
Compositional Design of Simulink/Stateflow
Models with Hybrid Automata

Sergiy Bogomolov1, Taylor T. Johnson2, Luan Viet Nguyen2, and Christian
Schilling1

1 Albert-Ludwigs-Universität Freiburg, Germany
2 University of Texas at Arlington, USA

Abstract. Hybrid automata are an important formalism for modeling
dynamical systems exhibiting mixed discrete-continuous behavior such
as control systems. A number of powerful tools to model and formally
analyze hybrid automata have recently emerged. However, hybrid au-
tomata still lack expressiveness compared to integrated model-based de-
sign (MBD) frameworks such as MathWorks Simulink. In this paper, we
propose a correct-by-construction framework for the compositional sys-
tem design of Simulink/Stateflow (SLSF) models. In particular, our tech-
nique enables an automatic embedding of the hybrid automata design and
formal analysis into the SLSF MBD process. For this purpose, we provide
a translation of a hybrid automaton model to a semantically equivalent
SLSF model. Here, the issues that arise due to the non-deterministic
behavior of hybrid automata require special attention. We observe that
SLSF assumes must-semantics, i.e., a discrete transition fires as soon as
its guard is enabled, whereas a hybrid automaton typically works in the
may-setting. In our approach, we introduce a number of randomization
steps to account for these discrepancies. We implement the translation
method in a prototype software tool and illustrate our approach on a
closed-loop control system for a DC-to-DC power converter used as a
sub-component in larger SLSF models of cyber-physical systems (CPS).

1 Introduction

In this paper, we present a technique to automate the compositional design of
Simulink models. Our approach is particularly of interest if the design process is
structured in a bottom-up fashion. In other words, we assume that the individual
system components are first modeled in detail. These components are then linked
together to form the whole system under consideration. Here, we assume that the
system model consists of heterogeneous components and a number of components
are modeled as hybrid automata. In the last decade, a number of powerful design
and analysis tools for hybrid automata such as SpaceEx [8] and dReach [9]
have emerged. Those tools are particularly useful for the formal analysis and
verification of hybrid automata. Using this approach, a designer can ensure the
correctness of every individual component before linking them together.

2

In this work, we introduce a technique to automatically convert hybrid au-
tomata built in SpaceEx into semantically equivalent MathWorks Simulink/S-
tateflow (SLSF) diagrams. We note that hybrid automata and Simulink differ
in their semantics. In particular, the handling of non-determinism requires spe-
cial attention: We observe that a hybrid automaton is typically defined with
may-semantics wrt. the discrete transitions, whereas Simulink employs must-
semantics. In other words, a transition in SLSF fires as soon as the transition
guard is enabled, whereas the hybrid automaton still has the freedom to stay
in the current location as long as the location invariant is not violated. Our ap-
proach essentially incorporates additional randomization steps into the resulting
SLSF diagram. In this way, in every run, the diagram produces a different trace
which, however, still reflects the hybrid automaton semantics. Therefore, after
running multiple simulations, we get an approximation of the reachable state
space of the original hybrid automaton.

Overall, the resulting SLSF diagram can mimic the non-deterministic behav-
ior induced by the analyzed hybrid automaton. Therefore, our model translator
can be used as part of the model-based design (MBD) process as shown in Fig. 1.
We highlight that these semantics differences and non-determinism may not lead
only to incomplete results using deterministic SLSF diagrams, but may also lead
to unsound simulation results—in the sense that the resulting simulation trace
is not contained in the reachable states of the hybrid automaton. We provide
an example where a naive (non-semantics preserving) translation from a hybrid
automaton to an SLSF diagram yields unsound results.

Contributions. The primary contributions of this paper include: (a) developing
the first (to the best of our knowledge) semantics-preserving translation proce-
dure from non-deterministic hybrid automata models to SLSF diagrams that
enables a correct-by-construction model-based design (MBD) process, (b) the
implementation of this translation procedure in a software tool, and (c) the
evaluation of the translation procedure on several case studies, including a pow-
er/energy cyber-physical system (CPS).

Related Work. There is a large body of research on the translation of SLSF
models into other tools [1, 3, 4, 6, 7, 16, 23, 24, 26, 28] and commercial tools like
Esterel’s SLSF-to-Lustre. Agrawal et al. [1] suggest an algorithm to translate
SLSF models into the equivalent HSIF [6, 7, 23, 24] models. The Compositional
Interchange Format (CIF) provides a common input language focused on model
compositionality [2]. Alur et al. translated SLSF to linear hybrid automata for
applying symbolic analysis to improve test coverage of SLSF [3]. In a different
setting, Schrammel et al. [26] consider the translation problem for complex SLSF
diagrams where involved treatment of zero-crossings is needed. Manamcheri et
al. [16] have developed the tool HyLink to translate a restricted class of SLSF
to hybrid automata. The application of the above techniques is restricted by
the fact that no complete semantics of SLSF is provided (in spite of recent
progress [4, 5, 10,11,16,25]).

3

SpaceEx model
Model analysis

Verification

Converter

Simulink model
Simulation

Code generation

Fig. 1: High-level overview of the model-based design process. Verification using
the hybrid automaton model is performed in SpaceEx, then with the semantics-
preserving translator presented in this paper, we generate an SLSF diagram
that satisfies the same properties as the hybrid automaton. The diagram may
be integrated into more complex systems with possibly less formal components
(because they are too large to verify, exist for legacy reasons, etc.), and may then
be used in code generation processes. The resulting implementations thus have
core functionality that is correct-by-construction, under the assumption that the
code generation process also preserves semantics (as ensured, e.g., in the work
by Sampath et al. [25]).

