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Abstract

We present ongoing work to extend proof tree preserving interpolation to inductive sequences and
tree interpolants. We present an algorithm to compute tree interpolants inductively over a resolution
proof. Correctness of the algorithm is justified by the concept of partial tree interpolants and the
appropriate definition of a projection function for conjunctions of literals onto nodes of the tree. We
observe great similarities between the interpolation rules for binary interpolation and those for tree
interpolation.

1 Introduction

Craig interpolation is widely used in model checking [6, 13, 15]. Instead of binary interpolation [5], these
techniques use inductive sequences or trees of interpolants. Tree interpolants arise from model-checking
recursive and concurrent programs in a natural way. An execution of the program with procedures can be
represented as a nested trace, where the statement after a procedure call has two predecessors, the return
statement of the called procedure and the procedure call itself. To reason about correctness in a modular
way requires combining the function summary with the intermediate assertion before the procedure call.
This leads naturally to a tree-like structure [11, 12]. Tree interpolants are also useful to approximate
function summaries for incremental update checking [17].

Similarly modular reasoning about concurrent programs need interference free proofs or assume-
guarantee reasoning. The proof of an intermediate assertions can depend on the previous assertion of
the same thread and the guarantees provided by the other threads. Thus, an unfolding of the parallel
program has again a tree-like shape. Other uses of interpolants in model-checking are data-flow graph
based method [8] which compute tree interpolants for an unfolded data-flow tree.

Although tree interpolants are widely used, only a few tools are able to produce them without the
need for repeated applications of binary interpolation to different interpolation problems. The techniques
used by these tools to ensure correctness of inductive sequences and trees of interpolants is not well
documented.

In this paper, we extend the recently proposed technique of proof tree preserving interpolation [3, 4]
to compute inductive sequences and trees of interpolants. The key idea of this technique is to define
partial interpolants in the context of mixed literals that cannot be assigned to a partition of the input
problem. This is achieved by introducing auxiliary variables and defining a projection function that
splits mixed literals using auxiliary variables. We extend the projection function to trees of formulae and
the notion of partial interpolants to partial tree interpolants. This allows us to compute tree interpolants
inductively over the proof tree and is an essential step towards the correctness proof of the algorithm.

We show that tree interpolants can be computed for every node separately provided that some pre-
cautions are met for leaf interpolation. We give a rule that allows for inductively computing partial tree
interpolants over a given proof. We observe that this rule for tree interpolation is identical to applying
the rule from [3] for binary interpolation for every node separately.
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Related Work. Only a few publications describe how to compute tree interpolants. Gupta et al. [10]
describe how to solve a set of recursion-free Horn clauses over the theories of uninterpreted functions
and linear real arithmetic. This corresponds directly to the tree interpolation problem for a conjunctive
formula that does not contain negated equalities. They have stricter syntactic restrictions for the partial
solutions and a rule for combining these, which is similar to our combination rule for partial interpolants.
Our algorithm computes the same solutions when working on this fragment, however, we allow more
input problems and our method is complete even for linear integer arithmetic.

The interpolating version of Z3 (iZ3) [1] can extract tree interpolants although there is no publication
describing how it computes tree interpolants. iZ3 poses additional restrictions on the occurrence of
symbols in the input and treats every non-constant function symbol as global symbol. In contrast to the
method presented in this paper, iZ3 cannot interpolate linear real arithmetic and is incomplete on linear
integer arithmetic.

2 Notation

We assume the usual notation and terminology of many sorted first-order logic. We consider the quantifier-
free fragments of the theory of uninterpreted functions with atoms of the form s1 = s2 for two terms s1
and s2, and linear arithmetic over integer and reals. To allow for quantifier-free interpolation of integer
arithmetic, we extend the signature with the functions

⌊ ·
k

⌋
for all integers k ≥ 2. By Qε we denote the

rational numbers including an infinitesimal part [7], i. e., Qε =Q∪{c−ε | c ∈Q}. We assume that the
literals of linear arithmetic are normalised to the form ∑i ciai ≤ c where ai are constant symbols, ci ∈ Z,
and c ∈ Z (for integers) or c ∈ Qε (for reals). We use t ≤ c− ε to denote t < c. Note that in linear
arithmetic the negation of an atom ¬t ≤ c can be expressed as −t ≤−c− ε .

For formulae we use the symbols F and I (for interpolants). By symb(F) we denote the set of non-
logical symbols occurring in F . We denote constant symbols by a,b, terms by s, t, numerical constants
by c, variables by x, and set-valued variables by X . By I[F ] we denote a formula that contains the sub-
formula F only positively. By I(t) we denote a formula that contains a term t. Given two clauses `∨C1
and ¬`∨C2 (called antecedents), the resolution rule

`∨C1 ¬`∨C2

C1∨C2

concludes C1∨C2. In the context of SMT, a resolution proof is a derivation of the empty clause ⊥ from
the input clauses, theory lemmas, and theory combination clauses using only the resolution rule.

