
STALIN: A plugin-based modular framework

for program analysis

Daniel Dietsch
Departement of Computer Science

Chair of Software Engineering
Albert-Ludwigs-University Freiburg

First Advisor: Prof. Dr. Andreas Podeslski
Second Advisor: Prof. Dr. Christoph Scholl

Thesis submitted for the Degree of Bachelor of Science in the
Albert-Ludwigs-University Freiburg

· 2008 ·



Abstract

Modern program analysis and model checking algorithms are getting more and

more demanding with regard to scalability. Current trends in this domains sug-

gest a solution through combining existing approaches to maximize performance.

This leads inevitable to interoperability issues caused by incompatibilities in lan-

guages, logics and abstractions. We need standardization to overcome those

problems and concentrate again on the development of algorithms. Our work

presents the STALIN framework to tackle this challenges by providing an open

and extensible architecture as well as by proposing direct solutions to them.
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Chapter 1

Introduction

In the past decade static program analysis in general and especially software

model checking made great achievements towards safer and more precise soft-

ware. Many interesting approaches have been presented and many have been

implemented in numerous tools (like SPIN [1], SLAM [2], BLAST [3], Bogor [4],

NuSMV [5] and others) with all their strengths and weaknesses. Although those

tools can prove or refute several important properties they all suffer from com-

mon issues like scalability, narrowness with respect to programming languages or

to usable properties. Right now none of the known programs can prove that an

arbitrary property holds for an industrial sized software and least of all in a fully

automated way. Of course we cannot expect to solve those issues due to the com-

plexity of our problem, but we can aid the research in this area. Many promis-

ing, new ideas are combinations of different known techniques, like execution

with dynamic analysis [6] or the combination of termination proofs with given

preconditions and precondition inference for correctness properties [7]. Those

combinations suffer from compatibility issues in the representation of program ab-
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Introduction

stractions and the complexity of unifying different specification languages. Also,

there is a huge amount of repetitive work associated with the implementing of

only one combination of different approaches compared to the formal description

of the same. This amount does not yield necessarily usable results and is thus

more and more disregarded. To sketch some of the aspects of repetitive work

consider this brief sketchy example:

We have a tool which is able to infer loop invariants very well and another tool

which can prove heap assumptions if we supply loop invariants. Lets call the

first one invariant finder and the second heap analyzer. Naturally, we want to

combine those two tools. The easy process would, for instance, look like this: We

write all invariants found by our invariant finder in a file and read it back with

the heap analyzer. We only need a way of transferring between the formalism

of both tools, which can be a lengthy process. It requires understanding all the

rough edges of the formalism, writing an own parser, annotating the new infor-

mation in our formalism at the desired locations and an error-prone integration

in mostly non-modular code. But what if the invariant finder takes a special

loop-description language as input and the heap analyzer wants to have an input

program written in ANSI C? We have to write even more code, namely a con-

verter which takes our C loops and converts them into the input language of the

invariant finder. After all, we need to spend a lot of time and resources with a

problem which does not cover the real issue.

There is even more to it. Model checking tools use commonly system calls to one

of the different SMT [8] or SAT [9] solvers which in turn use different decision

procedures [10, 11, 12] to decide if a given logical formula is satisfiable or not.

Those solvers work with different logical theories and based on the problems at

hand, different theories are useful. The question for the combination of differ-
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Introduction

ent tools is therefore also a question for the transitions between different logic

theories.

To overcome those problems and be able to focus on the interesting, algorithmic

part of the work we need standardization and especially modularization in several

areas:

• We need a universal language to express different programming languages

in a coherent way.

• We need parser which can translate at least the important programming

languages to this language.

• We need fully specified and formalized models to abstract from this univer-

sal language. We also need tools which generate those models.

• We need mechanisms to store and manage models efficiently.

• We need easy and efficient access methods for the models.

• We need standardized interfaces for the interaction between different tools.

• We need transitions between different theorem prover and SMT solver the-

ories.

In short, we need a framework which allows us to concentrate on the real work

and combines the efforts of different experts from different domains with little to

no extra work.

There exist several interesting approaches from different people to tackle one or

more items from this wish list. One of them is the C Intermediate Language
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(CIL) [13]. CIL is not only a language but also comes with a set of tools for

parsing, merging and transforming ANSI C, MS C and GNU C programs. It can

normalize a given input program by transforming the more complex expressions

from C to simpler ones and it also provides an interface to attach other, external

tools. It is well-suited to deal with C programs but does not support other lan-

guages.

Another approach is proposed in [14, 15] by Michael Huth. It specifies an inter-

action method between different tools and how different abstractions can be con-

veyed into each other. It also proposes a generic specification language enclosed

in a framework for abstraction and partly refinement. The described framework

was to our knowledge never implemented which would have naturally provided

an opportunity to evaluate its feasibility in the context of existing algorithms.

Both works were very inspiring to us and lead to the development of the

STALIN framework which fills the gap. The STALIN framework simplifies ex-

periments with and the implementation of concatenations of different tools, so-

called toolchains. It is written in Java and based on the Eclipse Rich Client

Platform [16]. RCP is the basic platform for the Eclipse Integrated Develop-

ment Environment [17] and many other development tools. We also build our

application on top of this successful and approved platform. It provides platform

independence, support for numerous UI features, plugin handling, automatic on-

line update mechanisms and integration into the Eclipse IDE to name the most

important features for our decision. But because the RCP framework is a large

and compelling topic for itself, we will not discuss it in this work. If you are

interested in getting to know RCP and its benefits we suggest you read [18] or

take a look at the RCP community site at [19].
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Our framework provides interfaces for different parsers and tools, manages the

created models in a standardized way and abstracts a given input language to a

given universal language. One can execute different tools consecutively and work

on the same standardized model, be it a parse tree, a control flow graph, a call

graph or any other graph based model. We also provide a set of tools to perform

different commonly used transformations on our models and to aid development

and debugging through graphical representations of the models. Besides tools we

also deliver parser for different languages like Java, C#, ANSI C and C++.

The main contributions of this work are:

• A concrete architecture for a plugin-based framework which can support all

aspects of our wish list.

• An underlying infrastructure enabling further extension of the framework.

• Different tools aiding users of our framework in their tool development.

5



Chapter 2

STALIN Framework

2.1 General Architecture

The architecture of our framework is loosely based on the Model-View-Controller

Pattern [20], where the different tools are seen as view but can also change the

content of a model through an access layer. In figure 2.1 you can see the general

outline of our architecture:

The core works as extended controller for the user interface and connects the

different views (tools and parser) with the model manager. An execution run

starts with loading the Eclipse RCP base application. Every part of STALIN is

integrated as a separate plugin into Eclipse RCP. The RCP class loader loads the

STALIN core which, based on his arguments, loads an user interface controller

and delegates the control to it. If the GUI part is loaded, the user now can select

one or more files as input and the different tools he wants to run on this input.

After this selection, the user-interface-controller returns control to the core which

6
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Toolchain

Tool 1 Tool 2 Tool n…

STALIN-Framework

Core

Meta-
language
Overlay

Serializer / 
Deserializer

Access LayerLogger

User-Interface 
Controller

GUI

Console

Model Manager

...
Model 1 Model 2 Model n

Parser

Backend

Java

C/C++

C#

XML

...

AntLR xgcc ...

Figure 2.1: Modules of the STALIN-Framework.
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loads the selected tools and a compatible parser (if more than one is present, the

user will be requested to select one). During tool initialization the core determines

the tool dependency and requests potential necessary parameters from the user.

It also informs the model manager about the models it should later store and

which tools are allowed to access or modify which of them. Now the core obtains

a mapping from the parser token set to the internally used meta language token

set and starts the parsing process for the given input. From this point on no

more user interaction is required until the end of the toolchain execution. The

different tools are called consecutively in the user-selected order by the core and

are given their requested models node by node. Depending on their type, they

are not able to modify or access all models stored in the model manager. During

the execution of the toolchain our model manager can cache momentarily unused

models to other media (hard disk or network for example) or swap parts of a

larger model. The different tools can communicate through the annotations they

made in the elements of the models they processed. They cannot call themselves

dynamically to prevent excessive resource consumption.

In this chapter we outline the different parts that make up our framework. Our

goal is allowing tool developers to focus on the algorithmic part of their ideas

and to outsource some of the repetitive activities to our framework. We will

briefly describe the most important aspects of our framework and how they work

together while pointing out some of the challenges we had while designing and

implementing it. Most of the time we follow an object-oriented approach and

make extensive use of design patterns [21] where it is reasonable.

8



2.2 Meta Language STALIN Framework

2.2 Meta Language

We stated before that we would need an universal language as a part of a relieving

framework. STALIN supports such an universal language which we call a meta

language. This meta language must fulfill the following requirements:

• Allow a well-defined transformation back to the input language.

• Preserve exact control flow data.

• Preserve type sizes.

Today there exist many intermediate languages for different environments and

applications. They all share the goal of reducing multiple inputs to one common

language which allows easy processing for special back ends. They are mostly

used in compiler or interpreter specific applications. Examples of such interme-

diate languages include the Common Intermediate Language [22] for the .NET

Framework, Java bytecode [23] for the Java Virtual Machine and the Register

Transfer Language (RTL) [24] for the GNU Compiler Collection. All those in-

termediate languages are feasible in the context of compilation. They are used

to reduce higher level languages to assembly languages and therefore serve their

purpose well. But in the context of program analysis they can be rather use-

less because they do not allow a well-defined transformation back to the input

language as we require. Without this requirement some tasks of program analy-

sis become impossible. For example, imagine you want to develop a tool which

corrects automatically certain runtime errors in program code. If this tool trans-

forms the program code in one of the aforementioned languages and finds runtime

errors there, how do you perform the automated correction? You have to keep
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both models linked at all time and find transformations from the intermediate

language back to all its possible input languages. This would be very tedious and

would certainly prevail the benefits gained through the intermediate language.

There also exist approaches for high level intermediate languages like the C In-

termediate Language (CIL) [13] which also comes with a number of tools for

program analysis. Unfortunately this language supports only ANSI C as input

and possesses a non-modular architecture. Therefore it is out of scope in respect

to modern, object-oriented programming languages. Other high level intermedi-

ate languages are BoogiePL [25] and the ESC/Java intermediate language [26].

They origin directly from the model checking and verification community and as

such they are already known and accepted. BoogiePL is for instance the input

language for Boogie [27], the Spec# [28] static program verifier.

The main reason why using a high level intermediate language is more promising

to us is because we can maintain more information about an input program. This

allows us to preserve the appearance of the original code after a transformation

into the intermediate language and back, and thus allows developers to use tools

based on STALIN on the fly.

To get a better understanding for the inner workings of such transformations

we sought to create an own intermediate language. Instead reducing our input

languages to a language with less instructions we tried to create a union of possible

programming language constructs. We did not finish a formal definition of this

intermediate language as its creation is a very demanding and error-prone task.

This has to be subject to future work and we could as well decide to use or extend

one of the already existing intermediate languages from the model checking and

verification domain.
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However we had to integrate such a language in the architecture of our framework.

This was accomplished by providing an interface for mapping input language

constructs to meta language constructs. Those meta language constructs are

essentially nothing more than a set of tokens taken from the already existing

parsers we have integrated so far. Those tokens will form the basis of a syntax

for the meta language.

