Minimization of
Visibly Pushdown Automata
Using Partial Max-SAT

Matthias Heizmann, Christian Schilling, Daniel Tischner

BURG

-5
=Y

University of Freiburg, Germany

Trace abstraction / ULTIMATE AUTOMIZER,

annotated

program P A=A\A, =ANA,

A = CFAY(P)

P correct

yee v yes

choose w € L(\A)

1CFA = control flow automaton

construct A,, of infeasible traces s.t. w € A,,

w feasible?

‘P incorrect
counterexample w

1/16

Trace abstraction / ULTIMATE AUTOMIZER,

construct A,, of infeasible traces s.t. w € A,,

annotated o
program P A=A\A,=ANA,
— 1
A = CFAY(P) no
w feasible?

yee v yes

P correct choose w € £(A) P incorrect

counterexample w

e Automaton A grows exponentially in number of iterations
unless we apply minimization

1CFA = control flow automaton
1/16

Visibly pushdown automata (VPrA)

e Programs with procedures
Traces also contain calls and returns

e VPA: restricted pushdown automata
Read words with three types of symbols

e internal — “no stack”
e call — “push current state”

e return — “pop”

e VPA inherit nice properties of finite automata
e Boolean operations
e Decidability
However, no minimization!

2/16

Minimization

e Minimization = reduction (number of states)
e Merge states (according to a congruence)

e Preserve the language

3/16

Minimization of finite automata

(a+ b)*a(a+ b)

non-minimal DFA

4/16

Minimization of finite automata

(a+ b)*a(a+ b)

Ldo [Db

~—— b
a (\
b

r,_\\\/_\
L g1
S e
N\ /b
V V a
1 N 1 N
v 43) v g4))
Mo N
non-minimal DFA minimal DFA /

merge-minimal NFA

4/16

Minimization of finite automata

non-minimal DFA

(a+ b)*a(a+ b)

Ldo [Db

-~ b
a (\
b

minimal DFA /
merge-minimal NFA

minimal NFA

4/16

Minimization of VPA

5/16

Minimization of VPA

a
1. Observation: (”)
Return transitions can r {%}
sometimes be ignored * ',q,:\l

/
O rt{a}

5/16

1. Observation:
Return transitions can
sometimes be ignored

2. Observation:

Ignoring return transitions .

Minimization of VPA

a | {qo}

e 1 {q0

cd {qo}|\ "t

AY
a |92}
N\

c L {q}|, >

/
e rt{a}

LN
*(Qf,‘

can destroy transitivity

5/16

Minimization of VPA

ntaq
0
rntaq

. nt{g, e,
v 43 ,' \ qf,'
ot {g, g} -
3. Observation:

Merging call predecessors changes the stack alphabet

6/16

Congruence for minimization

e Two states are equivalent if they
e are both accepting or both non-accepting

¢ reach equivalent states under the same symbol

e and equivalent stack symbols (for returns)

7/16

Congruence for minimization

e Two states are equivalent if they
e are both accepting or both non-accepting

¢ reach equivalent states under the same symbol

e and equivalent stack symbols (for returns)

e How to compute such a relation?
e Encode existence as Boolean formula

e Any satisfying assignment represents a congruence

7/16

Encoding

e Boolean variables X(, ;1 for any two states p, q
e pand q can be merged if X;, o1 is true

e Constraints enforce that the relation
e is an equivalence relation
e is compatible with acceptance condition

¢ is a congruence for transition relation

8/16

o Reflexivity

e Symmetry

e Transitivity

Equivalence relation

X{a.q} (1)

encoded in variables

Xiara) N Xigzas) = X{qr.as) (2)

9/16

Compatibility with acceptance condition

e Accepting state p € F must not be merged with
non-accepting state g ¢ F

“Xip,a} (3)

10/16

Congruence for transition relation

e States are only merged if their successors are merged
e Internal and call transitions

Xip.ay = K{p',a'} (4.1)

11/16

Congruence for transition relation

e States are only merged if their successors are merged
e Return transitions

Xip.ay N Xpay = Xip' g} (4.2)

e Only required for reachable p, §

11/16

Are we done yet?

e Assignment
X{q,q} > true Xip,qy > false (p # q)

corresponds to original VPA — so sad!

12/16

PMax-SAT encoding

e Partial maximum satisfiability (PMax-SAT)
e Clauses are either hard or soft
e Assignment must satisfy
e all hard clauses

e as many soft clauses as possible

13/16

PMax-SAT encoding

Partial maximum satisfiability (PMax-SAT)
e Clauses are either hard or soft
e Assignment must satisfy
e all hard clauses

e as many soft clauses as possible
Consider all clauses so far as hard clauses

Add soft clauses
X{P,q}

Rationale: Merge as many states as possible

Solution corresponds to a local optimum

13/16

Integration in ULTIMATE AUTOMIZER

e 165 programs from SV-Cowmp 2016

e Resource limit: 300 s / 4 GiB

minimization & time | & time
used? # solved total min. | & removal

no 66 | 16,085 - -
same 66 | 15,564 | 2,649 3,077
+ 12 | 101,985 | 61,384 8,472

yes

times given in ms

14/16

Automata from ULTIMATE AUTOMIZER

relative reduction

states (input)

o deterministic VPA # nondeterministic VPA
596 data points

15/16

Recap

e Algorithm for reducing VPA by merging states
e Reduction to synthesis of language-preserving congruence

e Reduction to solving a Boolean optimization problem

16/16