3 Proof Tree Preserving Interpolation

A binary interpolation problem consists of a pair of formulae (A,B). An interpolant exists if A∧B is
unsatisfiable and the theory admits interpolation. An interpolant I satisfies (i) A |= I, (ii) B∧ I is unsat-
isfiable, and (iii) symb(I) ⊆ symb(A)∩ symb(B). In this section we briefly review proof tree preserving
interpolation [4]. This technique extends the interpolation algorithms given by Pudlák [16] and McMil-
lan [14] to mixed literals, i. e., literals containing symbols occurring only in formula A and symbols
occurring only in formula B. For a given binary interpolation problem (A,B), proof tree preserving inter-
polation algorithms define two projection functions for every literal `. The first projection, ` � A, projects
the literal onto A, the second, ` � B projects onto B. The algorithms from Pudlák and McMillan define
the projection functions for non-mixed literals and require the invariant `↔ (` � A)∧ (` � B). Usually,
one of the projections is ` and the other is >. The projection is extended to conjunctions of literals.
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If ` is mixed, we cannot split the literal into two conjuncts such that the first conjunct only contains
symbols occurring in A and the second conjunct only contains symbols occurring in B. We extended
the projection function to mixed literals by introducing auxiliary variables. The invariant satisfied by
our projection function is the existential closure `↔ ∃x. ((` � A)∧ (` � B)) of the invariant above. For
example, the mixed literal a ≤ b may be split into a ≤ x and x ≤ b using the auxiliary variable x. The
auxiliary variable is used to connect the projections to the A and B part, similarly (but orthogonal) to
Nelson-Oppen theory combination.

To compute an interpolant from a resolution proof, we compute partial interpolants for every node
in the resolution proof: Given a clause C in the resolution proof of A∧B, a partial interpolant IC is an
interpolant for (A∧ (¬C � A),B∧ (¬C � B)). Computation of partial interpolants differs between input
clauses, theory lemmas, and results of resolution steps.

Since input clauses do not contain mixed literals, we can use the usual syntactic rules to compute
partial interpolants [14]. Unfortunately, for theory lemmas the situation is different. These lemmas
are the source of mixed literals in SMT proofs and, hence, need special procedures to compute partial
interpolants. We compute an interpolant for (¬C � A,¬C � B), i. e., an interpolant of the theory conflict
(the negation of the theory lemma) projected onto A and B. The conflict is interpolated using a theory
specific interpolator. Note that the auxiliary variables introduced during projection of mixed literals may
occur in the interpolant.

The algorithms from Pudlák and McMillan give rules to compute a partial interpolant for the conse-
quence of a resolution step given partial interpolants for the antecedents. The resulting partial interpolant
is either a conjunction, a disjunction, or a multiplexer depending on whether the pivot literal occurs only
in A, only in B, or in both. We extend these rules to handle mixed literals. The partial interpolants for
clauses containing mixed literals contain the auxiliary variables introduced by the projection function
only in specific syntactically restricted sub-formulae. The structure of these formulae makes it possible
to remove the auxiliary variable once the corresponding mixed literal is the pivot of a resolution step.
Details are out of the scope of this paper and can be found in [3, 4]. In this paper we will give slightly
different syntactic restrictions in Section 5.4 and define the interpolation rules in Section 5.5.

4 Tree Interpolation

A tree interpolation problem is specified by a (directed) tree T = (V,E) where V is a set of nodes,
E ⊆ V ×V is a set of edges (pointing from child to parent node), and L : V → Formula is a labelling
function that assigns a formula to every node in the tree. With st(v) := {w | (w,v) ∈ E∗} (where E∗ is
the reflexive transitive closure of E) we denote the set of nodes in the subtree with the root v. A solution
to the tree interpolation problem exists if the conjunction

∧
v∈V L(v) is unsatisfiable and the theories

involved support interpolation. A labelling function I : V → Formula is called a tree interpolant [1] for
T and L if the following properties hold:

1. I(vr)≡⊥ where vr is the root of T ,

2. (
∧

(w,v)∈E I(w))∧L(v) |= I(v) for all v ∈V ,

3. for every node v, all symbols in I(v) occur both inside the subtree rooted at v and outside this
subtree, i. e., symb(I(v))⊆ (

⋃
w∈st(v) symb(L(w)))∩ (

⋃
w′ /∈st(v) symb(L(w′))).

By lca(v,w), we denote the least common ancestor of v and w, i. e., the first common node in the
tree that is encountered when traversing the tree towards the root from v and w. Obviously, for any pair
of nodes v and w, the least common ancestor lca(v,w) is unique. Every non-empty set of nodes has a
unique least common ancestor, which can be computed by repeatedly applying the binary lca function.
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We define for every node v ∈ V the set of symbols symb(v), that we could add to L(v) without
changing the symbol condition in the definition of tree interpolants. For a symbol a occurring in two
nodes v1,v2 ∈V , i. e., a ∈ symb(L(v1))∩ symb(L(v2)), we add a to symb(v) for every node v on the path
from v1 or v2 to their least common ancestor lca(v1,v2).

Lemma 1. Replacing symb(L(w)) with symb(w) does not change Condition 3. of tree interpolants. In
particular ⋃

w∈st(v)

symb(L(w)) =
⋃

w∈st(v)

symb(w) and
⋃

w′ /∈st(v)

symb(L(w′)) =
⋃

w′ /∈st(v)

symb(w′).

Inductive Sequences and Tree Interpolation

Given a sequence of n formulae F1, . . . ,Fn such that
∧n

i=1 Fi is unsatisfiable, an inductive sequence of
interpolants is a sequence of n+1 formulae I0, . . . , In such that (i) I0 ≡>, (ii) In ≡⊥, (iii) Ii−1∧Fi |= Ii

for 1 ≤ i ≤ n, and (iv) symb(Ii)⊆ (
⋃i

j=1 symb(Fj))∩ (
⋃n

j=i+1 symb(Fj)) for 1 ≤ i ≤ n. Such a sequence
can be computed either by repeatedly computing interpolants according to condition (iii), or by carefully
extracting all n+1 interpolants for this sequence from one proof.

Theorem 1 (Sequence Interpolation is Tree Interpolation). Inductive sequences of interpolants are a
special case of tree interpolants.

Since we can recast a sequence interpolation problem as a tree interpolation problem we will only
extend proof tree preserving interpolation to tree interpolation. The extension to sequences is left to the
reader.