We will only outline the idea behind this mapping here while the more technical

details are described in section 2.7.

As STALIN relies on graph based models as working base, it needs methods

to transform an initial program code to such a graph based structure. This is

done by a parser/lexer combination which generates a parse tree [29] or concrete

syntax tree. Normally one would not concern oneself with writing own parser and

lexer; the use of a parser generators is more feasible. Such parser generators, like

ANTLR [30], Coco/R [31] or GOLD [32] produce a parse tree with the grammar

and the tokens of the input language. As we stated before, we do not want to

loose informations about the original language but we also do not want to write

algorithms specific to one single language. To resolve this conflict, we introduce

a mapping overlay over the structure of the parse tree generated by our parser.

STALIN supplies a static TokenMap class which contains every token recognized

by our meta language. An implementation of a parser now needs to specify which

of its tokens corresponds to one of STALIN’s tokens. This relation can be a one

to one mapping but can also contain replacement rules which lead to a one to

many or many to one mapping. This replacement rules are essentially expressed

by lists of tuples containing a list of tokens and a value much like in a regular

expression. STALIN applies those rules on the fly while it traverses the model

11
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structure. This leads to a language-transparent tree structure with nodes that

belong to one of the following three categories:

• Nodes are labeled with a token from the token set of the meta syntax for

one to one relationships. Tools can consult the TokenMap class to look up

the original token.

• Nodes are folded nodes labeled with a token from the token set of the

original language for one to many relationships. While the model structure

is traversed, STALIN unfolds this node automatically and traverses the

contained subgraph as it were the actual model structure. This subgraph

contains only tokens from the token set of the meta syntax. It notifies the

affected tool of this process through a state parameter.

• Nodes are folded nodes labeled with a token from the token set of the meta

syntax for many to one relationships. STALIN does not unfold this node

while traversing the model structure but informs the affected tool that the

supplied node is a folded one thus giving the opportunity to unfold it.

Our approach does neither contain any semantic information beyond the original

input language nor any syntactical rules. The attached parser has to ensure that

the supplied tree is conform to the parsed programming language. It does also

ensure that there is an easy way to replace existing intermediate languages with

different ones through simply adding an additional mapping layer.

STALIN contains in its actual version parser for the programming languages C#,

Java, C and C++. We consider those languages as most important for current

program analysis tools because they contain every aspect of modern imperative

12



2.3 Model STALIN Framework

and object-oriented languages. Future work will include a more closer exami-

nation of those directly attached languages to identify possibly equal semantic

constructs and problem classes for program analysis.

2.3 Model

The capacity to generate and store standardized, graph-based models is one of

STALIN’s main aspects. Every tool needs a model on which it can work, but most

of the time this model is not an important issue for solving a certain problem.

It would be better if you could get one which suits your needs for free. Also,

it is vital to the communication with other tools that you can rely on the same

mechanisms of writing and reading tool-relevant informations as well as be able

to share models between your tools. For this reason we will provide a number of

plugins for creating standard model types like control flow graphs, call graphs,

dependency graphs and the like in the near future.

The foundation of our models, as displayed in figure 2.2 is a carrier structure

consisting of a node and an edge interface, called INode and IEdge. They rep-

resent nodes and edges in all of our data structures. Both of them are derived

from the interface IElement. Enclosed in this interface is the container structure,

represented by the interface IPayload which is described in section 2.3.1. This

structure bears every piece of information of the node or edge. The concrete im-

plementations make excessive use of the proxy pattern to save resources and as

a result every subpart of Payload (which is the largest memory consumer) is not

initialized until first use. Because we try to eliminate the concern for performance

for tool developers we do not allow direct access to our carrier structures. As a

13
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result, any tool that wants to manipulate the structure must use the provided

access layers (see section 2.5.1 for detailed informations). This means essentially

that a tool will only see objects of the type IPayload through a model traversal.

Our model also consists of a class called GraphType. This class describes the

general structure of the model and contains generic informations about the state

of the model and is described in section 2.3.3. Because this class only describes the

structure of a model, it is visible to tools. GraphType is again enclosed in the class

ModelContainer, our container for a single model. It features different search and

access methods for the model and a list of entry points. A ModelContainer object

itself is only accessible from the model manager, which contains all instances of

ModelContainer and is responsible for the space-saving operations with respect

to scalability.

Our architecture emphasizes the decoupling of information and structure. This

gives us the possibility of implementing space or runtime efficient data structures

in the future without performing changes on existing tools. For now, we have

chosen a very simple carrier structure which does not contain any optimization in

our current version of the framework. Because of its simplicity and the intended

transparency for tool developers we do not describe the structure any further in

this work.

2.3.1 IPayload

The interface IPayload contains a two-dimensional hash map which serves as

annotation space for the different tools. Every tool should select a keyword (by

convention the tool name) to reserve a bucket in the first dimension, which yields

14
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+getIncoming() : List<IEdge>
+getOutgoing() : List<IEdge>

«interface»
INode

+getSource() : INode
+getTarget() : INode

«interface»
IEdge

+getType() : Type
+isCyclic() : bool
+isOrdered() : bool
+isDirected() : bool
+isTree() : bool
+isDirty() : bool

GraphType

#findElement(ein UID : StalinUID) : IElement
#getName() : string
#getRoot() : List<INode>
#getType() : GraphType
#getSize() : int
#cleanup() : void

ModelContainer

ModelManager

0..*

1

1
1..1

1..*

+getPayload() : IPayload

«interface»
IElement

+getDepth() : int
+getOutgoingEdgeCount() : int
+getIncomingEdgeCount() : int
+getAnnotations() : Annotations
+getName() : string
+getLocation() : Location
+getID() : StalinUID
+hasAnnotation() : bool
+hasLocation() : bool
+hasID() : bool
+hasName() : bool

«interface»
IPayload

0..1

1..1

Location

StalinUID

0..11

0..11

Annotations

0..11

+AST
+CFG
+DFG
+CG
+CST
+OTHER

«enumeration»
Type

Serializable

Serializable

Serializable

Serializable

Serializable

Serializable

Serializable

Figure 2.2: The model as an UML class diagram.
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the second dimension, a normal hash map in which the tool can store every

information it needs. The whole hash map is persistent during a toolchain exe-

cution, so every following tool or even the same tool, if it performs a multi-pass,

can access and manipulate the informations stored in this map, in particular

those informations stored by other tools. Right now we do not provide any

standardized format for those annotations, but we are currently discussing the

implementation of existing formats in the future (see chapter 4 for more infor-

mation). STALIN does not control the information in the hash map and swaps

only whole IPayload objects, so you gain full control over the information flow

without any access layer. The same concept also applies to whole models, which

are accompanied by a separate IPayload instance contained in the descriptive

class GraphType. Additionally, every payload also contains a label and a number

of structural informations like distance to entry point and the number of in- and

outgoing edges. This can be important for tools with a heuristic approach or

for measuring software metrics. Besides that a tool receives additional structural

information through the callback methods of the IObserver interface which is

part of our access layers. But for now we want to concentrate on the IPayload

interface. The following is an overview of the methods provided by IPayload,

which are accessible for all tools:

• int getDepth()

Provides an integer which describes the distance to the current entry point

of the model. This integer is the sum of nodes and edges of the shortest path

from the current entry point to the node or edge carrying this IPayload.

The current entry point refers to model types with multiple entry points,

see section 2.3.3 for more details.
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• int getOutgoingEdgeCount()

Returns the number of outgoing edges for a node and -1 for an edge. To-

gether with getIncomingEdgeCount() it yields the degree of a node. This

information is computed by our factories and is never negative expect for

edges. If the underlying model is undirected, both methods will return the

same number, namely the count of all edges.

• int getIncomingEdgeCount()

Similar to getIncomingEdgeCount() this method returns the number of

incoming edges for a node and -1 for an edge. If the underlying model is a

tree, every node returns 1 except the root node which returns zero.

• HashMap<String, HashMap<String, Object>> getAnnotations()

This method returns the aforesaid two dimensional hash map for a node

or edge. The method guarantees that the returned hash map is always

initialized and that it is persistent through a toolchain exectuion. The hash

map should be used to store annotations like predicate sets or connections

to other models via their ids. The concrete implementation of this method

follows the proxy pattern for IPayload.

• String getName()

Returns the concrete label of a node or edge. This object will be displayed

through our visualization tools (see section 2.4.3 for a description of those

tools). It should be used for every label provided by a labeling function of

a formal model or for the String representation of a token. If the label is

not set, getName() will return an empty string.

• Location getLocation()
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Provides a Location object which contains informations about the physical

position of the node or edge in the input program. The Location object

is described in section 2.3.2. The method guarantees that the returned

Location object is always initialized and that it is persistent through a

toolchain execution. The Location object is not writable for tools. If

the structure of a model is changed in such a way that a change of the

Location object is implied (for example due to a refactoring operation),

STALIN takes care for the correct changes in the affected Location object.

How this is achieved becomes more clear in the sections 2.3.2 and 2.5.1.

The concrete implementation of this method follows the proxy pattern for

IPayload.

• StalinUID getID()

Returns a StalinUID object, which is essentially a wrapper for a Java UID

object providing comparative methods. The method guarantees that the

returned StalinUID object is always initialized and that it is persistent

through a toolchain execution. Additionally, every assigned StalinUID is

guaranteed to be unique, even after serialization and de-serialization. This

is NOT guaranteed for a string representing the UID (in fact, every Stal-

inUID of a model is recalculated when it gets de-serialized). The StalinUID

object is always read-only, even for STALIN itself. The concrete implemen-

tation of this method follows the proxy pattern for IPayload.

• boolean hasAnnotation()

Due to the implementation of IPayload as proxy, one will always get an

initialized hash map when calling getAnnotations(). If there is no hash

map at that time, IPayload will create an empty one and allocate resources
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during this process. Because many operations need to check if there are

annotations they can process you would jeopardize the suggested meaning

of the proxy pattern if you check if getAnnotations() yields an empty hash

map. On this account hasAnnotation() returns true if the hash map is

already initialized and could therefore contain annotations and false if this

is not the case. Please note that hasAnnotation() will also return true if

the hash map is completely empty but initialized.

• boolean hasLocation()

Similar to hasAnnotations, this method returns true if the Location ob-

ject of IPayload is initialized and false if not.

• boolean hasID()

Similar to hasAnnotations, this method returns true if the StalinUID

object of IPayload is initialized and false if not.

• boolean hasName()

Similar to hasAnnotations, this method returns true if the label of

IPayload is initialized and false if not. Notice that an empty string counts

as an initialized string.

2.3.2 Location

The Location object is enclosed by IPayload and describes the location of the

corresponding element in a concrete file. Namely it contains the absolute path

with regard to the machine and the operating system STALIN is running on,

the package name if any and the line number where the element can be found.
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Normally an ISource plugin (a parser, see section 2.7 for details) sets the initial

location of every node and every edge. Because the output of such a plugin is

typically an abstract syntax tree [29] or a parse tree, many nodes and edges will

be marked with the exactly same Location object. Although this is not optimal

in terms of memory usage, Location still remains a lightweight object consist-

ing of two references and one primitive so that the memory load is negligible.