In this work, we go another way by considering a model conversion in a
reverse direction, i.e., by converting a given hybrid automaton into an SLSF
model. In this setting, we benefit from the clear and unambiguous definition of
hybrid automata semantics. Pajic et al. [13, 20–22] consider a similar problem
of converting timed automata encoded in the Uppaal [15] semantics into SLSF
models. However, in their translation, they consider only runs of Uppaal models
that obey the must-semantics. In our work, beyond considering the much more
expressive framework of hybrid automata, we provide a semantically preserving
translation of SpaceEx models, which properly handles the non-determinism of
hybrid automata. While operational semantics of (purely discrete) Stateflow have
been developed [11], and alternative formalization of discrete semantics have
been investigated using, e.g., translation from Stateflow-to-C [25]. In contrast
to these prior works, we focus on continuous-time Stateflow diagrams.

The remainder of the paper is organized as follows. After introducing the
necessary background in Sec. 2, we present our translation scheme in Sec. 3,
followed by a discussion in Sec. 4. In Sec. 5, we evaluate our approach on several
case studies. Finally, Sec. 6 concludes the paper.

2 Preliminaries

In this section, we introduce the preliminaries that are needed for this work. In
Sec. 2.1, we define a hybrid automaton model and discuss its semantics. This is
followed by a discussion of Simulink/Stateflow in Sec. 2.2.

2.1 Hybrid Automata

A hybrid automaton is formally defined as follows.

4

Definition 1 (Hybrid Automaton).
A hybrid automaton is a tuple H = (Loc,Var , Init ,Flow ,Trans, Inv) defining

– the finite set of locations Loc,
– the set of continuous variables Var = {x1, . . . , xn} from Rn,
– the initial condition, given by Init(`) ⊆ Rn for each location `,
– the Flow(`) for each location `, a relation over the variables and their deriva-

tives. We assume Flow(`) to be of the form ẋ(t) = Ax(t)+b, where x(t) ∈ Rn,
A is a real-valued n× n-matrix and b is a real-valued n-dimensional vector,

– the discrete transition relation Trans, where every transition is formally de-
fined as a tuple (`, g, υ, `′):
• the source location ` and the target location `′,
• the guard, given by a linear constraint g,
• the update, given by an affine mapping υ, and

– the invariant Inv(`) ⊆ Rn for each location `.

The semantics of a hybrid automaton H is defined as follows. A state of H
is a tuple (`,x), which consists of a location ` ∈ Loc and a point x ∈ Rn. More
formally, x is a valuation of the continuous variables in Var . For the following
definitions, let T = [0, ∆] be an interval for some ∆ ≥ 0. A trajectory of H from
state s = (`,x) to state s′ = (`′,x′) is defined by a tuple ρ = (L,X), where
L : T → Loc and X : T → Rn are functions that define for each time point in T
the location and values of the continuous variables, respectively. Furthermore,
we will use the following terminology for a given trajectory ρ. A sequence of time
points where location switches happen in ρ is denoted by (τi)i=0...k ∈ T k+1. In
this case, we define the length of ρ as |τ | = k. Trajectories ρ = (L,X) (and the
corresponding sequence (τi)i=0...k) have to satisfy the following conditions:

– τ0 = 0, τi < τi+1, and τk = ∆ – the sequence of switching points increases,
starts with 0 and ends with ∆

– L(0) = `, X(0) = x, L(∆) = `′, X(∆) = x′ – the trajectory starts in
s = (`,x) and ends in s′ = (`′,x′)

– ∀ i ∀ t ∈ [τi, τi+1) : L(t) = L(τi) – the location is not changed during the
continuous evolution

– ∀ i ∀ t ∈ [τi, τi+1) : (X(t), Ẋ(t)) ∈ Flow(L(τi)), i.e., Ẋ(t) = AX(t) + b
holds and thus the continuous evolution is consistent with the differential
equations of the corresponding location

– ∀ i ∀ t ∈ [τi, τi+1) : X(t) ∈ Inv(L(τi)) – the continuous evolution is consis-
tent with the corresponding invariants

– ∀ i < k ∃ (L(τi), g, υ, L(τi+1)) ∈ Trans : Xend(i) ∈ g ∧X(τi+1) = υ(Xend(i))
∧ Xend(i) = limτ→τ−

i+1
X(τ) – every continuous transition is followed by a

discrete one; Xend(i) defines the values of continuous variables right before
the discrete transition at the time moment τi+1.

A state s′ is reachable from state s if there exists a trajectory from s to s′.
In the following, we mostly refer to symbolic states. A symbolic state s =

(`,R) is defined as a tuple, where ` ∈ Loc, and R is a convex and bounded

5

set consisting of points x ∈ Rn. The continuous part R of a symbolic state is
also called region. The symbolic state space of H is called the region space. The
initial set of states Sinit of H is defined as

⋃
`(`, Init(`)). The reachable state

space Reach(H) of H is defined as the set of symbolic states that are reachable
from an initial state in Sinit , where the definition of reachability is extended
accordingly for symbolic states. We refer to the set of all the trajectories of H
starting in Sinit by Traj(H).