5 Adapting Proof Tree Preserving Interpolation to Tree Interpolation

To adapt proof tree preserving interpolation to tree interpolation we have to adapt the projection function
used in binary interpolation to trees. Furthermore, we have to show that the interpolating resolution
rules are still valid, i. e., that the interpolants computed by these rules satisfy the properties of partial
tree interpolants. Throughout this section, let T = (V,E) and L be a tree interpolation problem and
v,vc,vp ∈V be nodes in the tree.

The projection function ` � v projects a literal ` onto the node v ∈V of the tree defining the interpo-
lation problem. As in [4], we introduce auxiliary variables x for mixed literals `. For tree interpolation,
we introduce a fresh variable for each node v ∈ V where the literal is mixed. The auxiliary variables
introduced for a node are shared with the parent node; for each edge (vc,vp) ∈ E, the projection ` � vp

also contains the auxiliary variables of node vc. The projection of a literal ` with the auxiliary variables
~x must satisfy two conditions. First, the conjunction of the projections of a literal ` onto every node in
the tree

∧
v∈V ` � v is equivalent to `, i. e.,

` ⇐⇒ ∃~x.
∧
v∈V

` � v where~x is the set of auxiliary variables introduced for `.

Second, ` � v must only contain theory symbols, symbols from symb(v), and the auxiliary variables
introduced for ` and v or the children of v.

Our algorithm computes a tree interpolant from the resolution proof by computing a partial tree
interpolant for every clause C occurring in the proof tree. Partial tree interpolants are defined using the
projection function as follows.
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Definition 1 (Partial Tree Interpolant). A partial tree interpolant for a clause C is a tree interpolant for
T and L′ where L′(v) = L(v)∧ (¬C � v) for v ∈V .

Obviously, a partial tree interpolant of the empty clause is a tree interpolant of T and L. Note that
for an intermediate clause C a partial tree interpolant I may contain the auxiliary variables of the literals
occurring in the clause C. To be more precise, for a node v ∈ V the interpolant I(v) may contain the
auxiliary variables introduced for ` and v.

5.1 Adapting Propositional Interpolation Algorithms

In this section we show how the rules for propositional interpolation [16, 14] can be adapted to tree
interpolation. Since we only consider the propositional case, we assume no literal is mixed. In this case
we do not introduce any auxiliary variables. The projection ` � v is either ` or> and there must be at least
one node v ∈V with ` � v = `. These conditions guarantee ` ⇐⇒

∧
v∈V ` � v. McMillan’s and Pudlák’s

algorithm only differ in the projection function. For Pudlák’s algorithm we set ` � v = ` if and only if
` ∈ symb(v). For McMillan’s algorithm we set ` � v = ` only for the least common ancestor of the nodes
v ∈V with ` ∈ symb(v).

Tree interpolants will be computed recursively over the resolution proof of the conjunction of the
labels of the tree. As in the binary case, we devise special rules to compute partial tree interpolants for
leaves of the proof tree. We compute partial tree interpolants for the resolution steps using the following
rule.

`∨C1 : I1 ¬`∨C2 : I2

C1∨C2 : I3 , where I3(v) =


I1(v)∨ I2(v) if ` � v′ => for all v′ /∈ st(v)
I1(v)∧ I2(v) if ` � v′ => for all v′ ∈ st(v)
(I1(v)∨ `)∧
(I2(v)∨¬`)

otherwise

The rule above can be interpreted as applying Pudlák’s resp. McMillan’s algorithm for each node
separately. The condition ` � v′ = > for all v′ /∈ st(v) means that the literal does not occur outside the
subtree of v, i. e., the literal is A-local if we see the subtree of v as the A partition of a binary interpolation
problem. Likewise the condition ` � v′ => for v′ ∈ st(v) means that the literal is B-local. If neither is the
case, the literal is shared.

Lemma 2. The rule above is correct, i. e., if I1 is a partial tree interpolant of `∨C1 and I2 a partial tree
interpolant of ¬`∨C2, then I3 is a partial tree interpolant of C1∨C2.

5.2 Occurrences of Symbols and Scope of Mixed Literals

An SMT proof may involve literals that are not in the original input formulae. These literals may be
mixed, i. e., they contain symbols from different nodes. Let ` be a literal with symb(`) = {a1, . . . ,an}.
If for a node v, some symbols occur only inside the subtree rooted at v and some symbols occur only
outside the subtree, we say that the literal ` is mixed in v. We denote with mixed(`) the set of all nodes v
such that ` is mixed in v.

For a symbol a we overload lca and denote with lca(a) the least common ancestor of all nodes v ∈V
with a ∈ symb(v). By the definition of symb(v) for v ∈V we have a ∈ symb(lca(a)) and a /∈ symb(v) for
v /∈ st(lca(a)). For every symbol a, lca(a) is the unique node such that all occurrences of a are in the
subtree of this node and a occurs in the node itself. Having a ∈ symb(lca(a)) is the main reason why we
defined symb(v) in this way.

If a literal ` is mixed in some nodes we denote by mixedparent(`) the least common ancestor of
nodes that have a child where ` is mixed. Then we can exactly characterise the set mixed(`) as follows:
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Lemma 3. Let ` be a literal that is mixed in some nodes and contains the symbols a1, . . . ,an. Then

mixed(`) = {v ∈V | ∃i. 1≤ i≤ n. lca(ai) ∈ st(v) and mixedparent(`) is a proper ancestor of v}

5.3 Extending Projection

We now extend the projection functions to cope with mixed literals. For every literal ` and every node
v j ∈mixed(`), an auxiliary variable x j is introduced. The projection ` � v is chosen such that it is correct
with respect to the following definition.

