant polytope for
each location in AR shown in Figure 10. If a location in AR has an invariant, we
randomly select one type of d dimensional polytope in optInv (line 2), and then
assign a corresponding set of random linear inequalities to generate an arbitrary
invariant inv (line 4).

Randomly Generating Guard Conditions. For each location l ∈ AR.Loc,
its invariant inv is randomly generated as a d dimensional convex polytope P
by the pseudo-code shown in Figure 10. If S is a random convex hull of any set
of vertices of P , so S is considered as a d dimensional sub-polytope of P [5,11].
Then, a random outgoing guard condition of location l is a set of linear inequal-



11

1 function randRst(n,AR.Var, Opt)
X ← AR.Var

3 Opt.R 6= ∅ then randomly select ψ ∈ optRst
rst ← {X = Ω(n,AR.Var, ψ)}

5 return rst

Fig. 12: Randomly generated update map pseudo-code. The input are a number
variables n, a set of option choices Opt and a set of variable AR.Var.

1 function randInit(n,AR.Var, Opt)
X ← AR.Var

3 init ← {X = rand(n, 1)}
return init

Fig. 13: Randomly generated initial condition pseudo-code. The input are a num-
ber variables n, a set of option choices Opt and a set of variable AR.Var.

ities represented the complement between a vector space Rd and S. A function
Ω(inv ,AR.Var) whose inputs are an invariant inv and a set of state variables
AR.Var returns a set of random linear inequalities Jx ≥ K, where J,K are de-
fined similar to C, and D respectively. The pseudo-code of randomly generated a
guard condition for an outgoing transition of each location l shown in Figure 11.
If there exists an outgoing transition from location l , then we will assign a corre-
sponding set of random linear inequalities for its arbitrary guard condition grd
by calling the Ω function (line 2).

Randomly Generating Update Map. A update map can be randomly
generated by assigning either a random constant or an arbitrary symbolic ex-
pression algebra of state variables to each state variable in AR.Var. Suppose that

a set of update map optRst is a tuple optRst
∆
= 〈const , symbo〉. For each type of

an update ψ ∈ optRst, Φ(n,AR.Var, ψ) is a function that returns an n×1 vector
of random constants or symbolic expression algebra of state variables. Figure 12
shows the pseudo-code for randomly generating a update map. If any transition
of system AR has an update action, we first randomly select whether to update
state variables to constants or assign them to any symbolic expression algebra
of state variables (line 3). And then, we set an equality between a vector of state
variables X and a random vector returned by calling Φ function to be an update
action rst (line 4).

Randomly Generating Initial Conditions. The pseudo-code for gener-
ating a random initial condition init is shown in Figure 13. We use a random
function rand(n, 1) (line 3) to generate an n × 1 vector of constants, and then
assign it to a vector of state variables X.

B Appendix: Additional Experimental Results

In this appendix, we describe additional experimental results using our prototype
HyRG implementation for randomly generating hybrid automaton models.

Example 3. Randomly generate the time-dependent switching system AR with
two locations, two transitions and two state variables x1, x2, and a dwell-time



12

Loc1
t ≤ 3

ẋ1 = −0.7843x2
ẋ2 = 0.7843x2

ṫ = 1

start

Loc2
t ≤ 9

ẋ1 = 0.1623x2
ẋ2 = −0.1623x2

ṫ = 1

t ≥ 3
t := 0 ∧ x1 := x1 + x2

t ≥ 9
t := 0 ∧ x1 := 0

Fig. 14: An example of a random time-dependent switching hybrid automaton
system AR randomly generated by using skew-Hamiltonian matrices.