We assume there is a given set of symbolic bad states Sbad that violate a
given property. As mentioned in Sec. 1, we assume that the system model is
designed in a bottom-up fashion. Therefore, we are interested in ensuring that
every individual hybrid automaton is correct, i.e., avoids the bad states. In other
words, we check with a hybrid model checker such as SpaceEx whether there
exists a sequence of symbolic states which contains a trajectory from Sinit to a
symbolic error state, where a symbolic error state se has the property that there
is a symbolic bad state in Sbad that agrees with se on the discrete part, and that
has a non-empty intersection with se on the continuous part.

2.2 Continuous-Time Stateflow Diagrams

Simulink is a graphical modeling language for control systems, plants, and soft-
ware. Stateflow is a state-based graphical modeling language integrated within
Simulink. Continuous-time Stateflow diagrams provide methods for modeling
hybrid systems that consist of continuous and discrete states and behaviors. In
this section, we describe a restricted subclass of continuous-time Stateflow dia-
grams to which we translate a hybrid automaton. In particular, we focus only
on continuous-time Stateflow state transition diagrams and we do not consider
models with hierarchical states.

Roughly, a Stateflow state transition diagram may be thought of as an ex-
tended state machine with variables of various types. In addition to states, State-
flow diagrams may have junctions that are instantaneous. A transition between
states may occur at each simulation time step, whereas multiple junction tran-
sitions may occur in a single simulation time step.

A continuous-time Stateflow diagram is roughly analogous to a hybrid au-
tomaton, but their semantics differs in several ways. In particular, Stateflow
diagrams are deterministic, have urgent transitions with priorities, and gener-
ally events to process during simulation like enabled transitions are determined
by zero-crossing detection algorithms.

Definition 2 (Stateflow diagram). Formally, a Stateflow diagram is a tuple
S = 〈LocS , JuncS , V arS , T ransS , ActionsS〉.3 Here,

– LocS is a finite set of locations (states),
– the junctions JuncS are like locations, but all of which may be evaluated in

a single simulation event step (i.e., they are instantaneous “states”),

3 In this paper, we do not consider compositions of automata or the hierarchical state
machine-like modeling capabilities of Stateflow.

6

`S

entry: entryStatements;

during: duringStatements;

exit: exitStatements;

. . . jt

[GuardS(τo)]

{UpdateS(τo)}

[GuardS(τi)]

{UpdateS(τi)}

[GuardS(τ ji)]

{UpdateS(τ ji)}

[GuardS(τ jo)]

1

Fig. 2: General continuous-time Stateflow diagram and its various components.

– V arS is a finite set of variables of various types,
– the ActionsS(`S) for each location `S are actions described by Matlab or C

statements that are performed at different event times subdivided into entry,
during, and exit actions,4 Also, we note that these statements are evaluated
sequentially, while hybrid automaton actions are executed concurrently.

– the discrete transition relation TransS where every transition τ ∈ TransS
is formally defined as a tuple (`S , GuardS , UpdateS , TPS , `

′
S):

• the source location or junction `S ∈ LocS∪JuncS and the target location
or junction `′S ∈ LocS ∪ JuncS ,

• the guard, given by a constraint GuardS , must be satisfied for a transition
to be taken,

• the update, given by a mapping UpdateS , modifies state variables, and
• the priority, given by TPS , is a natural number between 1 and od(`S)—

the outdegree of (number of transitions leaving) the state or junction
`S—that indicates the order in which transitions are taken if more than
one is enabled.

A simulation of an SLSF diagram produces a trace, which is closely related
to a trajectory from a hybrid automaton.

Definition 3 (Simulation trace). For an initial state x0, a time bound Tmax,
error bound ε > 0, and time step τ > 0, a simulation trace (of length k) is a
finite sequence ((Ri, ti))i=1...k, where R0 = {x0}, t0 = 0, Ri ⊆ Rn, ti ∈ R≥0, and

– ∀ i : 0 ≤ ti+1 − ti ≤ τ, tk = Tmax,
– ∀ i ∀ t ∈ [ti, ti+1] : the simulation state after time t is in Ri, and
– ∀ i : dia(Ri) ≤ ε.

By Trac(S) we denote the set of all simulation traces of an SLSF diagram S.

3 Translation of a Hybrid Automaton to SLSF

In this section, we describe our main contribution, a translation scheme from a
hybrid automaton to an SLSF diagram. As already outlined in Sec. 1, one main

4 Our tool by default assumes Matlab statements.

7

choose

transition out

choose

threshold T

continuous

evolution
· · ·

transition out not

possible in [0, Tmax]

transition out not

possible in [T , Tmax]

check t ≥ T and g`out

apply υ`
out

ˆ̀

Fig. 3: High-level location pattern translation scheme. The location cluster ˆ̀

denotes a group of SLSF states and junctions which reflects the behavior of the
hybrid automaton in the location `.

difference between the hybrid automaton semantics and the Simulink semantics
is the absence of non-determinism in the latter. In this work, we consider two
sources of non-determinism. First, a number of transition guards might be en-
abled at the same moment. Moreover, a hybrid automaton is allowed to stay in a
particular location as long as the invariant is valid. Therefore, a hybrid automa-
ton is only forced to leave the location when the invariant becomes invalid. Note
that our primary goal is to ensure that the SLSF diagram can essentially mimic
the behavior of the original hybrid automaton. We achieve this by incorporating
non-determinism in the form of uniformly distributed random number genera-
tion. In this way, by executing multiple Simulink simulations we can approximate
the reachable state space of the original hybrid automaton.