Definition 2. Let � be a projection function. The projection function is correct, iff for all literals `:

` ⇐⇒ ∃~x.
∧
v∈V

` � v

where~x = {x j | v j ∈mixed(`)} is the set of all auxiliary variables introduced for the literal `.

5.3.1 Mixed Equalities

We start by giving the projection function for an equality literal ` :≡ a1 = a2. By Lemma 3, every node
vp ∈mixed(`) lies on a path between lca(ai) and mixedparent(`) (for some i ∈ {1,2}). The ai is unique,
since vp is not mixed if lca(ai) ∈ st(vp) for both i = 1,2. For each node vp ∈mixed(`) we introduce an
auxiliary variable xp that captures the value of this ai. The projection of ` achieves this by fixing the
value xp of a mixed node vp to the value xc of the (uniquely defined) child vc that lies on the path to the
unique lca(ai), or to the value of ai if vp = lca(ai). The projection of the node mixedparent(`) ensures
that a1 = a2 by making the auxiliary variables of the corresponding children equal.

a1 = a2 � vp =



xc1 = xc2 if (vc1 ,vp),(vc2 ,vp) ∈ E and vc1 ,vc2 ∈mixed(`)

ai = xc if (vc,vp) ∈ E, vc ∈mixed(`), and lca(ai) = vp

xc = xp if (vc,vp) ∈ E, vc,vp ∈mixed(`)

ai = xp if lca(ai) = vp, vp ∈mixed(`) for some i ∈ {1,2}
> otherwise

In the first two cases, we observe that a1,a2 occur inside the subtree of vp. Hence, vp is not mixed but has
at least one mixed child. By Lemma 3, vp =mixedparent(`). Usually, this means that there are exactly
two child nodes vc1 and vc2 in which ` is mixed, one an ancestor of lca(a1) and one an ancestor of lca(a2)
(first case). However, it is also possible that vp = lca(ai) for one of the two symbols a1, a2 (second case).
In both cases, the corresponding projection ensures that a1 = a2.

When ` is mixed in vp, the third or the fourth case applies. Then, for exactly one i ∈ {1,2}, lca(ai)
occurs in the subtree of vp. If already vp = lca(ai), we are in the forth case. Otherwise, the third case
applies and vc is the child containing lca(ai). Both projections ensure that xp = ai for the value ai that
occurs in the subtree of vp. The last case only applies if ` is not mixed in vp and vp 6= mixedparent(`).
The correctness of this projection is proved in the appendix.

The projection of a disequality a1 6= a2 is tricky. Instead of a plain auxiliary variable xp we introduce
a set-valued auxiliary variable Xp for every node vp where the literal is mixed. For such a node vp one
ai (i = 1,2) occurs only in the subtree of vp and the other only outside the subtree. The projections of
the literal enforce that Xp contains the value ai that occurs in the subtree of node vi and does not contain
the other value. It may contain other values different from a1 and a2 when the value of ai cannot be
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expressed using only symbols shared between the subtree of vi and its complement. The projections of
a1 6= a2 are defined as follows.

a1 6= a2 � vp =



Xc1 ∩Xc2 = /0 if (vc1 ,vp),(vc2 ,vp) ∈ E and vc1 ,vc2 ∈mixed(`)

ai /∈ Xc if (vc,vp) ∈ E, vc ∈mixed(`), and lca(ai) = vp

Xc ⊆ Xp if (vc,vp) ∈ E, vc,vp ∈mixed(`)

ai ∈ Xp if lca(ai) = vp, vp ∈mixed(`) for some i ∈ {1,2}
> otherwise

Although the formulae are different, the cases are exactly the same as for equality. The fourth and third
formulae ensure that Xp contains the value ai that occurs in the subtree of vp. With this property, each of
the first two formulae ensures that a1 6= a2.

Despite the definition of the projection function, we do not need set-theoretic reasoning in our solver.
The projections are only used to prove the correctness of the resolution rule and the theory specific
interpolation rules. The theory specific interpolation algorithm is specialised to conflicts arising from
the Congruence Closure algorithm. Such conflicts may only contain a single disequality a1 6= a2 and
a chain of equalities that force the value of a1 and a2 to be equal. For each node vp where this literal
is mixed, we use the usual algorithm [9] to summarise equality chains originating from the subtree of
vp, which gives us a formula of the form ai = s1 ∧ s2 = s3 ∧ ·· · ∧ sn−1 = sn where ai is the symbol
that occurs in the subtree of vp. The projection of the mixed literal to the subtree of vp has the form
ai ∈ Xc1 ∧·· ·∧Xck ⊆ Xp, which can be summarised by ai ∈ Xp. The interpolant returned by our algorithm
is s1 ∈ Xp ∧ s2 = s3 · · · ∧ sn−1 = sn. Note, that if the conflict also contains mixed equalities, the plain
auxiliary variable xp introduced by that equality may occur in a shared terms si.

The syntactic restriction we pose on the partial invariants is that Xp occurs only in a literal s ∈ Xp,
where s is an arbitrary term (not containing a set-valued variable). In particular, s ∈ Xp may occur only
positively. To get a similar notation as in our previous paper [3], we define EQ(Xp,s) :≡ s ∈ Xp. On the
other hand, a variable xp introduced by a mixed equality may occur anywhere in the partial interpolant,
even under a function application or in the s-part of an EQ(Xp,s) term.

