Minimization of Visibly Pushdown Automata Using Partial Max-SAT

Matthias Heizmann, Christian Schilling, Daniel Tischner

University of Freiburg, Germany

Trace abstraction / Ultimate Automizer

${ }^{1}$ CFA $=$ control flow automaton

Trace abstraction / Ultimate Automizer

- Automaton \mathcal{A} grows exponentially in number of iterations unless we apply minimization

[^0]
Visibly pushdown automata (VPA)

- Programs with procedures

Traces also contain calls and returns

- Vpa: restricted pushdown automata

Read words with three types of symbols

- internal - "no stack"
- call - "push current state"
- return - "pop"
- Vpa inherit nice properties of finite automata
- Boolean operations
- Decidability

However, no minimization!

Minimization

- Minimization $=$ reduction (number of states)
- Merge states (according to a congruence)
- Preserve the language

Minimization of finite automata

$$
(a+b)^{*} a(a+b)
$$

non-minimal DFA

Minimization of finite automata

$$
(a+b)^{*} a(a+b)
$$

non-minimal DFA

minimal DFA / merge-minimal NFA

Minimization of finite automata

$$
(a+b)^{*} a(a+b)
$$

non-minimal DFA

minimal DFA / merge-minimal NFA

minimal NFA

Minimization of VpA

Minimization of Vpa

1. Observation:

Return transitions can sometimes be ignored

Minimization of Vpa

1. Observation:

Return transitions can sometimes be ignored

2. Observation:

Ignoring return transitions
can destroy transitivity

Minimization of VpA

3. Observation:

Merging call predecessors changes the stack alphabet

Congruence for minimization

- Two states are equivalent if they
- are both accepting or both non-accepting
- reach equivalent states under the same symbol
- and equivalent stack symbols (for returns)

Congruence for minimization

- Two states are equivalent if they
- are both accepting or both non-accepting
- reach equivalent states under the same symbol
- and equivalent stack symbols (for returns)
- How to compute such a relation?
- Encode existence as Boolean formula
- Any satisfying assignment represents a congruence

Encoding

- Boolean variables $X_{\{p, q\}}$ for any two states p, q
- p and q can be merged if $X_{\{p, q\}}$ is true
- Constraints enforce that the relation
- is an equivalence relation
- is compatible with acceptance condition
- is a congruence for transition relation

Equivalence relation

- Reflexivity

$$
\begin{equation*}
X_{\{q, q\}} \tag{1}
\end{equation*}
$$

- Symmetry

> encoded in variables

- Transitivity

$$
\begin{equation*}
X_{\left\{q_{1}, q_{2}\right\}} \wedge X_{\left\{q_{2}, q_{3}\right\}} \rightarrow X_{\left\{q_{1}, q_{3}\right\}} \tag{2}
\end{equation*}
$$

Compatibility with acceptance condition

- Accepting state $p \in F$ must not be merged with non-accepting state $q \notin F$

$$
\begin{equation*}
\neg X_{\{p, q\}} \tag{3}
\end{equation*}
$$

Congruence for transition relation

- States are only merged if their successors are merged
- Internal and call transitions

$$
\begin{equation*}
X_{\{p, q\}} \rightarrow X_{\left\{p^{\prime}, q^{\prime}\right\}} \tag{4.1}
\end{equation*}
$$

Congruence for transition relation

- States are only merged if their successors are merged
- Return transitions

$$
\begin{equation*}
X_{\{p, q\}} \wedge X_{\{\hat{p}, \hat{q}\}} \rightarrow X_{\left\{p^{\prime}, q^{\prime}\right\}} \tag{4.2}
\end{equation*}
$$

- Only required for reachable \hat{p}, \hat{q}

Are we done yet?

- Assignment

$$
X_{\{q, q\}} \mapsto \text { true } \quad X_{\{p, q\}} \mapsto \text { false }(p \neq q)
$$

corresponds to original VpA - so sad!

PMax-SAT encoding

- Partial maximum satisfiability (PMax-SAT)
- Clauses are either hard or soft
- Assignment must satisfy
- all hard clauses
- as many soft clauses as possible

PMax-SAT encoding

- Partial maximum satisfiability (PMax-SAt)
- Clauses are either hard or soft
- Assignment must satisfy
- all hard clauses
- as many soft clauses as possible
- Consider all clauses so far as hard clauses
- Add soft clauses

$$
\begin{equation*}
X_{\{p, q\}} \tag{5}
\end{equation*}
$$

Rationale: Merge as many states as possible

- Solution corresponds to a local optimum

Integration in Ultimate Automizer

- 165 programs from SV-Comp 2016
- Resource limit: $300 \mathrm{~s} / 4 \mathrm{GiB}$

minimization used?	\# solved	\varnothing time total	\varnothing time min.	\varnothing removal
no	66	16,085	-	-
yes	same 66	15,564	2,649	3,077
	+12	101,985	61,384	8,472

times given in ms

Automata from Ultimate Automizer

- deterministic Vpa * nondeterministic VpA

596 data points

Recap

- Algorithm for reducing Vpa by merging states
- Reduction to synthesis of language-preserving congruence
- Reduction to solving a Boolean optimization problem

[^0]: ${ }^{1} \mathrm{CFA}=$ control flow automaton