Translation Overview We first give a high-level overview of the translation
scheme (see Fig. 3). The execution of the resulting SLSF diagram consists of
three phases for every location ` of a hybrid automaton. In the first phase, we
randomly choose a transition out from the transitions currently available. In the
next phase, we choose a time threshold T . In the final phase, we incorporate the
original continuous dynamics of the location `. Furthermore, the outgoing tran-
sitions from the third phase essentially correspond to the outgoing transitions
of the location `. In addition, we enforce that the transition under consideration
must correspond to the transition out chosen before, and that taking it can hap-
pen only after dwelling in ` for at least until time moment T . If the transition
out cannot be taken in the time frame [T , Tmax], where Tmax is the maximum
simulation time, we backtrack and select a new time threshold T . Finally, if the
chosen transition cannot be taken at all (i.e., for T = 0), we try the next one. We
note that our notion of backtracking is different than the one that occurs with
multiple junctions in SLSF. In particular, in our framework, we require allowing
some dwell time to elapse in states, whereas junctions are instantaneous.

Translation Steps. Now we provide a detailed description of our translation.
It iteratively converts every location ` of a hybrid automaton and its outgoing
transitions into an SLSF diagram in the following way (see Fig. 4). We refer to
all the SLSF states and junctions corresponding to the location ` of a hybrid

8

`in

entry: store variables(t,x);

outList = permute(n);

Tv := Tmax;

jin

`choose

entry: t,x := restore variables();

T = chooseT(t, T , Tv);

jv

`dwell

during: Flow(`)

jt

· · ·

...

· · ·

· · ·

[|outList | > 0]

{ T := Tmax;

out := pop(outList);

r := 0; }

[r = R]

[|outList | = 0]

{ T := Tmax;

out := 0; }

[r < R]

[out > 0]

{Tv := t;

r++; }

[out = 0]

{ stop(); }
[¬Inv(`)]

[t ≥ Tmax]

{ stop(); }

1

[t ≥ T]
1

[out = 1]

[g`1]

{υ`
1}[out = n]

[g`n]

{υ`
n}

Fig. 4: General location cluster of some location ` with n outgoing transitions.
(re-)store variables stores and restores the current simulation state (includ-
ing the time variable t) from when entering the cluster, respectively. permute(n)
returns a permuted list outList with all integers from 1 to n. pop(outList) re-
moves and returns the first element from outList . chooseT chooses a new time
threshold T . A subscript “1” indicates that a transition has the highest priority
among all the outgoing transitions from a state/junction.

automaton as a location cluster ˆ̀. In order to reflect the non-determinism in-
duced by a hybrid automaton, we add a number of auxiliary SLSF states and
junctions. We first describe the data structures we use in our construction. The
list outList stores the ordering in which the outgoing transitions of the location
` are considered in the simulation. The variable out keeps track of the currently
chosen outgoing transition. The variable Tv stores the first time moment when
the location invariant is violated. Tmax keeps the maximum simulation time, i.e.,
the simulation is stopped as soon as this bound has been reached. The variable
T stores the time threshold after which the outgoing transition can be taken.
The variable R keeps the maximum number of backtrackings we want to allow,
whereas r stores the current number of backtrackings in the location cluster ˆ̀.
Finally, t stores the current simulation time.

We continue with the description of every individual state in our construction.
The current simulation time and the hybrid automaton state is stored in the
(SLSF) state `in. Furthermore, the algorithm randomly chooses the ordering in

9

which the outgoing transitions are considered. In this way, we handle the non-
determinism due to multiple simultaneously enabled transition guards. Finally,
the variable Tv is initialized to Tmax as we do not have any information about
the invariant violation at that moment.

The state `choose covers two kinds of non-determinism. It takes care of the
situation when the intersection of the invariant and the transition guard is larger
than one point, i.e., when a switch to the next location can happen not only at a
particular time moment, but within a time interval. Note that if the continuous
dynamics are non-monotonic, there can be multiple disjoint time intervals where
the guard is enabled. We resolve such situations by generating a random time
threshold T in the state `choose and allowing the discrete transition only from the
time moment T onward, i.e., we add a constraint of the form t ≥ T as a part of
the transition guard for every outgoing transition from the location `. Intuitively,
we disable the must-semantics up until time moment T . As we randomly vary
the threshold T in every simulation, we incorporate the switching time moments
due to the original may-semantics of a hybrid automaton.

Note that we also use the state `choose for backtracking purposes. We observe
that an unfortunate choice of the outgoing transition out and the time threshold
T can lead to the simulation getting stuck as the transition guard of out is not
enabled in the time frame [T , Tmax] and thus the transition cannot be taken. In
such cases, we return to the state `choose to select a further time threshold T .
For this purpose, we restore the simulation time t and the state of the hybrid
automaton from the moment we entered ˆ̀. Afterward, we can randomly choose
the next time threshold from the interval [t, T]. Here, we observe that the invari-
ant violation can in general happen before the time threshold has been reached.
Thus, we actually select a new threshold from the interval [t,min(T , Tv)]. In this
way, we end up with a sequence of monotonically decreasing thresholds. Still, as
it is not guaranteed that the chosen threshold is eventually equal to 0, we add a
further termination criterion by bounding the number of backtrackings by some
user-defined constant R > 0. The last time before exceeding this limit, we try
out the weakest threshold T = 0 to ensure that we have covered all cases. If
the transition cannot be taken at all, we either proceed with a further outgoing
transition (junction jin) or, if none is left, the simulation is stopped and reports
an actual deadlock in the model.