We argue for its presence with some special cases where we need it and some

general benefits through its usage. Special cases are for example the decoupling

of merged files after you have used a whole project as input or some algorithms

who need locations for their work. The binary reachability argument used by

Terminator [33] for example requires cut points which are calculated with the

help of a location information [34, 35, 36]. General benefits are for example eas-

ier reconstructing of changed input programs or connecting completely different

models with the original source. Also, if you are planning to integrate an IDE

into STALIN or vice versa, it is very useful to keep such an object around.

On the other hand it can be quite difficult to provide the necessary integrity of

a location object. If a tool changes the structure of a parse tree, for example by

inserting additional statements or by transforming complex ones to more simpler,

STALIN needs to decide how it should update the line number. The normal rule

of thumb is to update everything lower or more right than the changed element

in the tree. But since such an operation requires in the worst case a complete

walk through the model it can be a very costly update. Instead, STALIN updates

every location in a model after the execution of one pass of a transforming tool.

We assume for the update convenient formatting rules for source code and update

the Location object accordingly. We do not limit the length of a line, since this
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only serves human readability and we are concerned with practical handling for

tool developers. You can find the descriptions for the tokens used in the rule

listing in appendix A. They belong to our meta language which is described

in section 2.2. The following rule listing describes our assumptions about the

syntactical structure of the source code regarding line numbers. They are applied

if a tool transforms the model structure in a way which needs the update of the

Location object. If the respective tool supplies a location object for an element

we will not perform an update for this element and base further update operations

on this one. This means that this automatic location update will only step in if

the transforming tool does not care for it by itself.

• Every BLOCK consists of one line for the opening bracket and one for the

closing if any. Any statements or expressions contained in the block consist

of at least one line for each.

• Every FIELD consists of one line containing the values for MODI-

FIER, PRIMITIVE TYPE or CLASS TYPE, IDENTIFIER and VARI-

ABLE DECLARATION if any.

• Every METHOD consists of one line containing the values for MODIFIER,

PRIMITIVE TYPE or CLASS TYPE, IDENTIFIER, all PARAMETERS

and additional language specific tokens (such as THROW ), and at least

one line for its block.

• Every ASSIGN is written in one line containing its LEFT HAND SIDE

and ASSIGNMENT EXPRESSION.

• Every FOR consists of one line for the keyword and all declarations, con-

ditions and expressions and at least one line for its block.
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• Every WHILE consists of one line for the keyword and the condition and

at least one line for its block.

• Every EXPRESSION and every STATEMENT not captured by the rules

above consists of one single line.

Please note we do not apply those rules during the parsing process, they are only

used when a tool inserts new statements or transforms existing ones without

declaring a new Location object. Our ProgramNormalizer tool (described in

section 2.4.2) is intended for such situations and removes many of the more

complex expressions and statements and tries to break up nested statements and

expressions.

Nevertheless, there remain some unsolved problems with Location: Most of the

algorithms for model checking do not work on the parse tree and therefore it is

necessary to connect the Location object of the initial model, where we had a

close relation to the Location, to the new, generated models. To achieve this,

we exploit the ordering of a parse tree. Because generating tools must use our

factories to generate new models and because we know the tokens they have seen

in the tree when they call a generative method, we can connect new generated

nodes with old Location objects. For one to one relationships between old and

new model this is sufficient. But we also allow one to many and many to one

relationships. The access layer contains special facilities to aid the generation

of such relationships and their workings as well as the detection of a given rela-

tionship is described in section 2.5.3. They influence the Location object in the

following ways:

• One to many relationships: The Location object of the source model
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is simply referenced in all of the new elements.

• Many to one relationships: The new element is annotated with a

RangedLocation object, which is a decorator for Location and contains

collections for each field in Location. It retains all informations of the orig-

inal Location objects and saves them in a collection consisting of triples of

filenames, packages and a list of line numbers ordered by their appearance

in the original model. It also saves the Location object where the gener-

ative method was called first and returns those values if accessed with the

base class methods.

2.3.3 Supported Model Types

Program analysis is typically carried out on graph based data structures and

therefore STALIN needs to support and distinguish numerous graph based mod-

els. The discrimination turned out to be more demanding in terms of implementa-

tion than expected. Because we also allow partial transformations on an existing

model which change their type, it was necessary to abandon some principles of

object-oriented programming to achieve maximal flexibility. Normally one would

construct an object hierarchy to represent the different graph types. This would

be for example, a graph object on top and derived from it directed and undirected

graphs, which are superclasses to trees and undirected multigraphs and so on.

The type of the graph with regard to graph theory would be inherent to the type

of the underlying data structure. But problems arise if a change occurs to this

structure that changes its inherent meaning. If, for example, a tool transforms a

subtree of a tree structure through inserting a cyclic edge then the tree would be-
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come a graph. Therefore, the type of the structure has to change, and not only in

the subtree but in the whole model. We cannot solve this through a consolidation

run at the end of the tool execution, because the current tree invariant forbids this

transformation, so we have to change the whole model structure when the first

tool operation violates the tree invariant. This operation is costly as it requires

a rebuild of the whole structure, and thus we want to avoid it if possible. The

solution is to separate the discriminating property of the model from the data

structure and use a descriptive object for each model. This descriptive object is

called GraphType and contains all discriminating informations. It uses numerous

flags for the different attributes of a graph like cyclic, directed, multigraph and

so on. Besides graph discrimination it is also used for some semantic informa-

tions that do not fit elsewhere like the order of the model or the finite property.

For standardized models and easier access it also maintains an enumeration for

common names of models and if not applicable a field for a custom name. The

following list gives you an overview of the contained graph properties and the

common names contained in the enumeration:

• Properties

– IsOrdered describes if the ordering of the nodes and edges of the model

serve a purpose or if they are arbitrary.

– IsDirected distinguishes between directed and undirected graphs.

– IsCyclic distinguishes between cyclic and acyclic graphs. Note that we

do not guarantee that a model contains cycles if this property is true.

It can also mean that we do not know if the model contains cycles.

– IsMultigraph denotes that the graph is a multigraph, which means that
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it can have multiple edges between two nodes or multiple loops on one

node if it is also cyclic. Note that we do not guarantee that the model

contains multiple edges between two nodes or loops on one node if this

property is true. It can also mean that we do not know if the model

contains multiple edges between a node or loops on one node.

– IsFinite marks the model as finite. If the model is marked infinite it

can contain folded nodes which may contain themselves in a subgraph.

Those cycles are unfolded while the model is traversed and can lead

to an infinite sequence. Unfolded nodes are described in section 2.3.4.

Note that we do not guarantee that the model is actually infinite when

the property is false. It can also mean we do not know if it is finite.

• Common Names

The properties used in this list refer to the STALIN properties with respect

to their guarantees.

– AST stands for abstract syntax tree. An AST is a finite and unordered

tree.

– CG stands for call graph. A CG is a finite, directed, cyclic and un-

ordered graph.

– CFG stands for control flow graph. A CFG is a finite, directed, cyclic

and unordered multigraph.

– DFG stands for data flow graph. A data flow graph is a finite, directed

acyclic and unordered graph.

– CST stands for concrete syntax tree (also known as parse tree [29]).

A CST is a finite and ordered tree.
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– TS stands for transition system. A TS is a possibly infinite, directed,

cyclic and unordered multigraph.

– PG stands for program graph. A PG is a finite, directed, cyclic and

unordered multigraph.

– The keyword OTHER denotes that the current model is not one of

the common models but a special one. If the OTHER keyword is set,

you can obtain the name of the model (chosen by the model creator

tool) by calling the getName() method of the GraphType object.

The following restrictions apply to our models:

• We do not support unconnected graphs in one graph structure. Every

element of a graph structure must be reachable from one of the entry points

of the model or it will be discarded. If you need unconnected graphs you

will have to specify multiple entry points to your model and indicate their

membership to another entry point in the annotations. We do allow not

strongly connected directed graphs but there are some limitations while

traversing them. The limitations are described in detail in section 2.5.1.

• Although we recognize possibly infinite data structures STALIN we do not

guarantee termination on them. More precisely, if, for example, a transition

system unrolls an infinite loop, STALIN will not terminate until the active

tool sends a skip message or the system runs out of memory. You have to

take that into account if you want to work on a possibly infinite model.

• STALIN does not support mixed graphs (graphs which contain directed

and undirected edges).
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• STALIN does not support hypergraphs (graphs where edges can have edges

or ”crossings”).

• STALIN does not support loose edges, that is edges which have only one

node attached to one of their endings.

• STALIN does not support null graphs or empty graphs. Every model must

have at least one entry point or it will be discarded.

2.3.4 Folded Nodes

Folded nodes are a special case in our data structure. To enable support for in-

finite models and for certain lazy approaches we had to find a way of preventing

STALIN of computing complete models in every pass. Folded nodes appear as

normal nodes with adjacent edges in a model. But they also contain complete

subgraphs or methods to inline subgraphs in an existing graph. The interface

IFoldedNode is derived from the interface INode and extends INode with the

getUnfoldedNode() method. This method returns the entry point to the con-

tained subgraph. Every subgraph described by a folded node can have only one

entry point. This is no real limitation because one can use several folded nodes

to obtain multiple entry points for folded nodes. Nevertheless the implementa-

tion of the getUnfoldedNode() requires some care taking from a tool developer,

because the exit points of the contained subgraph have to be specified. One has

to explicitly connect the desired exit nodes to the outgoing edges of the folded

node while bearing in mind that every adjacent edge of the folded node must be

used as adjacent edge for the contained subgraph. You should also consider that

it is possible to change the breadth-first order of the graph if there is more than
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one exit node, that is a node with adjacent edges to nodes outside the subgraph.

In figure 2.3 you can see the different breadth-first orders resulting from multiple

exit nodes. You will notice that the original nodes 3 and 4 are now the nodes 7

and 6. Their order has been reversed.

2

2

2

1

2

43

2

1/1

2

-/4-/3

-/2

4/6-/5

3/7

Figure 2.3: The left graph contains a folded node marked red, the right graph
shows the same graph with the node unfolded. The original breadth-first order
is the first number inside a node, the new order is the second.

When STALIN meets a folded node while traversing a graph, it asks the current

tool what to do with it using a callback method. The tool can choose to unfold

the node, to treat it as a normal node of the model or to access its unfolding rules

or the contained subgraph. If it unfolds the subgraph the traversal is continued

on the resulting new graph obeying the resulting traversal order. If the subgraph

contains another folded node (possibly the same for infinite recursion) STALIN
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will ask again if it should unfold the node or not. More information on the

traversal of folded nodes can be found in section 2.5.1.

2.3.5 Model Manager

Until now we did not mention the inside workings of the model manager at all.

His part is an important one, but as we address mainly tool developers it is not

necessary to explain those workings in detail because it is sufficient to view it

as a black box. Also, this part of the framework is currently undergoing rapid

changes because it serves as abstraction layer between the STALIN core and the

actual model representation. Therefore we do not explain the technical details of

the model manager but give instead an overview of his tasks in STALIN.

