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Trace abstraction / Ultimate Automizer

annotated
program P

L(A) = ∅? w feasible?

P correct P incorrect
counterexample w

A := CFA1(P)

no

choose w ∈ L(A)

yes

no

construct Aw of infeasible traces s.t. w ∈ Aw

A := A \ Aw = A ∩Aw

yes

• Automaton A grows exponentially in number of iterations
unless we apply minimization

1CFA = control flow automaton
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Visibly pushdown automata (Vpa)

• Programs with procedures
Traces also contain calls and returns

• Vpa: restricted pushdown automata
Read words with three types of symbols

• internal – “no stack”

• call – “push current state”

• return – “pop”

• Vpa inherit nice properties of finite automata

• Boolean operations

• Decidability

However, no minimization!
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Minimization

• Minimization = reduction (number of states)

• Merge states (according to a congruence)

• Preserve the language
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Minimization of finite automata
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Minimization of Vpa

1. Observation:
Return transitions can
sometimes be ignored
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can destroy transitivity

q0 q2

q1

q3

qf

c1 ↓ {q0}
a

c2 ↓ {q0}

r ↑ {q0}
a

a

r ↑ {q0}

a

q0 q2

q1

q3

qf

c1 ↓ {q0}

a

c2 ↓ {q0}

r ↑ {q0}
a

a

r ↑ {q0}

a

5 / 16



Minimization of Vpa

1. Observation:
Return transitions can
sometimes be ignored

q0 q2

q1

q3

qf

c1 ↓ q0

a

c2 ↓ q0

r ↑ q
0a

a
a

r ↑ q0

a

2. Observation:
Ignoring return transitions
can destroy transitivity

q0 q2

q1

q3

qf

c1 ↓ {q0}
a

c2 ↓ {q0}

r ↑ {q0}
a

a

r ↑ {q0}

a

q0 q2

q1

q3

qf

c1 ↓ {q0}

a

c2 ↓ {q0}

r ↑ {q0}
a

a

r ↑ {q0}

a

5 / 16



Minimization of Vpa

1. Observation:
Return transitions can
sometimes be ignored

q0 q2

q1

q3

qf

c1 ↓ q0

a

c2 ↓ q0

r ↑ q
0a

a
a

r ↑ q0

a

2. Observation:
Ignoring return transitions
can destroy transitivity

q0 q2

q1

q3

qf

c1 ↓ {q0}
a

c2 ↓ {q0}

r ↑ {q0}
a

a

r ↑ {q0}

a

q0 q2

q1

q3

qf

c1 ↓ {q0}

a

c2 ↓ {q0}

r ↑ {q0}
a

a

r ↑ {q0}

a

5 / 16



Minimization of Vpa

q0
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3. Observation:
Merging call predecessors changes the stack alphabet
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Congruence for minimization

• Two states are equivalent if they

• are both accepting or both non-accepting

• reach equivalent states under the same symbol

• and equivalent stack symbols (for returns)

p

q

p′

q′

a

a
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q

p′

q′

r ↑ p̂

r ↑ q̂

• How to compute such a relation?

• Encode existence as Boolean formula

• Any satisfying assignment represents a congruence
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Encoding

• Boolean variables X{p,q} for any two states p, q

• p and q can be merged if X{p,q} is true

• Constraints enforce that the relation

• is an equivalence relation

• is compatible with acceptance condition

• is a congruence for transition relation
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Equivalence relation

• Reflexivity
X{q,q} (1)

• Symmetry

encoded in variables

• Transitivity
X{q1,q2} ∧ X{q2,q3} → X{q1,q3} (2)
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Compatibility with acceptance condition

• Accepting state p ∈ F must not be merged with
non-accepting state q /∈ F

¬X{p,q} (3)
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Congruence for transition relation

• States are only merged if their successors are merged

• Internal and call transitions

X{p,q} → X{p′,q′} (4.1)

p
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q′

a

a
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Congruence for transition relation

• States are only merged if their successors are merged

• Return transitions

X{p,q} ∧ X{p̂,q̂} → X{p′,q′} (4.2)

p

q

p′

q′

r ↑ p̂

r ↑ q̂

• Only required for reachable p̂, q̂
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Are we done yet?

• Assignment

X{q,q} 7→ true X{p,q} 7→ false (p 6= q)

corresponds to original Vpa – so sad!
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PMax-Sat encoding

• Partial maximum satisfiability (PMax-Sat)

• Clauses are either hard or soft

• Assignment must satisfy

• all hard clauses

• as many soft clauses as possible

• Consider all clauses so far as hard clauses

• Add soft clauses
X{p,q} (5)

Rationale: Merge as many states as possible

• Solution corresponds to a local optimum
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Integration in Ultimate Automizer

• 165 programs from SV-Comp 2016

• Resource limit: 300 s / 4 GiB

minimization
# solved

∅ time ∅ time
∅ removalused? total min.

no 66 16,085 - -

yes
same 66 15,564 2,649 3,077

+ 12 101,985 61,384 8,472

times given in ms

14 / 16



Automata from Ultimate Automizer
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Recap

• Algorithm for reducing Vpa by merging states

• Reduction to synthesis of language-preserving congruence

• Reduction to solving a Boolean optimization problem
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