The continuous evolution corresponding to the location ` is modeled by the
state `dwell. We can leave this state due to two conditions. First, the invariant can
be violated. Then we store the time moment when the violation has happened in
the variable Tv and move to the state `choose (junction jv). Note that if we have
already considered all the outgoing transitions of `, we will stop the simulation,
since a deadlock has been found. In the other case, the time threshold T can
be reached. We move to the successor location of ` if the guard of the chosen
transition out is enabled (junction jt). Furthermore, here we also check whether
the maximum simulation time Tmax has been reached and stop the simulation.

10

4 Translation Discussion and Correctness

To evaluate our approach from a theoretical point of view, we assume a perfect
simulator and infinite precision in both the state variables and the sampling time,
i.e., the simulator can choose infinitesimally small sampling steps. Additionally,
we suppose the pseudo-random uniform random number generator is able to
mimic total non-determinism.

As the SLSF diagrams resulting from the translation rely on backtracking,
it is important to guarantee termination of every simulation.

Proposition 1. The execution of one simulation terminates if the respective
input hybrid automaton is zeno-free.

The simulation traces we produce under-approximate the reachable state
space of the original hybrid automaton. We formally state this result in the
following proposition.

Proposition 2. Let H be a hybrid automaton and S be the SLSF diagram
obtained by our transformation. It holds that Trac(S) ⊆ Traj(H).

We observe that a hybrid automaton can generally exhibit an uncountable
number of trajectories. Under this assumption, we can conclude that the above
non-strict inclusion actually reduces to a strict one as we can get at most a
countable number of simulation traces.

Finally, we note that our translation scheme does not depend on the spe-
cific form of the continuous dynamics used in the considered hybrid automaton.
Therefore, although we only consider affine hybrid automata which can be han-
dled by SpaceEx in this work, our approach is also applicable to systems de-
scribed with non-linear differential equations and in general to all systems which
are supported by Simulink.

5 Evaluation and Experimental Results

To evaluate the translation methodology presented in this paper, we imple-
mented a prototype translator in Matlab 2014. The input to the translator is
a hybrid automaton H in the SpaceEx XML format.5 Once parsed in the tool,
an object representing the syntactic structure of H is walked, and then the tool
applies the sequence of translation steps from Fig. 4. In the simulator, we varied
the seeds of the uniform pseudo-random number generator rng in Matlab. We
evaluated the prototype tool using several examples. For this we first computed
the reachable states of the models in SpaceEx, then performed the translation
and simulations to illustrate the semantics preservation. The tool and examples
are available for download.6

5 Networks of hybrid automata may first be composed within SpaceEx to yield a single
hybrid automaton representing the network.

6 http://swt.informatik.uni-freiburg.de/tool/spaceex/ha2slsf

http://swt.informatik.uni-freiburg.de/tool/spaceex/ha2slsf

11

5.1 Buck Converter with Hysteresis Controller

A buck converter is a DC-to-DC switched-mode power supply that takes a DC
input source voltage and lowers (“bucks”) it to a smaller DC output voltage [12,
14, 17]. A standard model of the converter has three modes, where: the switch
is closed and the voltage source is connected, the switch is open and the voltage
source is disconnected, and based on the possible dynamics of the converter,
a third mode, known as the discontinuous conduction mode (DCM), where the
current is not allowed to go below zero (which is physically unrealizable, but may
occur without a third mode). Interested readers may find detailed derivations
of models in power electronics textbooks [27]. A hybrid automaton model of
the plant and a hysteresis controller appears in Fig. 5. A standard closed-loop
controller for the buck converter is a hysteresis controller, which changes the
mode of the buck converter plant based on the measured output voltage [12].
Intuitively, it operates similarly to a thermostat, where the switch is toggled so
the source voltage is connected if the output voltage is too low, and it is toggled
so that it is disconnected if the output voltage is too high. We note that by
Kirchhoff’s voltage law (KVL), VC = Vout [27]. In part to avoid switching too
frequently, a hysteresis band is typically used so switches occur when Vout ≥
Vref + Vtol or Vout ≤ Vref − Vtol . This creates a voltage ripple on the output
voltage that should be within a given range Vrip of the desired reference output
voltage Vref . Together, these define a specification of the buck converter:

φ(t)
∆
= t ≥ ts ⇒ Vout(t) = Vref ± Vrip , which projected onto the phase space is

φ
∆
= Vref − Vrip ≤ Vout ≤ Vref + Vrip .

The bad states Sbad are defined as those where ¬φ is satisfied. SpaceEx may be
used to verify φ after ts time by computing the reachable states Reach(H) from
a startup state where the initial states Sinit have iL = 0 and VC = 0. For every
time t ≥ ts after a startup trajectory of duration ts, if Vref − Vrip ≤ Vout(t) ≤
Vref + Vrip , then the converter satisfies the specification φ. We compute the
reachable states of the buck converter automaton with a hysteresis controller
using SpaceEx (shown in Fig. 6) and see it meets the specification since for
t ≥ ts, we have Reach(H) ⊆ Sbad [12, 14,17].7

Instantiation of the Translated Buck Converter in Larger SLSF Models We uti-
lize the translated buck converter automaton in the context of system design for
a larger system. Buck converters are common subcomponents of more complex
systems [17]. For example, a popular architecture for DC-to-AC conversion of
renewable energy sources like photovoltaics is known as a multilevel inverter,
which effectively connects N DC voltage sources at appropriate times to ap-
proximate the AC sinusoid of the electric grid. However, renewable sources like
photovoltaics have time-varying voltage sources (due to a variety of factors like

7 It is sufficient to either (a) compute the infinite-horizon reach states or (b) apply a
stability argument to yield infinite-horizon verification, see [12,14].