The STALIN model manager has many roles: First of all, it holds all models

present at runtime. It keeps track of the size of a model and decides if and when

parts of it should be serialized. Second, it provides a variety of access methods to

its models for the core. Third it provides static search functions for interactive

tools. Those search functions are explained in section 2.5.2.

As we described before, the model manager encapsulates together with the fac-

tories the concrete implementation of our model structure. It is responsible for

the access to those structures through the walkers. Every model forms through

the class ModelContainer an entity which can be partly or as a whole serialized.

The model manager utilizes this ability to cache the models dynamically through

an attached ISerializationPlugin which you can see in figure 2.4. The inter-

face provides methods for serializing and deserializing models or parts of it. The

implementations of this serialization plugins decide on their own where or how
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they store the received data.

The memory manager has different caching strategies based on the expected

runtime for an traversal, the expected size of new models, the expected number

of new models and the available memory. The model manager calculates the

dependencies between the different tools contained in the toolchain based on the

requested and needed models. The following caching strategies are currently

implemented:

• If the expected size of all models together does not exceed the available

memory there is no need to serialize a model. The model manager will

keep every model in the memory and updates the calculation after every

tool execution.

• When the expected size of all models exceeds the available memory, the

model manager tries to serialize those models which will not be used any-

more in the toolchain. If every model will be used, the model manager

serializes the model which will be used last.

• Until a model reaches a size greater than a threshold value (a percentage

of the total available memory) it is always serialized as a whole. Models

greater than this threshold may be serialized partly while STALIN traverses

them. Especially if a single model is larger than the available memory, parts

of it may be serialized. The methods to partition the model are part of the

serialization plugins.
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2.4 Tools

In this section we describe the different plugin interfaces, their structure and

how they are used to build a toolchain. Also we explain the categories and their

associated interfaces which we use to divide tools based on their functionality.

Because every STALIN plugin is also an Eclipse RCP plugin we will give a short

introduction how you can connect a tool to the RCP extension points provided

by STALIN using Eclipse and PDE [37].

First, consider figure 2.4: As you can see, the interface IRCPPlugin is the root of

our inheritance hierarchy. It supplies the plugins with the methods getName(),

getPluginID() and init(). As the name of the method getName() suggests,

it provides a name for every plugin. This name is displayed in various dialogs

and has no other influence on the framework. Different from that, the method

getPluginID() is used to separate plugins from each other. This method should

return an unique ID for each plugin loaded by STALIN and the same as used

by the Eclipse RCP framework. The init() method is called by the STALIN

core after it has loaded a plugin through the Eclipse RCP. The core itself does

not implement this interface as he is the main application of the STALIN frame-

work and thus loaded directly by the RCP classloader. He contributes to the

org.eclipse.core.runtime.applications extension point provided by RCP.

Derived from IRCPPlugin are four other interfaces, namely ILogDisplayPlugin,

ISerializationPlugin, IStalinPlugin and IControllerPlugin. We will only

discuss the function of the IStalinPlugin interface here, as the others are already

covered in other sections. For the IControllerPlugin and ILogDisplayPlugin

interfaces refer to section 2.6 while the ISerializationPlugin interface is de-
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+setTokenMap(ein map : TokenMap)
+getQueryKeyword() : QueryKeyword
+getDesiredToolID() : List<String>
+setInputDefinition(ein type : GraphType)
+getObservers() : List<IObserver>

«interface»
ITool

+getName() : String
+getPluginID() : String
+init() : int

«interface»
IRCPPlugin

+selectModels(ein modelNames : List<String>) : List<String>
+selectParser(ein parser : Collection<ISource>) : ISource
+selectTools(ein tools : List<ITool>) : List<ITool>
+setProgress(ein progress : int)

«interface»
IControllerPlugin

+serialize(ein model : ModelContainer) : StalinUID
+serialize(ein element : IElement) : StalinUID
+deserializeModel(ein id : StalinUID) : ModelContainer
+deserializeElement(ein id : StalinUID) : IElement
+getAvailableSpace() : int

«interface»
ISerializationPlugin

«interface»
IStalinPlugin

+write(ein line : String)
+clear()

«interface»
ILogDisplayPlugin

+getOutputDefinition() : GraphType
+setFactory(ein factory : AbstractModelFactory)

«interface»
IModifyingTool

«interface»
IAnalysis

+getModel() : ModelContainer

«interface»
IGenerator

«interface»
IOutput

+getFileTypes() : List<String>
+getOutputDefinition() : GraphType
+getTokenMap() : TokenMap
+parseable(ein file : File) : bool
+parseable(ein files : List<File>) : List<File>
+parse(ein file : File) : INode
+parse(ein files : List<File>) : INode

«interface»
ISource

Figure 2.4: The different plugin interfaces as an UML class diagram.
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scribed in section 2.3.5. IStalinPlugin itself does not add any methods to our

plugins but instead classifies external contributions. Derived from it are the in-

terfaces ITool and ISource. We do not mention the ISource interface here any

further as it does not define a tool in the sense of our framework. It declares

parser which can, of course, also be supplied by a tool developer. Why this is

separated from our understanding of tools and what its inner workings are is

discussed in section 2.7.

Our focus in this section lies on the ITool interface and its methods. Every plugin

considered a tool by our philosophy implements ITool through one of his derived

interfaces. A tool is by our understanding a part of code which consumes a present

model, works on it and produces some sort of output. STALIN provides in this

context the model and different ways to process the produced output. Regardless

of what the work of a tool is, it does it by providing algorithms. Those algorithms

have to be supplied to STALIN with minimal effort and maximal freedom for the

tool developer. Because an algorithm deals with work in a step-by-step fashion, it

is only natural to want something to do the single steps for one. There is no need

to program traversal operations through a model, because certain standardized

methods cover every possible traversal. STALIN provides those standardized

methods and some more; they are described in section 2.5. The development

of an algorithm to solve a certain problem is to our belief the core of every

computer science researcher’s work. Hence we want to eliminate the need of

implementing unnecessary infrastructure components for a tool developer. One

should be able to implement an algorithm like one would present it as pseudo

code, as sequential and imperative structure. We apply the observer pattern to

separate the implementation of the algorithm from the infrastructure tasks. This
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application and the requirements for an ITool implementation as well as the

intended usages of its methods are described in section 2.5.

The tool concept alone is too generic to handle all possible scenarios of tool

applications with STALIN. We needed a way to express differences between tools

and decided to categorize them into three groups:

• The model-generating tools represented by the IGenerator interface and

referred to as ”‘generators”’. They cannot change the structure of the model

they are working on but generate new models as output.

• Tools that do not generate a new model but can change the structure of

the model they are working on are called analysis tools and represented by

the IAnalysis interface.

• Tools that neither change the structure of the model they are working on

nor produce new models as output are represented by the IOutput interface

and referred to as output tools.

We choose those categories based on the operations which would be possible for

each. The separating criterions are operations which change the model structure

and the creation of new models. As both operation classes are very costly to

maintain, we do not want to provide support for them if it is not strictly necessary.

Note that although only analysis tools can change the structure of a model, every

tool can modify the annotations of every element of a model. The execution of

those tool is organized by a toolchain. A toolchain is a set of tools selected by the

user. This set is ordered by the user, but this order is not necessarily respected

by STALIN. If it is possible, STALIN will rearrange the execution of the tools
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to provide a minimal memory footprint. STALIN tries to discard intermediate

models whenever possible. Also, it tries to keep caching operations to a minimum.

It does so through carefully evaluating the input and output definitions as well

as the model requests provided by each tool. Those mechanisms are described in

section 2.5 for tools and in section 2.3.5 for STALIN.

A toolchain execution is always a sequential execution of the contained tools.

We do neither support nor encourage the alternating execution of tools. The

reason behind this philosophy is again an efficient memory management and

more controll over the resource allocation of single tools. We simply could not

fulfill our goals if we would allow alternating calls, because they would lead to

an unpredictable behavior of toolchains and thus to an unpredictable resource

usage. Therefore we need to recognize some currently unresolved challenges in our

approach. Many newer tools in the program analysis domain make extensive use

of lazy approaches [38,39] to solve particular problems more efficiently. Although

our current implementation supports the use of lazy techniques inside a single

tool, it does not support those lazy approaches between multiple tools. The main

reason for this is that we have right now no no feasible way of looping a toolchain

or parts of it for an indefinite time. This restriction is subject to future work and

possible solutions will be discussed in chapter 4.

The next subsections will contain a brief introduction to the three tool categories

and their intended usage. They also contain some examples for tools from the

respecting category and their workings. Because we discuss the inner workings

of the different methods for accessing and generating models in the section 2.5,

this section will only give a brief overview of the mechanisms involved. It should

be sufficient to understand the principles behind it, but for a more technical
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description refer to the section stated before.

2.4.1 Generators

The Generators category consist of tools which generate one or more new models.

They have to implement the IGenerator interface which supplies a number of

methods to aid this process. Generators have to state what kind of model struc-

ture they will generate by implementing the getOutputDefinition() method

provided by the IModifyingTool interface. They receive an appropriate factory

for creating the model they have specified through their output definition by the

method setFactory(...). After their execution, the core retrieves the created

model through the getModel() method. The use of a callback method may seem

odd at this point because STALIN oversees the creation process through the

provided factories. But this method is needed to separate intermediate model

formats from the actual model as one will see in section 2.5.3. Note that re-

gardless of how many observers a generator tool provides, it can only contribute

one new model to STALIN. This is done to encourage the separation of tools

into smaller chunks. It should serve reusability and maintainability of the related

code. Note that this does not restrict the numbers of graphs per model. Besides

the stated methods there are no more differences to the general tool execution

procedure.

At the present time there exists no final version of a tool from this category,

but we are working on different ones which will create standardized models for

STALIN. The responsible maintainer and lead developer for the following tools

is Daniel Dietsch:
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• CSTtoCFG: This generator creates an control flow graph (also known as

flow graph [29]) from a concrete syntax tree. It takes besides an arbitrary

CST a list of entry methods and constructs a CFG for every entry point in

the list. Unresolvable calls, like system calls or library calls, are treated as

atomic block in the control flow graph.

• CSTtoDFG: This generator creates a data flow graph [40,41] from a con-

crete syntax tree. The data flow graph can be used to recognize stereotyp-

ical patterns in program code and is subject to future work.

• CSTtoTS: This generator creates a finite transition system [42] from a

concrete syntax tree. It uses folded nodes to obtain a finite model of an

arbitrary input program. Unresolvable calls are treated as atomic block in

the transition system.

2.4.2 Analysis Tools

Analysis tools can change the structure of a model but do not generate a

new one. As such, they fulfill the interface IAnalysis which is derived from

IModifiyingTool. The IAnalysis interface does not contain any method but

serves instead as a discriminator. Only analysis tools are allowed to change

existing model structures. This restriction ensures a stricter separation and en-

capsulation of involved algorithms. In contrast to the generator tools they are

allowed to change multiple models as long as they are matching their respective

model selection criteria.