5.3.2 Mixed Inequalities

A linear inequality ` :≡ c1a1 + . . .+ cnan ≤ c is a comparison between a sum of n constant symbols ai

multiplied by a constant ci ∈ Z and a constant c ∈Qε for linear real arithmetic or c ∈ Z for linear integer
arithmetic. We introduce an auxiliary variable x j for every v j ∈mixed(`). We define a helper projection
for the sum.

c1a1 + · · ·+ cnan � vp = ∑
c | (vc,vp)∈E∧vc∈mixed(`)

xc + ∑
i | lca(ai)=vp

ciai

Thus, the projection of the sum to vp is the sum of all terms that occur in vp for the last time and the
sum of all auxiliary variables for all mixed child nodes. The projection of ` to the nodes v is defined as
follows.

` � vp =


(c1a1 + · · ·+ cnan � vp)≤ c if vp =mixedparent(`)

(c1a1 + · · ·+ cnan � vp)≤ xp if vp ∈mixed(`)

> otherwise

Again, the introduced auxiliary variable is shared between the node where it was introduced and its
parent node. It is allowed to occur in the partial interpolant of its node but only in the special pattern
LA(s,k,F) :≡ F which must occur positively in the interpolant. Here s is an affine sum of shared terms
and auxiliary variables. Every variable x occurring in F must also appear in s with a positive coefficient
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and F must be monotone in x, i. e., x ≥ x′ =⇒ F(x)→ F(x′). Finally we require that F = ⊥ for s > 0
and F => for s <−k.

The algorithm we present here is a slight improvement of the algorithm in [3]. We could use the
same algorithm but the new one will compute slightly smaller interpolants. The basic difference is that
LA(s,k,F) was defined as s≤ 0∧(s≥−k→ F), while in our new definition we assume that F is already
false for s > 0 and true for s <−k. Also the monotonicity condition of F simplifies the correctness proof
by avoiding the weak and strong interpolant that was needed in our previous paper.

5.4 Interpolation of Theory Lemmas

Our algorithm uses the Congruence Closure algorithm to produce conflicts in the theory of equality. We
can compute the partial tree interpolant separately for every node of the tree. However, we must carefully
assign every literal to a unique node of the tree. Then for every node the A part of the interpolation
problem consists of all literals assigned to a node in the subtree and the B part consists of all other
literals.

Usually an interpolant is computed as the summary of the A paths built from the conflict. In the
presence of function congruence a more elaborated algorithm is needed [9]. This algorithm also works
for mixed equality literals if they are split into their projections. The auxiliary variables can only occur
in the interpolants of the nodes for which the variables were introduced.

However, for a mixed disequality it is not feasible to replace it by the projections of the literals as it
involves new predicates and universally quantified formulae. Instead, they need to be treated separately.
A conflict always involves exactly one disequality that contradicts an equality path. If this disequality is
mixed, there is always an A path of equalities that start at the A part of the mixed disequality and ends at
a shared symbol s. Instead of adding a summary equality, we add the literal X(s), where X is the mixed
predicate that was added for the mixed disequality in the current partition.

For inequalities we apply the algorithm of [3] for each partition to compute the tree interpolant.
Mixed inequalities are replaced by their projections on the nodes of the tree. This sums up all inequalities
that occur in the A part of the interpolation problem, i. e., the subtree of the node v for which we compute
the interpolant. Again we need to ensure that every literal is assigned to a unique node.

Conjecture 1. The computed partial interpolant will fulfil the invariants of partial tree interpolants.

5.5 Extended Interpolation Rules

The interpolation rules for tree interpolants are a straight-forward extension of the interpolation rules
for binary interpolation presented in Section 3. For every resolution step in the resolution proof of
unsatisfiability, we compute for every node v ∈ V an interpolant. If `∨C1 has partial tree interpolant I1
and ¬`∨C2 has partial tree interpolant I2, we can compute a tree interpolant I3 for C1∨C2 by node-wise
computing partial interpolants. For v ∈ V , I3(v) is a combination of the pivot literal ` and the partial
interpolants I1(v) and I2(v) of the antecedents of the resolution step.

The computation of I3(v) from I1(v) and I2(v) is done by the same algorithm as for binary interpola-
tion [3]. If the literal ` is not mixed in v we use the definition from Section 5.1. If the literal is mixed in
v, we use a special interpolation rule mixcomb(`, I1(v), I2(v)) that takes two partial interpolants (i. e., the
labels of the corresponding partial tree interpolants at the node v) and computes a new partial interpolant
for the resolvent. The partial interpolants I1(v) and I2(v) may contain the auxiliary variables introduced
by ` in v, which may not occur in the resulting partial interpolant.

8



Extending Proof Tree Preserving Interpolation to Sequences and Trees Christ and Hoenicke

`∨C1 : I1 ¬`∨C2 : I2

C1∨C2 : I3 , where I3(v) =



I1(v)∨ I2(v) if ` � v′ => for all v′ /∈ st(v)
I1(v)∧ I2(v) if ` � v′ => for all v′ ∈ st(v)
mixcomb(`, I1(v), I2(v)) if v ∈mixed(`)

(I1(v)∨ `)∧
(I2(v)∨¬`)

otherwise

For a mixed equality, our syntactic restriction of interpolants guarantees that the first interpolant is
of the form I1[EQ(X ,s1)] . . . [EQ(X ,sn)], i. e., all occurrences of the auxiliary variable X are in a literal
EQ(X ,si) occurring positively in the formula. The second interpolant I2(x) has no syntactic restric-
tions. The combined interpolant is obtained by replacing each literal EQ(X ,si) in I1 by I2(si), which is
expressed as

mixcomb(a = b, I1[EQ(X ,s1)] . . . [EQ(X ,sn)], I2(x)) :≡ I1[I2(s1)] . . . [I2(sn)].