12

Open[
i̇L
V̇C

]
=

[
0 − 1

L
1
C −

1
RC

] [
iL
VC

]
iL ≥ 0 ∧ VC ≤ Vref + Vtol

start

Closed[
i̇L
V̇C

]
=

[
0 − 1

L
1
C −

1
RC

] [
iL
VC

]
+

[
1
L
0

]
VS

iL ≥ 0 ∧ VC ≥ Vref − Vtol

DCM[
i̇L
V̇C

]
=

[
0 0
0 − 1

RC

] [
iL
VC

]
iL ≤ 0

VC ≥ Vref − Vtol

VC ≤ Vref + Vtol

iL ≤ 0

VC − Vref ≥ Vtol

Fig. 5: Hybrid automaton model of the buck converter plant with hysteresis
controller.

Fig. 6: Buck converter VC versus time,
with SpaceEx reach set in red, and
black points from 10 simulation traces
from the translated SLSF diagram us-
ing the translation method presented
in this paper.

Fig. 7: Zoomed version of Fig. 6 illus-
trating SpaceEx reach set in red, and
black points from 10 simulation traces
from the translated SLSF diagram.

shading and weather), so regulation of the photovoltaics is frequently done prior
to abstracting the renewable source as an ideal DC voltage source [19]. Common
numbers of voltage sources and buck converters are in the tens and more, so
with two state variables each, it becomes infeasible beyond small choices of N
to utilize tools like SpaceEx for verification as the overall state space consists of
tens of real dimensions (2N) and O(2N) discrete states.

5.2 Random Generator Case Study

As a second case study, we consider translation of an example with increased
discrete complexity, in terms of both a larger number of locations and more tran-
sitions. We utilize the prototype HyRG tool to randomly generate hybrid au-
tomata with piecewise affine dynamics and non-determinism [18]. Fig. 10 shows
the reachable states computed with SpaceEx for a random hybrid automaton
example with 20 locations and 2 real, continuous variables, where the SLSF
simulation traces are plotted on top from an initial condition approximately at
the point (x1, x2) = (2, 25). Fig. 11 shows the same example zoomed to the region

13

Fig. 8: Buck converter VC versus iL
(phase space), illustrating SpaceEx
reach set in red, and points from 100
simulation traces from the translated
SLSF diagram.

Fig. 9: Zoomed version of Fig. 8 illus-
trating SpaceEx reach set in red, and
points from 100 simulation traces from
the translated SLSF diagram.

Fig. 10: Random generator x1 versus
x2 (phase space), illustrating SpaceEx
reach set in red, and black points from
50 simulation traces from the trans-
lated SLSF diagram.

Fig. 11: Zoomed version of Fig. 10, il-
lustrating SpaceEx reach set in red,
and black points from 50 simulation
traces from the translated SLSF dia-
gram.

of the state space where several discrete transitions are enabled, represented in
the figures by the polytopes from approximately the point (x1, x2) = (50, 47.5).
Specifically, 8 transitions are all simultaneously enabled, only one of which would
ever be taken in SLSF without preserving the may semantics. However, using the
semantics preserving translation scheme described in this paper, traces following
each of these 8 possible trajectories are found.

6 Conclusion

In this paper, we have presented a semantics-preserving transformation of a
hybrid automaton into a continuous-time SLSF model, and described its im-
plementation in a prototype software tool. Our approach is based on adding

14

auxiliary sources of non-determinism to mimic the may-semantics of hybrid au-
tomata. For the future, it will be interesting to further refine and extend our
approach by, e.g., considering the translation of networks of hybrid automata
into the Simulink models and exploring further sources of non-determinism such
as non-deterministic flows and updates. Additionally, using the recent efforts in
defining semantics of various subclasses of SLSF models [4, 5, 10, 11, 16, 25], it
would be interesting to attempt to formally prove correctness of our translation
scheme, perhaps building on [5].

References

1. Agrawal, A., Simon, G., Karsai, G.: Semantic translation of simulink/stateflow
models to hybrid automata using graph transformations. Electronic Notes in The-
oretical Computer Science 109, 43–56 (2004)

2. Agut, D.N., van Beek, D., Rooda, J.: Syntax and semantics of the compositional
interchange format for hybrid systems. The Journal of Logic and Algebraic Pro-
gramming 82(1), 1 – 52 (2013)

3. Alur, R., Kanade, A., Ramesh, S., Shashidhar, K.C.: Symbolic analysis for improv-
ing simulation coverage of simulink/stateflow models. In: Proceedings of the 8th
ACM International Conference on Embedded Software. pp. 89–98. EMSOFT ’08,
ACM, New York, NY, USA (2008)

4. Balasubramanian, D., Păsăreanu, C.S., Whalen, M.W., Karsai, G., Lowry, M.:
Polyglot: Modeling and analysis for multiple statechart formalisms. In: Proceedings
of the 2011 International Symposium on Software Testing and Analysis. pp. 45–55.
ISSTA ’11, ACM, New York, NY, USA (2011)