Like for the generator category, there are currently no final tools available for this
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category. The following ones belong to this category and are under development:

• ProgramNormalizer: The ProgramNormalizer provides methods for syn-

tactical transforming complex, language specific constructs in concrete syn-

tax trees into simpler ones. Similar to CIL’s program transformation, it tries

to minimize a given input in such a way that it contains as few different

constructs as possible. It does so by

– transforming different loops to while{true} loops with explicit break

statements,

– transforming postfix operators to infix,

– lifting all local variables to globals,

– renaming every method and variable unique,

– separating mixed assignment and declaration statements,

– transforming all assignments which contain mixed expressions (like

arithmetic operations mixed with function calls) to separate ones,

– making references to different name spaces explicit.

The tool is completely configurable, which means that every feature can be

turned on or off. The development and maintenance of ProgramNormalizer

is led by Justus Bisser.

• StaticSlicer: The StaticSlicer can generate static forward and backward

slices [43] of arbitrary input programs. It relies on the data flow graph

generated by CSTtoDFG. In doing so, it can produce two types of output:

First, it can rely solely on the DFG and compute the program slice in a

supported language while ignoring the original control flow up to semantic
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equivalence. Second, it can take the preceding CST as additional input

and produce a program slice with equal control flow in the original input

language. The development and maintenance of StaticSlicer is led by Daniel

Dietsch.

• ATCML: The Automatic Termination Checker for Multiple Languages

is a re-implementation of the existing Terminator tool which proves termi-

nation of C programs. The goal of this tool is to extend the set of input

languages for Terminator with Java and possibly other languages. The

development and maintenance of ATCML is led by Evren Ermis.

2.4.3 Output Tools

Output tools can neither change the model structure nor generate new models.

Their intended usage includes pretty printers, file writers and input creation.

Their interface IOutput does not any method to the ITool interface and thus

they are the simplest tool category.

The following tools belong to this category, and except for JavaOut their devel-

opment is beyond the beta stage:

• Graphview2D: This tool visualizes an arbitrary model structures with

parts of its payload in 2D. It uses the Grappa library [44] in conjunction

with system calls to the Graphviz tool dot [45]. It supports the following

features:

– displays every model structure supported by STALIN.
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– shows the complete payload for a selected element of the model in a

separate RCP view.

– can export dot files which represent a given model structure.

– supports export to gif, jpg, svg and ps.

– every feature supported by Grappa like zooming, panning, selections,

etc.

– customizable colors for different token groups.

This tool was one of the early tools for STALIN and thus made it through

various iterations of the framework. It has seen many architecture changes

and thus suffers from scruffy programming and cluttered documentation.

Currently, PrefuseVisualization is catching up with it and will hopefully

replace it soon. The development and maintenance of Graphview2D is led

by Daniel Dietsch.

• PrefuseVisualization: The PrefuseVisualization tool displays analogue to

Graphview2D an arbitrary model structure with parts of its payload in 2D.

It uses the Prefuse toolkit [46] to achieve this without utilizing system calls.

PrefuseVisualization is considerably faster than Graphview2D and scales

better. Nevertheless, it lacks some of the export features of Graphview2D

and thus it is not superior to his older brother. It supports the following

features:

– displays every model structure supported by STALIN.

– shows the complete payload for a selected element of the model in a

separate RCP view.
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– provides different layout styles (horizontal, vertical and circular

spreading).

– allows expanding and folding of model structures in some layouts.

– calculates only the visible part of the visualization and thus scales

much better.

– supports zooming, panning, selection, moving of elements, etc.

– customizable colors for different token groups.

– customizable font families, styles and sizes for every element.

– customizable general color schemes.

The development of PrefuseVizualization was led by Roman Matthias Keil.

The ongoing development and maintenance positions are currently vacant

and are in the meantime taken by Daniel Dietsch.

• ConsoleOut: ConsoleOut prints tree model structures to a console. It can

also print the complete payload of every element. It will send its output to

any attached IILogDisplayPlugin instance (see section 2.6 for a descrip-

tion). Currently, we do not support the output of other structures than

trees with this tool. The development and maintenance of ConsoleOut is

led by Daniel Dietsch.

• JavaOut: The JavaOut output tool is designed to convert an arbitrary

input language to Java 6 code while preserving semantic equivalence be-

tween the programs. It depends on the ProgramNormalizer tool to reduce

complex language constructs. It cannot translate calls to external libraries,

especially it can currently not translate framework based methods or types.

To some extend this will be possible through simple mapping operations.
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We currently do not know if there exist feasible transitions between all Java

and .NET language elements and framework features. The IKVM.NET [47]

project could provide a good solution which has yet to be evaluated. Other,

currently only partly solved challenges are the transitions from languages

supporting pointers, using explicit memory allocation or multiple inheri-

tance like C and C++. The development and maintenance of JavaOut is

led by Justus Bisser.

2.4.4 Extension Points

This subsection completes our overview over the different tool categories with

some informations about the RCP extension points and their usage in STALIN.

For more detailed information about RCP refer to [18,16].

The STALIN core propagates RCP extension points to provide loose coupling

between the different components of our architecture. Extension points are an

integral concept for the RCP framework. They are provided by the OSGi speci-

fication [48] which servers as component model for the Eclipse RCP framework.

Every contribution or extension of RCP through new code, like STALIN, must

dock to an existing extension point and can provide own extension points. A de-

clared extension point consists of an entry in the plugin.xml of the providing class

(in our case the core) with a reference to a schema file. This schema file contains

informations and constraints for each extension point. This includes descriptions

and names as well as which interfaces have to be present in an implementing

class. We use those constraints to expose our interfaces to tool developers. Fur-

thermore, we receive some useful benefits from the extension point mechanism
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like lazy loading and better scalability for a large plugin base. We defined so far

seven different extension points for STALIN. They are bundled in the package

local.stalin.ep and use equally named schema definition files. You can see

their binding with our interfaces in table 2.1.

Extension point ID Required interface

local.stalin.ep.analysis IAnalysis

local.stalin.ep.generator IGenerator

local.stalin.ep.source ISource

local.stalin.ep.output IOutput

local.stalin.ep.logdisplay ILogDisplayPlugin

local.stalin.ep.controller IControllerPlugin

local.stalin.ep.serialization ISerializationPlugin

Table 2.1: Relation between extension points and plugin interfaces

2.5 Access Layer

In this section we give details of the access methods that complement our model

structure from section 2.3. During the design process we found that there is a con-

flict between maximal interoperability among tools and providing efficient data

structures. The toolchain idea seems to limit some aspects of direct collaboration

among tools like mutual calling, lazy approaches and multi-pass algorithms. In

our approach the access methods compensate for this conflict and retain a prefer-

ably optimal balance. At the same time it provides easy access to our models.

We will start with a short overview of the access layer structure and then describe

the chosen methods with their problems and benefits.
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Figure 2.5: The access layer as UML class diagram.
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2.5.1 Traversing Models

Figure 2.5 shows the class structure of our access layer. The central class is called

PluginConnector. This class connects each tool with the core and handles the

selection of the appropriate IWalker implementation (referred to as walker). The

order of the tool execution is controlled by the core while PluginConnector per-

forms the execution for each tool. This is done by initializing a PluginConnector

with references to the tool in question, the current model manager and the cur-

rent UI controller. The controller is only used for displaying error messages and

selection dialogs. Its workings are described in section 2.6. The core calls then

the run() method of the PluginConnector to start the tool execution. After-

wards, PluginConnector calls the getQueryKeywords() method of its tool to

decide which model should be used for this tool. It receives one of the following

elements of QueryKeyword and acts accordingly:

• ALL: This keyword tells the PluginConnector to use the tool on all present

models. PluginConnector will execute the tool for each model provided

by the model manager in the ascending order of their modification or cre-

ation. If this keyword is given, STALIN will obey the execution order of the

toolchain with respect to the current tool. It will execute every tool before

the current tool in an arbitrary order but guarantees that every previous

tool has finished its execution before calling the current one.

• USER: The PluginConnector will open a dialog through the supplied UI

controller and present all available models to the user. The user can then

select one or more models from the list on which the PluginConnector will

execute its tool in the order of the selection.
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• LAST : The PluginConnector will execute its tool on the model which was

created or modified last. If this keyword is selected STALIN will obey the

execution order of the toolchain with respect to the current tool. It will

guarantee that the delivered model is the model created or modified last in

the order of the toolchain.

• SOURCE : The PluginConnector will execute its tool on all models created

by ISource plugins (see section 2.7 for a definition of ISource). If there are

multiple, the criterion matching models present the tool will be executed

on them in the ascending order of their modification or creation.

• TOOL: If the TOOL keyword is specified, the PluginConnector will call

the ITool method getDesiredToolID(). This method should return a list

of tool IDs which specify other tools which create or modify models and are

present in the toolchain. The PluginConnector will then execute its tool

on those models in the order given by the tool ID list. If a tool from the

list has created or modified multiple models then they will be processed in

ascending order of their modification or creation. STALIN will ignore any

tool on the tool ID list if they are not in the toolchain.

The PluginConnector will throw an exception if the criterions supplied by those

keywords lead to an empty set of models.

After the determination of the input models for the tools the PluginConnector

calls the ITool method getObservers(). The method returns a list of

IObserver instances. We call such an instance of IObserver just observer.

Those observers are the workhorses of each STALIN tool. They contain a

WalkerOptionContainer object which specifies the traversal modalities and con-
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tains callback methods for different modes. For each observer this object is re-

trieved by the PluginConnector who in return initializes the appropriate walker

and links the observer to it. Which walker is selected depends upon the keywords

returned by the getTraversalMode() and getExpansionMode() methods. First,

the getTraversalMode() method is called and returns a keyword which deter-

mines the traversal mode. We currently support three different modes:

• DFS : The DFS mode uses a depth-first search to traverse the model struc-

ture.

• BFS : The BFS mode uses a breadth-first search to traverse the model

structure.

• PRIORITY : The priority mode uses a priority function to examine the pay-

load of elements of the model structure before they are explored. This prior-

ity function has to be provided by the priorityFunction(...) method. It

has to assign every explorable model element an integer value. Explorable

model elements are those that are adjacent to the last explored element

that does not already has an assigned value. STALIN will then explore the

element with the smallest value. If multiple elements share the smallest

value, STALIN explores the one who has received his value first.

Only one of those modes can be active in one traversal. After the traversal

mode has been set, the PluginConnector determines the expansion mode with

the keyword combination returned by the getExpansionMode() method. This

setting determines if STALIN performs a nested traversal or not. Again, there

are currently three different keywords:
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• ALL: The ALL mode is the default expansion mode. STALIN explores every

element of the model structure and does not perform a nested traversal.

• MATCH TOKEN : The match-token mode allows to control which elements

of a model are presented to the observer. The matchToken(...) method is

used to decide this. It takes a String representation of the current element’s

token as input and returns a boolean value. STALIN performs a traversal

of the model according to the traversal mode determined before. It applies

the method to every element label on its way and presents an element to the

observer if the method returns true. We refer to this traversal as the outer

traversal. After finding an element, STALIN starts a new traversal called

inner traversal. Again, this traversal is determined by the current traversal

mode. The element which led to the invocation of the inner traversal is

called the transit element.

• MATCH PAYLOAD :The match-payload mode works similar to the match-

token mode. The only difference is the method used to decide if an element

matches or not. This mode uses the matchPayload(...) method which

receives instead the token of an element the whole payload.