For an inequality, a partial interpolant of `∨C1 has the shape

I1[LA(c11x1 + s11,k11,F11)] . . . [LA(c1nx1 + s1n,k1n,F1n)].

We use LA1i(x1) as short-hand for LA(c1ix1 + s1i,k1i,F1i) and write the formula above as I1[LA1i(x1)].
Similarly, we write I2[LA2 j(x2)] for a partial interpolant I2[LA21(x2)] . . . [LA2m(x2)] of ¬`∨C2. For each
pair LA1i and LA2 j we compute a formula LA3i j := LA(s3i j,k3i j,F3i j) such that LA3i j ⇐⇒ ∃x. LA1i(x)∧
LA2 j(−x). This is possible since the value of an LA(s,k,F) is only unknown for −k ≤ s(x) ≤ 0. In the
integer case we can enumerate all possible values of x in this interval:

s3i j := c2 js1i + c1is2 j

k3i j := c2 jk1i + c1ik2 j + c1ic2 j

F3i j :≡

⌈
k1i+1

c1i

⌉∨
i=0

F1i

(⌊
−s1i

c1i

⌋
− i
)
∧F2 j

(
i−
⌊
−s1i

c1i

⌋)
In the real case the constant k is guaranteed to be either −ε or 0. Thus, there is at most one interesting
value. We use the following definitions.

s3i j := c2 js1i + c1is2 j

k3i j :=

{
k2 j if k1i =−ε

0 if k1i = 0

F3i j :≡

F2 j

(
s1i
c1i

)
if k1i =−ε

s3i j < 0∨
(

F1i

(
− s1i

c1i

)
∧F2 j

(
s1i
c1i

))
if k1i = 0

The partial interpolant of the resolvent C1∨C2 in the mixed case can be expressed as

mixcomb(t ≤ c, I1[LA1i], I2[LA2 j]) :≡ I1[I2[LA311] . . . [LA31m]] . . . [I2[LA3n1] . . . [LA3nm]].

The interpolation rules are exactly the same as for the binary case. The only differences between the
definition above and the one in [3] is a small simplification of the rule for linear arithmetic that would
also be applicable to the binary interpolation case and the exact definition of EQ(X ,s), which is only
needed for the correctness proof and not used in the interpolation algorithm.

Conjecture 2. The extended interpolation rules with the definition of mixcomb for the equality and
inequality literals given above is correct. Thus, if I1 and I2 are partial tree interpolants for the clauses
`∨C1 and ¬`∨C2 respectively, then I3 is a partial tree interpolant for the clause C1∨C2.
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6 Conclusion

We presented our ongoing work to extend proof tree preserving interpolation to tree interpolation, a gen-
eralisation of sequence interpolation. The key ingredients are the extension of the projection functions
to mixed literals by introducing auxiliary variables and predicates, a syntactic restriction of the occur-
rence of these auxiliary symbols in the partial tree interpolants, and a set of rules to compute partial tree
interpolants for resolution steps on mixed literals. The major difficulty with this technique lies in the
correctness proofs that are still part of ongoing work. To our knowledge, this is the first paper to focus
on the problem of extracting tree interpolants from resolution proofs produced by state-of-the-art SMT
solvers. The interpolation technique is implemented in the interpolating SMT solver SMTInterpol [2].
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A Example

We present our algorithm on the tree interpolation problem from Figure 1(a) consisting of four nodes.
In the figure we draw the arrows from children to parent. Each node contains the labelling depicted by
the corresponding figure, i. e., either the input labelling, or a (partial) tree interpolant. The numbers in
Figure 1(a) will be used to identify the individual nodes. The (extended) symbol set symb(v) for each
node is given in Figure 1(b).

4: q 6= r

2: c = d

1: a = c∧q = f (a)

3: d = b∧ f (b) = r

(a) Interpolation Problem

{q,r, f}

{c,d,q, f}

{a,c,q, f}

{d,b,r, f}

(b) Symbol set symb(v) for each node

Figure 1: Tree interpolation problem and symbol set used throughout this section.

A.1 Leaf Interpolation for Equality Theory

We assume the solver for the theory of equalities produces the literal a = b and detects the conflicts
q = f (a)∧ a = b∧ f (b) = r∧ q 6= r and a = c∧ c = d ∧ d = b∧ a 6= b. We show how to derive partial
tree interpolants for these conflicts from the corresponding congruence graphs.

Figure 2(a) gives the projection of the conflict onto the individual nodes. For the literal a = b, which
is mixed in nodes 1, 2, and 3, we introduce the auxiliary variables x1,x2,x3. In Figure 2(b) we show
the corresponding Congruence Closure graph which we already extended by the auxiliary variables.
The horizontal edges denote equalities and are labelled by the node that contains the equality literal. The
vertical arrows denote function application and the dotted edge is a derived congruence. The inequality is
depicted by the top edge. The interpolation algorithm summarises for each node the equalities occurring
in the corresponding subtree. If the equality chain crosses a function application, e. g., q = f (a) and
a = x1, we need to lift the end-point yielding q = f (x1). For Node 4, the (dis-)equality chain spans the
whole cycle and is summarised by ⊥. The resulting partial tree interpolant is given in Figure 2(c).

r 6= q
x2 = x3

x1 = x2

q = f (a)
a = x1

f (b) = r
x3 = b

(a) Interpolation Problem

q f (a)

a x1 x2 x3 b

f (b) r
1 3

1 2 4 3

/
4

(b) Corresponding Congruence Graph

⊥

q = f (x2)

q = f (x1)

f (x3) = r

(c) Partial Tree Interpolant

Figure 2: Interpolating the conflict q = f (a)∧a = b∧ f (b) = r∧q 6= r.
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The second conflict a = c∧ c = d ∧ d = b∧ a 6= b contains the negated literal a 6= b, for which we
introduce set-valued auxiliary variables X1,X2,X3. Figure 3(a) gives the projection of the conflict onto
the individual nodes. The corresponding Congruence Closure graph is given in Figure 3(b). Here, we
split the disequality into the literals a∈ X1, X1⊆ X2, X2∩X3 = /0 and b∈ X3. These literals are sketched in
the figure by dashed edges. The interpolants are computed as usual by summarising the edges belonging
to one subtree. Here, d = c, c = a, a ∈ X1 and X1 ⊆ X2 is summarised by d ∈ X2. The literal X2∩X3 = /0
occurs only in the node mixedparent(a 6= b) and the literal is not mixed in that node. Thus, we never
need to build a summary including this edge. The resulting partial tree interpolant is given in Figure 3(c).