5. Bouissou, O., Chapoutot, A.: An operational semantics for simulink’s simulation
engine. In: Proceedings of the 13th ACM SIGPLAN/SIGBED International Con-
ference on Languages, Compilers, Tools and Theory for Embedded Systems. pp.
129–138. LCTES ’12, ACM, New York, NY, USA (2012)

6. Carloni, L., Di Benedetto, M.D., Pinto, A., Sangiovanni-Vincentelli, A.: Modeling
techniques, programming languages, design toolsets and interchange formats for
hybrid systems. Tech. rep. (2004)

7. Carloni, L.P., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.L.: Languages
and tools for hybrid systems design. Foundations and Trends in Electronic Design
Automation 1 (2006)

8. Frehse, G., Le Guernic, C., Donz, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Computer Aided Verification. pp. 379–395 (2011)

9. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiability
over the reals. In: Automated Reasoning - 6th International Joint Conference,
IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings. pp. 286–300 (2012)

10. Hamon, G.: A denotational semantics for Stateflow. In: Proceedings of the 5th
ACM International Conference on Embedded Software. pp. 164–172. EMSOFT
’05, ACM, New York, NY, USA (2005)

11. Hamon, G., Rushby, J.: An operational semantics for Stateflow. International Jour-
nal on Software Tools for Technology Transfer 9(5-6), 447–456 (2007)

12. Hossain, S., Dhople, S., Johnson, T.T.: Reachability analysis of closed-loop switch-
ing power converters. In: Power and Energy Conference at Illinois (PECI). pp.
130–134 (2013)

15

13. Jiang, Z., Pajic, M., Alur, R., Mangharam, R.: Closed-loop verification of medical
devices with model abstraction and refinement. International Journal on Software
Tools for Technology Transfer 16(2), 191–213 (2014)

14. Johnson, T.T., Hong, Z., Kapoor, A.: Design verification methods for switching
power converters. In: Power and Energy Conference at Illinois (PECI), 2012 IEEE.
pp. 1–6 (Feb 2012)

15. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer (STTT) 1(1), 134–152 (1997)

16. Manamcheri, K., Mitra, S., Bak, S., Caccamo, M.: A step towards verification and
synthesis from Simulink/Stateflow models. In: Proc. of the 14th Intl. Conf. on
Hybrid Systems: Computation and Control (HSCC). pp. 317–318. ACM (2011)

17. Nguyen, L.V., Johnson, T.T.: Benchmark: DC-to-DC switched-mode power con-
verters (buck converters, boost converters, and buck-boost converters). In: Applied
Verification for Continuous and Hybrid Systems Workshop (ARCH 2014). Berlin,
Germany (Apr 2014)

18. Nguyen, L.V., Schilling, C., Bogomolov, S., Johnson, T.T.: HyRG: A random gen-
eration tool for piecewise affine hybrid automata. In: NASA Formal Methods.
Springer Berlin / Heidelberg (2015 (Under Review))

19. Nguyen, L.V., Tran, H.D., Johnson, T.T.: Virtual prototyping the distributed con-
trol of a fault-tolerant modular multilevel inverter for photovoltaics. IEEE Trans-
actions on Energy Conversion (2015), to Appear

20. Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., Lee, I.: Model-
driven safety analysis of closed-loop medical systems. Industrial Informatics, IEEE
Transactions on 10(1), 3–16 (2014)

21. Pajic, M., Jiang, Z., Lee, I., Sokolsky, O., Mangharam, R.: From verification to
implementation: A model translation tool and a pacemaker case study. In: Real-
Time and Embedded Technology and Applications Symposium (RTAS), 2012 IEEE
18th. pp. 173–184. IEEE (2012)

22. Pajic, M., Jiang, Z., Lee, I., Sokolsky, O., Mangharam, R.: Safety-critical medical
device development using the UPP2SF model translation tool. ACM Trans. Embed.
Comput. Syst. 13(4s), 127:1–127:26 (Apr 2014)

23. Pinto, A., Carloni, L., Passerone, R., Sangiovanni-Vincentelli, A.: Interchange for-
mat for hybrid systems: Abstract semantics. In: Hespanha, J.P., Tiwari, A. (eds.)
Hybrid Systems: Computation and Control, Lecture Notes in Computer Science,
vol. 3927, pp. 491–506. Springer Berlin Heidelberg (2006)

24. Pinto, A., Sangiovanni-Vincentelli, A.L., Carloni, L.P., Passerone, R.: Interchange
formats for hybrid systems: Review and proposal. In: Morari, M., Thiele, L. (eds.)
Hybrid Systems: Computation and Control, Lecture Notes in Computer Science,
vol. 3414, pp. 526–541. Springer Berlin Heidelberg (2005)

25. Sampath, P., Rajeev, A.C., Ramesh, S.: Translation validation for Stateflow to
C. In: Proceedings of the The 51st Annual Design Automation Conference on
Design Automation Conference. pp. 23:1–23:6. DAC ’14, ACM, New York, NY,
USA (2014)

26. Schrammel, P., Jeannet, B.: From hybrid data-flow languages to hybrid automata:
A complete translation. In: Proceedings of the 15th ACM International Conference
on Hybrid Systems: Computation and Control. pp. 167–176. HSCC ’12, ACM, New
York, NY, USA (2012)

27. Severns, R.P., Bloom, G.: Modern DC-to-DC Switchmode Power Converter Cir-
cuits. Van Nostrand Reinhold Company, New York, New York (1985)

28. Tiwari, A., Shankar, N., Rushby, J.: Invisible formal methods for embedded control
systems. Proceedings of the IEEE 91(1), 29–39 (Jan 2003)

16

A Appendix: Proof Sketches of Propositions

We discuss the propositions made in Sec. 4.