There is more to the two modes match-token and match-payload. They both

perform a nested traversal of the model structure and have therefore a different

behavior. First, if one of the decision criteria of an element is not present (i.e. if

the payload or the label of an element is null), STALIN assumes that it does not

match and continues its search. Second, the transit element is presented twice to

the observer. This is done to enable the steering of the outer traversal through

a tool. We explain the workings of this special case in this section after we have

described the general traversal steering facilities of our observers.
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The IObserver interface provides five methods. We have already described

the getWalkerOptions() method which returns the WalkerOptionContainer

instance. Before an observer is executed through a walker, STALIN calls the

init() method of the observer. Similar, after the execution is finished, the

finish() method is called. STALIN does not require those methods, but start

and end notifications are useful to prepare the observer with precomputed infor-

mations in a multi pass algorithm or to consolidate the processed informations

after a completed traversal and before the final output is requested. The essential

method of each observer is the process(...) method. A currently active walker

calls this method of the attached observer and supplies it with its current state

as well as the payload of the current element. The method delivers in return a

keyword which steers the traversal of the model structure. This keyword is called

a walker command. The following commands are available to all tool categories:

• SKIP informs the walker that it should not expand the subgraph of the

current element. This command refers in an undirected graph to the un-

explored part of the graph reachable only from the current element. This

command cannot be combined with the DESCEND command.

• DESCEND informs the walker that it should continue its descend into

the graph structure. This command cannot be combined with the SKIP

command.

• UNFOLD requests the unfolding of an folded node. The walker supplies

the element which would be the next in the model with the unfolded graph

present in the next step. This command is only valid if the state of the

walker is FOLDED.
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• MARK tells the walker to mark the current element. After processing the

subgraph of the current element, the walker will switch into the MARK

state and present this element again. There can be multiple MARK oper-

ations before the walker switches to this state. In this case the elements

are presented in the order they were marked. This command cannot be

combined with the REMOVE ELEMENT or the REMOVE SUBGRAPH

commands.

Our analysis tools need a way to change the structure of a given model. Therefore

we have some additional keywords available for them:

• INSERT ELEMENT instructs the walker to call the getElement() method

of the observer. The method returns an element, which is inserted into

the model structure as unexplored, adjacent element of the current one.

The position is determined by the return value of the observer method

getPosition(). This position is relative to the depth-first search order.

This command cannot be combined with one of the other structural chang-

ing commands.

• REPLACE ELEMENT instructs the walker to replace only the current el-

ement but not its connections to other elements. Again the walker calls the

getElement() method to receive the substitute for the current element.

The new element can be the entry point for a subgraph, and in this case

the getPosition() method determines where the new connections are in-

serted. This command cannot be combined with one of the other structural

changing commands.
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• REMOVE ELEMENT instructs the walker to remove only the current el-

ement. Its connections are attached to an adjacent element determined by

the getPosition() method with respect to the current search order. This

command cannot be combined with one of the other structural changing

commands.

• REPLACE SUBGRAPH is similar to the REPLACE ELEMENT com-

mand. But instead of preserving it discards the connections of the cur-

rent element. This command cannot be combined with one of the other

structural changing commands.

• REMOVE SUBGRAPH is similar to the REMOVE ELEMENT. But in-

stead of removing only the current element, it removes the current element

and its complete subgraph. In an undirected graph the subgraph is the un-

explored part of the graph reachable only from the current element. This

command cannot be combined with one of the other structural changing

commands.

STALIN will throw an InvalidCommandException if those commands are sup-

plied by a tool from one of the other categories. The commands can be mixed

if they are not contradictory. For example, a combination of the skip and

the descent command makes no sense and consequently, STALIN will throw an

InvalidCommandException if this combination is actually used.

The structural commands can result in a situation where the replacement for a

node is requested but instead an edge is delivered. If this is the case, STALIN

will throw an InvalidElementException. A tool developer can determine if the

needed element is an edge or an node by calling the getIncomingEdgeCount()

method of the current payload .

51



2.5 Access Layer STALIN Framework

The walker commands are one aspect of the traversal control provided by

STALIN. The other aspect is the state of the walker which is also supplied with

every call to the process(...) method. They signal important changes in the

model structure which are otherwise not noticeable by the observers. The follow-

ing commands can be received from a walker:

• The INNER state can occur if a expansion mode with nested search was

selected. The state tells the observer that the walker presents a transit

element and performs the inner search. This indicates that the returned

walker command will refer to the inner search. This state can be combined

with one of the other states except OUTER.

• The OUTER state can occur if a expansion mode with nested search was

selected. The state tells the observer that the walker presents a transit

element and performs the outer search. This indicates that the returned

walker command will refer to the outer search. This state can be combined

with one of the other states except INNER.

• The MARK state notifies the observer that the current element is an pre-

viously marked element. This also indicates that the element was already

seen and that the exploration of its subgraph is complete. This state can

be combined with one of the other states.

• The UNFOLDED state informs the observer that the current element re-

sults from the unfolding of an previously encountered, folded node. This

state can be combined with one of the other states.

• The FOLDED state informs the observer that the current element is a

folded node. The observer can now respond with the UNFOLD command.
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This state can be combined with one of the other states.

• The EXPLORE state is the normal state. It is used in absence of every

other state.

Now we are aware of the different traversal steering methods STALIN provides.

While it is clear how we can control one traversal through the return values of

the observer, this is not the case for a nested traversal. This is the reason why we

present the transit element in an nested traversal twice to the observer. First it is

presented with the outer and second with the inner state keyword. Now tools can

respond to the outer traversal with a skip or a descent command. The descent

command will tell STALIN to proceed the outer traversal into the unexplored

model part adjacent to the transit element while the skip keyword prevents it.

Note that there exist only those two options regardless of the category a tool

belongs to. If another keyword is presented while the walker is in the outer state,

STALIN will throw an InvalidCommandException. The second presentation in

the inner state works then completely normal.

The interaction between command and state keywords now allows a differenti-

ated control of the model traversal. We are able to repeat paths through the

model, modify the model structure or switch between the input language and the

meta language. Nevertheless there are some missing components for tools which

require interactive access to a model. Some of our output tools like Graphview2D

and PrefuseVisualization use selections on the displayed model to show extended

informations, namely the payload of an model element. Because they cannot

access the model structure as they want we had to supply methods to search in

the model for certain elements. This is discussed in the next section.
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2.5.2 Searching for Model Elements

Tools with the need for interactive access to the model structure like editors or

visualizations can use the different search methods statically provided by the

model manager. The search methods return the payload of a certain model

element or initiate a traversal starting from an arbitrary entry point of the model.

Because those access methods are strictly for interactive use there are certain

restrictions in effect. First of all, a tool can only access those methods when

there is no toolchain execution in progress. Second, a traversal of a model is

always a blocking operation, that means that no other operation can be executed

until this traversal is complete. Finally, the restrictions implied through the tool

categories sustain.

Because there is no possibility that a tool can execute an operation outside a

toolchain those methods can only be accessed through user interaction. This

means that a tool has to add controls to the RCP UI extension points which

then can in return access the search methods of the model manager. The model

manager provides the following access methods:

• List<GraphType> getModels()

The method returns a list of GraphType objects which represent the cur-

rently available models. The list contains only the models which comply

to the tool’s model selection. If there is no such model, an empty list is

returned.

• IPayload search(GraphType model, StalinUID uid)

The method returns the payload of the element of the specified model that

has the specified UID. If there is no such element, null is returned.
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• List<IPayload> search(GraphType model,

String outerKey, String innerKey, Object value)

The method searches for elements whose annotations match the given pa-

rameters. The parameters are:

– outerKey specifies the outer key of the two dimensional hash map.

– innerKey specifies the inner key of the two dimensional hash map.

– value specifies the value of the bucket which corresponds to the keys.

If the method does not match any elements it will return an empty list.

There are two more methods that work similar like this one. The first

removes the value parameter and matches every element who has any entry

in the bucket. The second removes additionally the innerKey parameter

and thus matches every element which has an entry in the outerKey bucket.

• void traverse(GraphType model, StalinUID uid,

List<IObserver> observer)

This method starts a model traversal using the specified model and the

specified element as entry point. Only the initializing of the traversal is

different, everything else works exactly as in the normal traversal.

2.5.3 Creating and Modifying Models

We have seen so far how STALIN traverses models. This section describes how

tools belonging to the analysis and generator categories can create or modify

models. We use the abstract factory pattern in conjunction with the graph de-

scription object GraphType. The typing of the factories is completely transparent
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to the tools. Every factory supports the same methods; they only differ in the

graph structure they create.

In figure 2.4 we saw that every tool that belongs to the modifying categories

implements the method setFactory(...). This method is used by the core to

supply an appropriate factory to the respective tool. The core determines based

on the obtained graph description which type this factory has and thus which

kind of graph structure it produces.

#getFactory(ein type : GraphType) : AbstractModelFactory
#checkStructure(ein root : IElement) : bool
+createNode(ein payload : IPayload) : INode
+createEdge(ein payload : IPayload, ein source : INode, ein target : INode) : IEdge
+removeEdge(ein node : INode)

«abstract»
AbstractModelFactory

«abstract»
AbstractMultiGraphFactory

«abstract»
AbstractGraphFactory

«abstract»
AbstractTreeFactory

Figure 2.6: The figure shows STALIN’s factories as UML class diagram.

Figure 2.6 shows what factories are available in STALIN. The abstract class on

top of the hierarchy is named AbstractModelFactory. This class defines the

static and protected method getFactory(...) which takes a GraphType object

as parameter and returns an object of its own type. This object is already the

real factory, as the getFactory(...) method of the top factory decides which

specialized factory should be called. All other classes contain anonymous in-

ner classes for their factory type. They also implement all abstract methods

of AbstractModelFactory. Those methods are then available to the modifying

56



2.5 Access Layer STALIN Framework

tool. Before we explain the workings of those methods we want to discuss the

different factory types.

As you can see we only provide three different factories. For each general graph

type there is an own factory. We do not separate between directed and undirected

graphs as they do not differ in the used graph structure but only in the interpreta-

tion of the sources and targets of the edge implementations. Because we keep the

information about the graph structure separate from the carrier structure we do

not need to encode any difference between those graph types here. Theoretically

we could have used only one factory, but it showed that the implicit separation of

those graph types and their creation lead to substantial performance increases.

The tools, however, are not aware of the different factories as they receive only

one type. This type provides the following public methods to them:

• INode createNode(IPayload payload)

This method creates a node with an attached payload. It returns an object

of type INode and takes an IPayload instance as parameter. If a tool

does supply null as payload, the method will return an element without

initialized payload.

• IEdge createEdge(IPayload payload, INode source,

INode target)

This method creates an edge between two nodes. It takes a source, a

target and a payload object as parameters. Again, if null is supplied as

payload the method will return an edge without initialized payload. How-

ever, if one of the source or target arguments is missing, it will throw a

NullPointerException. There is no implicit meaning in the names of the
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parameter source and target if the current graph structure is an undirected

graph. In this case the edge makes the two supplied nodes simply adjacent.

• void removeEdge(IEdge edge)

This method removes an edge from the graph. Parts of the graph that

become unreachable after the operation are discarded. If the supplied ar-

gument is null this method will throw a NullPointerException.