X2∩X3 = /0

c = d
X1 ⊆ X2

a = c
a ∈ X1

d = b
b ∈ X3

(a) Interpolation Problem

a

X1 X2 X3

c d b

2
/
4

1 2 3

1 3

(b) Corresponding Congruence Graph

⊥

d ∈ X2

c ∈ X1

d ∈ X3

(c) Partial Tree Interpolant

Figure 3: Interpolating the conflict a = c∧ c = d∧d = b∧a 6= b.

A.2 Interpolation Rule for Resolution Proof

The theory lemma clauses corresponding to the conflicts in the previous section are combined by the
resolution rule to a new clause.

a = b∨a 6= c∨ c 6= d∨d 6= b a 6= b∨q 6= f (a)∨ f (b) 6= r∨q = r

a 6= c∨ c 6= d∨d 6= b∨q 6= f (a)∨ f (b) 6= r∨q = r

Since the pivot is mixed in nodes 1, 2, and 3, we need to apply mixcomb to combine the partial inter-
polants of these nodes. For equality literals the interpolants have the shape I1[s ∈ X ] and I2(x) (in our
case I1[F ]≡ F). The resulting interpolant for each node is computed as I1[I2(s)], which basically means
that we just have to replace in the second interpolant xi by the term s, where s ∈ Xi is the first interpolant.
The result is shown in Figure 4.

⊥

d ∈ X2

c ∈ X1

d ∈ X3

(a) Partial Tree Interpolant
of a = b∨ . . .

⊥

q = f (x2)

q = f (x1)

f (x3) = r

(b) Partial Tree Interpolant of
a 6= b∨ . . .

⊥

q = f (d)

q = f (c)

f (d) = r

(c) Partial Tree Interpolant of
resolvent

Figure 4: Applying the interpolation rule for resolution.
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B Proofs, Proof Sketches, and Proof Ideas

B.1 Proof of Lemma 1

Proof. Assume we added a to symb(w) for some w ∈ st(v). For w there are v1,v2 ∈ V with a ∈
symb(L(vi)). At least one of them is a descendent of w, hence there is another node in vi ∈ st(v) with
a ∈ symb(L(vi)). On the other hand, if we added a to symb(w′) for some w′ /∈ st(v). Then again there are
v1,v2 ∈V with a ∈ symb(L(vi)). If both of these nodes would lie in st(v), then v would be a common an-
cestor of v1 and v2 which contradicts w /∈ st(v). Hence there is a node vi /∈ st(v) with a∈ symb(L(vi)).

B.2 Proof for Theorem 1

Proof. Given a sequence interpolation problem F1, . . . ,Fn, construct a tree as follows. Let T = (V,E)
with V = {v0,v1, . . . ,vn}, E = {(vi−1,vi) | 1 ≤ i ≤ n}, L(vi) = Fi for 1 ≤ i ≤ n, and L(v0) = >. Given
a solution I to the tree interpolation problem T = (V,E) and L, a solution to the sequence interpolation
problem is Ii := I(vi).

B.3 Proof Sketch of Lemma 2

Proof Sketch. Fixing a node vp we have to show
∧

(vc,vp)∈E I3(vc)∧ L(vp)∧ (¬C1 ∧¬C2) � vp |= I3(vp)
and can assume that a similar condition holds for I1 and I2. We distinguish three cases.

Case 1. There is an edge (vc,vp) ∈ E with ` � v = > for all v /∈ st(vc). Then I3(vc) = I1(vc)∨ I2(vc)
and I3(vp) = I1(vp)∨ I2(vp). Also for all other edges (v′c,vp) ∈ E, ` � v = > for all v ∈ st(v′c), hence
I3(v′c) = I1(v′c)∧ I2(v′c).

Assume
∧

(vc,vp)∈E I3(vc) holds, then
∧

(vc,vp)∈E I1(vc) or
∧

(vc,vp)∈E I2(vc) hold. Using the induction
hypothesis for I1 and I2 we derive that I1(vp) or I2(vp) hold (note that ` � vp => since vp /∈ st(vc)). Then
I3(vp) holds.

Case 2. Assume ` � v => for all v ∈ st(vp). Then I3(vp) = I1(vp)∧ I2(vp) and I3(vc) = I1(vc)∧ I2(vc)
for all (vc,vp) ∈ E. From

∧
I3(vc) we conclude that

∧
(vc,vp)∈E I1(vc) and

∧
(vc,vp)∈E I2(vc) hold. Using the

induction hypothesis (again ` � vp =>) we derive I1(vp) and I2(vp) thus I3(vp).

Case 3. Otherwise I3(vc) =⇒ (I1(vc)∨`)∧(I2(vc)∨¬`) for all (vc,vp)∈ E since we are not in Case 1.
With the induction hypothesis and ` =⇒ ` � vp we derive from

∧
I3(vc) that (I1(vp)∨ `)∧ (I2(vp)∨¬`)

holds. Since we are not in Case 2, this implies I3(vp).