Proposition 1. The execution of one simulation terminates if the respective
input hybrid automaton is zeno-free.

A simulation trace comprises of a sequence of location clusters. By construc-
tion, it is easy to see that the time the simulator stays in some location cluster
is finite. On the other hand, by assuming non-zenoness, we ensure time progress
in the simulation. Since the total time is bounded by some maximum simulation
time Tmax, the claim follows. Note that a simulation can also stop earlier in the
case of a deadlock.

Proposition 2. Let H be a hybrid automaton and S be the SLSF diagram
obtained by our transformation. It holds that Trac(S) ⊆ Traj(H).

This proposition cannot be formally proven, as no formally defined semantics
of the continuous-time SLSF is provided. We observe that a hybrid automaton
can generally exhibit an uncountable number of trajectories. Under this assump-
tion, we can conclude that the above non-strict inclusion actually reduces to a
strict one as we can get at most a countable number of simulation traces.

We need to show that for each S-trajectory ρs there exists some correspond-
ing H-trajectory ρh. For this purpose, we partition ρs into stages, where a stage
is a visit of a location cluster, i.e., the time from the moment when a location
cluster is entered until it is either left (possibly to be re-entered immediately in
case of a self-loop) or the simulation is stopped. When the simulator leaves a lo-

cation cluster ˆ̀, i.e., moves to the next stage, this semantically reflects a location
switch of the hybrid automaton. We use a bottom-up constructive argument by
an induction over the number of stages in ρs. Without loss of generality, we only
consider stages which do not feature any backtrackings, i.e., the simulator was
always able to extend the trajectory based on the chosen values of the transi-
tion out and time threshold T . In the base case, there is only one stage with
no transition taken. Here, we can simply assume the trajectories to be equal,
because the SLSF diagram S uses the original invariant and flow of the hybrid
automaton H. For the induction step, we consider an (n + 1)-stage trajectory.
We look at the first stage, i.e., the time interval up to the point T when the
initial location cluster is left. As S uses the original guard and update, there
exists some trajectory in H for which the location switch can happen at time T .
The simulation state coincides with the hybrid automaton state both before and
after moving to the second stage. As two stages are independent of each other,
we can apply the hypothesis to the remaining n stages. Therefore, we define ρh
as the sequence of sub-trajectories corresponding to the individual stages. The
length of the trajectory ρh is equal to the number of stages of ρs.

17

VS
iL

Vo
-

+
Vc
-

+

L

C R

VS
iL

Vo
-

+
Vc
-

+

L

C R

iL
Vo
-

+
Vc
-

+

L

C R

S

Fig. 12: Buck converter circuit—a DC input VS is decreased to a lower DC output
VC = Vo = Vout .

Component / Parameter Name Symbol Value

Source Input Voltage VS 24 V

Desired Output (Reference) Voltage Vref 12 V

Actual Output Voltage VC = Vout 12 V ± Vrip

Hysteresis Band Tolerance Vtol 0.2 V

Voltage Ripple Tolerance Vrip 0.6 V

Load Resistance R 10Ω

Capacitor C 2.2 mF

Inductor L 2.65 uH

Table 1: Example buck converter parameter values and variations.

Inverter Module

Solar
Panel

Buck
Converter

H-Bridge

Microcontroller

Sunlight

Grid… (N-2 times)

Inverter Module

Solar
Panel

Buck
Converter

H-Bridge

Microcontroller

Sunlight

Network
Connection

Fig. 13: Solar array architecture using a multilevel inverter for DC-to-AC con-
version and consisting of N buck converters.

B Appendix: Additional Details on Buck Converter Case
Study

The buck converter circuit appears in Fig. 12. Parameter values used for the case
study appear in Table 1. Such converters are commonly instantiated in larger
models, such as the multilevel inverter used to interface photovoltaics to the
electric grid in Fig. 13 [19].

18

Fig. 14: Buck converter reachable states
(red) computed in SpaceEx, where the
simulations for the non-semantics pre-
serving translation converge to a differ-
ent limit cycle than the actual model
(green scatter plot area around iL = 15
and VC = 12). The semantics preserv-
ing simulations are contained in the
reach set computed with SpaceEx.

Fig. 15: Buck converter zoomed plot of
Fig. 14 of the reach set (red and blue
sets) computed with SpaceEx, simula-
tion traces with semantics preservation
(non-green scatter plot), and simula-
tion traces without semantics preserva-
tion (green scatter plot). Here, the non-
semantics preserving simulation traces
converge to a different limit cycle
than the actual model. The semantics
preserving simulation traces are con-
tained in the reach set computed with
SpaceEx.

C Appendix: Additional Experimental Results

In addition to the semantics-preserving translation described in this paper, for
simple usability reasons, we also implemented an option where the translator
does not explicitly preserve semantics. Sometimes this is sufficient for the trans-
lation process to maintain behavioral equivalence, but it does not always work in
numerous scenarios like non-deterministic ones considered in this paper. Addi-
tionally, this translation may even yield drastically different behaviors as seen in
Fig. 14 and Fig. 15, which show the buck converter example without semantics
preservation. In Fig. 15, we can see that the translated model without semantics
preservation even converges to a different limit cycle than the correct one and
leaves the reachable states computed by SpaceEx.

	Compositional Design of Simulink/Stateflow Models with Hybrid Automata