We choose to separate the factories from the graph definition to keep the infor-

mations about the type of a data structure separate from its real type. We did

not want to encode this information implicit into the typing of a generated data

structure to gain more freedom for a performance sensitive implementation. Our

graph structure does not enforce constraints on itself as the normal approach

would be. The structural invariants are completely enforced by the factories and

the core. Every factory provides the static and protected checkStructure(...)

method which validates a given data structure from its entry point. It is applied

on the output of every getModel() method of a tool and every getElement()

method of an observer. If a constraint violation is detected, the method throws

an ConstraintViolationException which is in turn thrown by the core.

This behavior allows our analysis tools to change the graph structure of a model

without the need to explicitly change the type of all elements in this structure

and therefore yields a great performance benefit.
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2.6 User Interface

The STALIN user interface is driven by RCP. As such, it needs only little in-

tervention from our side. It is already extensible through the RCP API and the

Standard Widget Toolkit (SWT) [49]. Because the main STALIN application

needs some kind of GUI hook, we created the interface IControllerPlugin as

seen in figure 2.4. The core instantiates an IControllerPlugin object as UI

controller. Because there is no sense in multiple UI controllers, only one object

at a time may be present.

IControllerPlugin provides the init(...) method which takes a reference to

the current core as argument. It also provides different callback methods for the

core. This kind of mutual access is needed because the core must obtain infor-

mations from the user, like explicit model, parser or tool selections, while the

UI controller needs to specify the core as main thread to the RCP workbench

advisor. Due to thread safety issues both of them have to be separate instances.

We also provide the interface ILogDisplayPlugin which is responsible for en-

capsulating different log display facilities. STALIN’s log output is distributed to

all attached instances of ILogDisplayPlugin, which enables us to provide visual

logging as well as file logging or remote logging monitors. Currently, we write log

output only to a view in the standard STALIN GUI.

There is no need for a developer to implement any of the here briefly described

interfaces, as their implementations are all provided by STALIN itself.
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2.6.1 Logging

Many tools need to output logging messages to inform developers and users alike

about the current status of the tool. STALIN makes no exception and provides

logging facilities for itself and for tool developers. We use the log4j [50] library

provided by the Apache Software Foundation. To benefit from the log4j methods

one has only to...

• include the import of the logging facilities with

import org.apache.log4j.Logger;

• get the root logger instance of log4j with

Logger s_Logger=Logger.getRootLogger();

• and use the logger with, for instance,

s_Logger.info(message);.

The logger support various log levels accessible through the methods fatal, error,

warn, info, debug and trace. They represent different logging levels ranging from

error-logging to verbose output. STALIN allows you to set the log level in its

preferences. We support the same levels as the log4j library. As the general usage

of the library is fairly straight forward, we do not explain it here. Please refer to

the aforementioned log4j website for any questions.
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2.7 Parser

Parser are an important aspect of every program analysis tool and STALIN does

not make any difference here. Parser generate usually a parse tree or an abstract

syntax tree. But because most of the time a developer would choose to use a

parser generator, i.e. ANTLR [30], over hand-coding an own parser, the output

format of the parser has to be transformed to the graph format of STALIN. This

is not as complicated as it sounds; most parser generators are aware of the output

format issue and provide methods to adapt their code easily to another format.

The ISource interface defines the different attachable parser. It contains the

following methods:

• List<String> getFileTypes()

Defines which file endings STALIN should show in his input file dialog.

• GraphType getOutputDefinition()

Is called when STALIN loads the parser to determine which kind of model

the parser will provide.

• TokenMap getTokenMap()

Returns a TokenMap object, which contains the paired mapping of the

parsed language tokens to the meta language tokens (see section 2.2 for

details about the meta language).

• boolean parseable(File file)

STALIN calls this method for single file selections to determine if the parser

can handle this specific file. If multiple parsers return true for this call,
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STALIN will ask the user which parser it should use.

• boolean parseable(List<File> files)

STALIN calls this method if the user has selected multiple files from the

input file dialog. The parser should return a list containing all files he can

handle. STALIN also expects the parser to merge the returned files into

one graph structure. If the parser does not support any of the presented

files or cannot merge them properly it should return an empty list or null.

If multiple parsers can handle the whole file selection, STALIN will ask the

user which parser should be used. If no parser can handle the whole file

selection, STALIN will ask the user if it should proceed and if so, iterate

the parsers file by file and generate single models for each file.

• INode parse(File file)

This method is the main parsing method. It receives a single file and

should return a graph structure corresponding to the definition supplied by

getOutputDefinition(). It is only called with a previously presented file

that was considered parseable by the parser.

• INode parse(List<File> files)

This method will be called if multiple files were selected and the parser sig-

naled support for all of those. It receives the list of files previously presented

to the parser. STALIN expects the parser to generate one graph structure

corresponding to the definition supplied by getOutputDefinition().

Note that every parse function is allowed to throw exceptions. If a parser throws

an exception while parsing, STALIN aborts the current toolchain execution and
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displays the exception.

2.7.1 Integrating an ANTLR-based Parser

provided by STALIN

local.stalin.source.csharpparser

«abstract»
BasicANTLRParser

«interface»
ITokenMapper

ISource

TokenMap

local.stalin.source.antlr

generated by 
ANTLR

1

1

1 1

CSharpParserParser

CSharpParserLexer

CSharpParser CSharpTokenMapper

provided by 
tool developer

1 1
1 1

Figure 2.7: The figure shows the integration of our C# parser with the provided
local.stalin.source.antlr package as UML class diagram.

We provide an already adapted package for the parser generator ANTLR named

local.stalin.source.antlr. It includes the ANTLR library, the abstract class

BasicANTLRParser, the interface ITokenMapper and other, for the correct output

necessary, classes. Figure 2.7 shows the integration of our C# parser, which is

based on ANTLR, into the framework. As you can see, one has only to define

the classes CSharpParser and CSharpTokenMapper. The first class supplies only

references to the necessary classes. STALIN uses then reflections to call the

actual methods when the parser should be used. Therefore, when using our

ANTLR package, one has only to implement the following override methods of
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BasicANTLRParser:

• String getPluginID()

The same as in IRCPPlugin (see section 2.4 for details).

• String getName()

The same as in IRCPPlugin (see section 2.4 for details).

• String getEntryPoint()

Has to return the name of the starting production of the ANTLR gram-

mar. In our example this production is named ”‘compilationUnit”’. Every

ANTLR grammar has only one starting production.

• Class getLexer()

Has to return the class type of the attached lexer which will be invoked

through reflections. In our example this class type is represented by

CSharpParserLexer.class.

• Class getParser()

Has to return the class type of the attached parser which will be in-

voked through reflections. In our example this class type is represented

by CSharpParserParser.class.

• Class getTokenMapper()

Has to return the class type of the attached token mapper which will be

invoked through reflections. In our example this class type is represented

by CSharpTokenMapper.class.
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The second class is the mentioned token mapper. It is an implementation of

the ITokenMapper interface. This interface carries only two methods, namely

getTokenMap() and getTokenSet(). getTokenMap() returns a token map which

maps the tokens from the input language to tokens from our universal syntax as

we have described in section 2.2. getTokenSet() only returns a list of all tokens

used by this parser.

2.7.2 Existing Parsers

STALIN does currently feature the following parser:

• Two parser for Java 6. The first is based on the described ANTLR package

and in the final stage. The second uses the javac compiler directly and is

still in beta stage.

• Two parser for C# with .NET 2.0. Again, the first is based on the ANTLR

package and in the final stage. The second uses the monoc compiler direclty

and is still in beta stage.

• A parser which uses tools of the GNU Compiler Collection (GCC) to di-

rectly access different intermediate representations of the GCC. It supports

every language the GCC supports. It is still in beta stage.

• A XML parser based on Xerces [51] in final stage.

• Different ANTLR-based parsers for special inputs provided by different

tools from members of the Chair of Software Engineering of the Univer-

sity Freiburg.
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Every parser in this listing is a complex program for itself and it would go beyond

the scope of this work to describe them any further. Justus Bisser’s bachelor thesis

is devoted to this part of STALIN and should appear shortly after this work.
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Related Work

There exists various direct and indirect approaches to unify the world of program

analysis in frameworks. We have already mentioned CIL [13], which comes with

a set of tools for parsing, merging and transforming ANSI C, MS C and GNU C

programs. It also contains mechanisms and tools to analyze the control and data

flow of C programs. Unfortunately its transformations of the input language are

not configurable. This makes it impossible to look at the source exactly as it

appears. It is also, as the name suggests, limited to C programs which we are

not.

The theoretical approach of Michael Huth in [14, 15] was also mentioned. It is

mainly concerned with finding an appropriate mediation between different levels

of abstraction and different logics which describe those. This is important to our

problem but does not convey it as a whole.

From the domain of model checking comes Bogor [52, 53, 4], a fully fledged and

extensible framework for software model checking. Bogor is also based on Eclipse

RCP and uses its extensible nature to support numerous model checking algo-
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rithms. It uses a revised version of the Bandera Intermediate Representation

(BIR) as input language, which is originally part of the Bandera model checker

for Java [54]. Although this language can express most constructs of modern

programming languages, it still does not free a developer from the concern for

language translation. One has still to translate a standard program or program

artifact in BIR and back to create a tool which can handle industrial software.

The perhaps most appealing approach to our problem comes from Microsoft

Research with the Phoenix Framework [55]. Phoenix is an extensible and fast-

growing framework which can handle all aspects of program analysis for program-

ming languages supported by Microsoft. It is designed as back end for future MS

compilers and programming tools. It supports already a wide range of abstrac-

tions and analyses as well as infrastructure for external tools. Its only drawback

is the lack of language independence and the currently closed sources.
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Conclusion and Future Work

4.1 Future Work

While we outlined the implementation of our framework it has become clear that

there were many challenges; some of them we could not address in this work.

This leaves much space for future work. The current road map focuses on the

following aspects of STALIN:

Justus Bisser will provide solutions for the meta language issue in his bachelor

thesis. He will decide if we continue our work on an own intermediate language or

use one of the already existing like BoogiePL or the ESC/Java intermediate lan-

guage. He will also push the development of the ProgramNormalizer further, as

we expect to gain more insight into he rough edges of the language issue through

trying to transform certain expressions into others. This should eventually lead to

the identification of certain problem classes in modern programming languages.

Such problem classes could serve similar to SMT problem divisions [56,57,58] as
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comparator between the efficiency of different tools.

At the same time we have to push the development of the model generating tools

described in section 2.4.1 beyond their beta stages. Solid model generators will

enable us to focus on implementing already known program analysis and model

checking algorithms into STALIN. Then we can decide where our architecture

lacks usability or feasibility and adapt those areas. The ATCML development

will serve us as an example in this task.

After finishing this phase we have to care for the missing features in our archi-

tecture. We identified the following issues which will be addressed as soon as our

current road map allows us in the order of the list:

• We have to find a feasible method to integrate existing SMT and SAT

solvers to be accessed directly through STALIN. To achieve this we have

not only to provide interfaces for tools and solvers but also handle the

representation of logic formulas in different theories.

• We need to find a solution for lazy calling between tools; that means a

tool should be able to mark elements which in turn should be processed

by another tool. Afterward STALIN should resume the original tool to

continue his work.