B.4 Proof of Lemma 3

Proof. We first show

mixed(`)⊆ {v ∈V | ∃i. 1≤ i≤ n. lca(ai) ∈ st(v) and mixedparent(`) is a proper ancestor of v}.

Let v ∈mixed(`). Since ` is mixed in v, there is at least one symbol ai that occurs only inside the subtree
of v. Hence, lca(ai) ∈ st(v) for some i. Moreover, the mixedparent(`) is an ancestor of the parent of v,
hence it is a proper ancestor of v.

For the other direction

mixed(`)⊇ {v ∈V | ∃i. 1≤ i≤ n. lca(ai) ∈ st(v) and mixedparent(`) is a proper ancestor of v}
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take a node v, from the set on the right-hand side. Then there is an i such that lca(ai) ∈ st(v), i. e., ai

occurs only inside the subtree of v. It remains to show that there is another symbol that occurs only
outside the subtree of v. There must be a node w ∈ mixed(`) such that v is not a proper ancestor of w
(otherwise v would be an ancestor of mixedparent(`)).

Case 1: w is an ancestor of v. There is a symbol a j that only occurs outside of the subtree of w. Thus,
this symbol occurs only outside of the subtree of v, so ` is mixed in v.

Case 2: w and v have disjoint subtrees. There is a symbol a j that only occurs inside of w. Thus, this
symbol occurs only outside of the subtree of v, so ` is mixed in v.

B.5 Projection Function is Correct

Lemma 4 (Correctness of the Projection Function). The projection function defined in Section 5.3 is
correct (in the sense of Definition 2.

Proof Sketch. For `≡ a1 = a2, show by induction on vp that

∃{x j|v j ∈ (st(vp)\{vp})∩mixed(`)}.
∧

v j∈st(vp)

` � v j

⇐⇒


> if v j /∈mixed(`) for all v j ∈ st(vp),
ai = xp if vp ∈mixed(`), lca(ai) ∈ st(vp),
a1 = a2 if mixedparent(`) ∈ st(vp).

For `≡ a1 6= a2, show by induction on vp that

∃{X j|v j ∈ (st(vp)\{vp})∩mixed(`)}.
∧

v j∈st(vp)

` � v j

⇐⇒


> if v j /∈mixed(`) for all v j ∈ st(vp),
ai ∈ Xp if vp ∈mixed(`), lca(ai) ∈ st(vp),
a1 6= a2 if mixedparent(`) ∈ st(vp).

For `≡ ∑ciai ≤ c, show by induction on vp that

∃{x j|v j ∈ (st(vp)\{vp})∩mixed(`)}.
∧

v j∈st(vp)

` � v j

⇐⇒


> if v j /∈mixed(`) for all v j ∈ st(vp),

∑lca(ai)∈st(vp) ciai ≤ xp if vp ∈mixed(`),

∑lca(ai)∈st(vp) ciai ≤ c if mixedparent(`) ∈ st(vp).

B.6 Proof Idea for Leaf Interpolation (Conjecture 1)

Proof Idea. For equality conflicts that does not contain a mixed disequality the A paths in the interpolant
of the parent node are the summary of all literals occurring in the subtree. It is thus the summary of the
literals occurring in the parent node and the equalities in the interpolants of the interpolants of the child
nodes. Thus it follows from them.
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For mixed disequality we also summarise the literals s = a, a ∈ X1, and X1 ⊆ X2 to s ∈ X2. When
moving to a mixed parent of a mixed child it is not too difficult to see that when the equality chain is
extended at the front by s′ = s (e. g. in another child node) and the subset chain is extended by X2 ⊆ X3,
that the summary s′ ∈ X3 of the parent node can be derived from these formulae. Finally, when moving
to the node mixedparent(a1 6= a2) we summarise the child interpolants a1 ∈ Xc1 and a2 ∈ Xc2 together
with Xc1 ∩Xc2 = /0 to a1 6= a2.

For inequality conflicts, the interpolant of the parent node is the sum of all inequalities occurring in
the subtree (multiplied with their respective Farkas coefficient). This is just the sum of the interpolants
of the child nodes and the inequalities occurring in the parent node.

B.7 Proof Idea for Extended Interpolation Rule (Conjecture 2)

Proof Idea. If the pivot literal is not mixed, the correctness follows from Lemma 2.
For mixed equality literals we need to do a case split over the four cases of the projection function

(two children are mixed, one child is mixed, both parent and one child is mixed, and only the parent
is mixed). The proof uses the induction hypothesis for I1 and I2. In the induction hypothesis for I1 the
variables Xc and Xp may occur. The trick is now to instantiate the variable Xc by the set {x|Ic

2(x)} and
likewise for Xp. The remaining proof is tedious but straight-forward.

For a mixed inequality literal we need the fact that LA3i j ⇐⇒ ∃x.LA1i(x)∧LA2 j(−x) holds, which
we proved in [4]. The technical difficulty of the proof lies in finding a common x that works for all terms
LA1i(x) and LA2 j(−x) that occur in the interpolants I1 and I2. This can be achieved by choosing the
minimum x for i and the maximum x for j using the monotonicity of LA. Then one can show that if for a
mixed child I1[I2[LA3i j]] holds, there is an x such that I1[LA1i(x)] and I2[LA2 j(−x)] holds (except for one
special case where I2 ≡⊥ that needs to be handled separately). Likewise for a mixed parent I1[LA1i(x)]
and I2[LA2 j(−x)] imply I1[I2[LA3i j]]. Now the remaining proof is straight-forward using the induction
hypothesis.
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