0 20 40 60 80 100
-400

-300

-200

-100

0

100

Time (s)

x1

(a)

0 20 40 60 80 100
-200

-100

0

100

200

300

Time (s)

x2

(b)

Fig. 15: SLSF simulation (blue) and SpaceEx reachability (red) of AR showing x1
and x2 versus time in Example 3, respectively. Overall, their simulation traces in
SLSF are contained in the reachable states computed using the LGG algorithm
in SpaceEx. Exceptionally, the SLSF simulation settles into a vertical trace at
the reset instances of x1.

variable t , shown in Figure 14. The system has only reset action on x1 after each
transition between two locations Loc1, and Loc2. Assume the system starts at
location Loc1, and its randomly generated initial condition is x1 = 4, x2 = 24,
and t = 0. The continuous dynamics of each location is randomly generated
based on a skew-Hamiltonian matrix A, then all eigenvalues of matrix A are
purely imaginary. As a result, the trajectory of each state variables in AR.Var
will show some oscillatory behaviors, and is considered to be marginally stable.
Although the continuous dynamics of each location inAR.Loc is stable, the whole
system AR is not necessarily stable, shown in Figure 15. Figure 15 illustrates
the trajectory of x1 and x2 versus time from a SLSF simulation trace and the
reachable states computed by LGG algorithm in SpaceEx. It shows that the set
of reachable states computed by SpaceEx contains totally the simulation trace
produced by SLSF. Since, the SLSF simulation is different from reachable states
computed by SpaceEx that it connects discrete reset points of x1 by a vertical
line.



13

Loc1
t ≤ 7

ẋ1 = −0.7949x1 + 0.2722x2
ẋ2 = 0.2722x1 − 0.1835x2

ṫ = 1

Loc2
t ≤ 9

ẋ1 = −0.2936x1 − 0.1111x2
ẋ2 = −0.1111x1 − 0.4496x2

ṫ = 1

Loc3
t ≤ 5

ẋ1 = −0.5679x1 − 0.1359x2
ẋ2 = −0.1359x1 − 0.9269x2

ṫ = 1

start

t ≥ 7
t := 0 ∧ x1 := 2 ∧ x2 := 8

t ≥ 9
t := 0 ∧ x1 := x1 + 9 ∧ x2 := x2 + 15

t ≥ 10
t := 0
x1 := 7
x2 := 4

t ≥ 5
t := 0

x1 := x1 + 17
x2 := x1 + 18

Fig. 16: An example of a random time-dependent switching hybrid automaton
system AR randomly generated by using negative definite matrices.

Example 4. Consider the randomly generated hybrid system AR shown in Fig-
ure 16. The initial state of AR is Loc3, and the randomly initial values of its
variables are respectively generated as x1 = 10, x2 = 17, and t = 0. AR is non-
deterministic since the transition from location Loc2 to location Loc3 is never
happened. The continuous dynamic of each location in system AR.Loc are ran-
domly generated based on a negative definite matrix A, so it is exponentially
asymptotically stable [13], shown in Figure 17. The reachable states of x1 and x2
computed by LGG algorithm in SpaceEx do not contain their simulation trace
in SLSF when the system AR takes a transition from Loc3 to location Loc1. It’s
happened due to the semantic difference in reset mechanism between SpaceEx
and SLSF. In SLSF, the variables x1 and x2 are updated in order, it means that
x1 will be first updated to a new value, and then x2 will be updated based on a
new value of x1. However, these variables are updated concurrently in SpaceEx,
so x2 will be updated by using an old value of x1.



14

0 20 40 60 80 100
-5

0

5

10

15

20

Time (s)

x1

(a)

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

Time (s)

x2

(b)

Fig. 17: SLSF simulation (blue) and SpaceEx reachability (red) model AR show-
ing x1 and x2 versus time in Example 4, respectively. The SLSF simulation traces
and the reachable states computed by LGG algorithm in SpaceEx do not line up,
that depicts the semantic difference between these two tools . After each reset
action, the variables x1 and x2 are updated sequentially in SLSF, while they are
updated concurrently in SpaceEx.


	HyRG: A Random Generation Tool for Affine Hybrid Automata