• We need to integrate the support for annotation languages like the Java

Modeling Language (JML) [59] and Spec# [28]. Annotations from this

language should be integrated directly into the annotations provided by

STALIN.

• We have to integrate feasible benchmarks to measure the performance of ev-

ery part of the framework, be it tools, parsers, solvers, the memory manager

70



4.2 Conclusion Conclusion and Future Work

or the carrier structure. The benchmarks should be completely transpar-

ent and configurable. They should measure runtime as well as memory

consumption.

4.2 Conclusion

This thesis is dedicated to simplify the increasingly complex process of imple-

menting program analysis and model checking algorithms. We recognized that

the greater part of the work currently performed by experts in the field is not

about finding algorithms but about combining and implementing existing ones.

Program analysis and model checking have evolved beyond the stages of funda-

mental research to concrete applications in industrial scale environments. There-

fore scalability gains greater importance, and with it the combination of different

approaches. This demands in return the usage and knowledge of many differ-

ent branches of this huge research area. This cannot be accomplished without

standardization of program abstractions and language transformations. We pre-

sented a framework which aids both tool developers and researchers alike with

tackling this tasks. STALIN provides a feasible infrastructure while still keeping

things simple for developers. Although we could not meet all of our high objec-

tives we delivered a conclusive architecture and sketched the road map for future

developments without constraining the original idea.
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Appendix A

Meta Language

The description of the token set for the meta language was extracted from

STALIN’s javadoc documentation. It was created by Justus Bisser as he is the

main researcher for the meta language aspects of STALIN. The list is sorted

alphabetically.

A.1 Token Set

• ADDASSIGN: This token is an assignment of the sum the old value of

its first child and the expression being the second child.

• ANDASSIGN: This token is an assignment of the bitwise AND operation

the old value of its first child and the expression being the second child.

• ARGUMENTS: This token indicates that its child tokens are either

passed as arguments to a function or constructor call.
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• ARITHDIV: This token indicates that its child tokens are divided arith-

metically. The first child being the dividend the second child being the

divisor.

• ARITHMINUS: This token indicates the the second child token is sub-

tracted from the first one.

• ARITHMOD: This token indicates a modular division of the two child

tokens.

• ARITHMUL: This token indicates that its child tokens are multiplied

arithmetically. Each of the two child tokens is a factor.

• ARITHNEGATIVE: This token indicates that the child token is nega-

tive.

• ARITHPLUS: This token indicates that its child tokens are added. The

two children being the summands.

• ARITHPOSITIVE: This token indicates that the child token is positive.

However there could be constructs like (+(-(5)).

• ARRAY: This token indicates the creation of an array. Its first child being

the type of the array and its second child being an expression usually the

size of the array.

• ARRAY ACCESS: This token is an array access. Its first child being the

name of the array and its second child being the index of the accessed field.

• ARRAY TYPE: This token indicates that the variable is an array. The

variable is the first child of this token.
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• ARRAY VARIABLE: This token indicates that the variable is an array

variable.

• ASSIGN: This token indicates an assignment of the second token called

ASSIGNMENT EXPRESSION being the expression assigned to the first

child named LEFT HAND SIDE.

• BITAND: This token indicates a bitwise AND operation of its two chil-

dren.

• BITNEG: This token indicates a bitwise NOT operation on its child.

• BITOR: This token indicates a bitwise OR operation of its two children.

• BITSHIFTLEFT: This token indicates a bitwise left shift operator.

• BITSHIFTRIGHT: This token indicates a bitwise right shift operator.

• BITSHIFTRIGHTUNSIGNED: This token indicates an unsigned right

shift operator.

• BITXOR: This token indicates a bitwise XOR operation of its two chil-

dren.

• BLOCK: This token indicates a block.

• BOOLEAN LITERAL: This token indicates that its child is a boolean

value.

• BREAK: This token indicates a break of e.g. a loop.

• CAST: This token indicates a cast to another type.

• CATCH: This token indicates the catch block in a try-catch block.
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• CHAR LITERAL: This token indicates that its child is a char literal.

• CLASS: This token indicates that its child is a class.

• CLASS BODY: This token indicates the class body.

• CLASS LITERAL: This token indicates that its child is a class literal.

• CLASS TYPE: This token indicates that its child references a class.

• COMPAQ: This token indicates an equivalence check of its two children.

• COMPGEQ: This token indicates a check if the first child is greater or

equal to its second child.

• COMPGT: This token indicates a check if the first child is greater than

its second child.

• COMPLEQ: This token indicates a check if the first child is less or equal

to its second child.

• COMPLT: This token indicates a check if the first child is less than its

second child.

• COMPNEQ: This token indicates a not equivalence check of its two chil-

dren.

• COMPOSED EXPRESSION: This token indicates a composed expres-

sion.

• CONDITIONAL EXPRESSION: This token indicates a conditional

expression, usually in combination with an IF token.

• CONSTRUCTOR: This token indicates that its child is a constructor.

81



A.1 Token Set Meta Language

• CONTINUE: This token indicates that the rest of a loop should be

skipped.

• DECIMAL LITERAL: This token indicates a that its child is a decimal

literal.

• DECREMENT: This token indicates that its child is decreased by one.

• DIM EXPR: This token is indicates the the known or unknown size of an

array. In the latter case it does not have a child.

• DIVASSIGN: This token is an assignment of the division the old value of

its first child and the expression being the second child.

• DOWHILE: This token indicates a DO-WHILE loop.

• ELSE: This token indicates the else block of an IF statement.

• EXPRESSION: This token indicates that its child is an expression.

• EXPRESSIONS: This child indicates that its children are expressions.

This is used for easier handling.

• EXTENDS: This token indicates that a class inherits from another class.

• FIELD: This token indicates a field in a class.

• FINALLY: This token indicates the finally block in a try-catch-block

• FLOAT LITERAL: This token indicates that its child is a float literal.

• FOR: This token indicates a for-loop.

• FOR INIT: This token indicates the initialization of a for-loop.
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• FOR UPDATE: This token indicates an update which is executed after

each pass of a for-loop.

• FOREACH: This token indicates a foreach loop, usually used for iterat-

ing over a list or an array.

• GUARD: This token identifies the guard in a conditional expression.

• HEX LITERAL: This token indicates that its child is a hexadecimal lit-

eral.

• IDENT: This token identifies an identifier.

• IDENTIFIER: This token indicates an identifier.

• IF: This token indicates an if-statement.

• IMPLEMENTS: This token indicates that a class implements one or more

interfaces.

• INCREMENT: This token indicates that its child is incremented by one.

• INITIALIZER: This token indicates a variable or array initializer.

• INSTANCEOF: This token indicates a test if an object is an instance of

a specific type or its type extends this type.

• INT LITERAL: This token indicates that its child is an integer literal.

It does not specify the length of the integer type. This should be done by

some mapping.

• LABEL: This token indicates a jump label.
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• LEFTSHIFT ASSIGN: This token indicates a bitwise left shift assign

operator.

• LITERAL: This token indicates that its child is a literal. Usually its child

also specifies what kind of literal it is.

• LOGICAND: This token indicates a logical AND of its two children.

• LOGICNEG: This token indicates a logical negation of its child.

• LOGICOR: This token indicates a logical OR operation of its children.

• MEMBER: This token indicates a class member but is currently not used.

• METHOD: This token indicates a method. It children define its signature

and body.

• METHOD BODY: This token identifies the body of a method.

• METHOD CALL: This token indicates a method call its children difene

the name of the called method and the arguments.

• MODASSIGN: This token is an assignment of the modular division the

old value of its first child and the expression being the second child.

• MODIFIER: This token indicates modifiers of a class a function or else.

• MULASSIGN: This token is an assignment of the multiplication the old

value of its first child and the expression being the second child.

• NULL: This token stands for the nil value.

• ORASSIGN: This token is an assignment of the bitwise OR operation the

old value of its first child and the expression being the second child.
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• PACKAGE: This token indicates a package a class is in. Each child is a

part of the complete package name.

• PARAMETER: This token identifies the parameters given to a function

or a constructor call.

• PARAMETERS: This token’s children identify the parameter signature

of a method or constructor.

• POSTFIX OPERATOR: This token indicates a unary postfix operator.

• PREFIX OPERATOR: This token indicates a unary prefix operator.

• PRIMITIVE TYPE: This token indicates a primitive type versus a class

type.

• PROJECT: This token is the root node of a project. Its children aure of

the type UNIT.

• QUALIFIED NAME: This token indicates a fully qualified name of a

method, a field or a class.

• RETURN: This token indicates a return statement. It can have a child

specifying the return value.

• RIGHTRIGHTSHIFT ASSIGN: This token indicates a bitwise un-

signed right shift assign operator.

• RIGHTSHIFT ASSIGN: This token indicates a bitwise right shift assign

operator.

• STATEMENT: This token indicates a statement which is specified by its

child.
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• STRING LITERAL: This token indicates that a literal is a string literal.

• SUBASSIGN: This token is an assignment of the subtraction the old

value of its first child and the expression being the second child.

• THEN: This token indicates the statement which is executed when an

if-check succeeds.

• THROW: This token indicates an explicit exception definition of a func-

tion.

• TRY: This token indicates the start of a try-catch block.

• UNDEFINED: This token is used for mapping of language constructs

undefined in the Stalin metalanguage.

• UNIT: This token identifies a single compilation unit usually a single file.

• VARIABLE DECLARATION: This token indicates a variable declara-

tion.

• VARIABLE INITIALIZER: This token indicates a variable initializer.

• VOID: This token indicates the void, usually as return type of a function.

• WHILE: This token indicates a while-true-loop.

• XORASSIGN: This token is an assignment of the bitwise XOR operation

the old value of its first child and the expression being the second child.
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Freiburg, March 31, 2008 Daniel Dietsch
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German Summary

Diese Arbeit beschreibt eine Möglichkeit, den immer schwieriger werdenden

Prozess der Implementierung von Methoden der Programmanalyse und des Model

Checking zu vereinfachen. Wir erkennen das aktuell der größte Teil der von

Experten aus diesem Gebiet geleisteten Forschungsarbeit nicht der Findung

von neuen Algorithmen sondern viel mehr der Kombination von Existierenden

und deren Implementierung dient. Dieser Trend zur Kombination ist auch aus

den gestiegenen Anforderungen gegenüber der Skalierbarkeit einzelner Ansätze

erwachsen. Das gesamte Gebiet hat sich in den letzen Jahren immer mehr

aus der Grundlagenforschung gelöst und sich konkreten Aufgaben im indus-

triellen Maßstab zugewandt. Dies kann nur mit großem Aufwand ohne die

Standardisierung von Programmabstraktion, Logik und Sprachtransformationen

geschehen.

Kurz gesagt, wir benötigen ein Framework das es erlaubt, uns auf die wirk-

liche Arbeit zu konzentrieren und das Wissen verschiedener Experten auf ver-

schiedenen Gebieten mit wenig bis gar keinem zusätzlichen Aufwand zu vereini-
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gen. Wir stellen in dieser Arbeit das STALIN Framework vor um dieses Problem

zu bewältigen. STALIN stellt eine geeignete und einfach zu bedienende Infras-

truktur dar, die durch ihre offene und erweiterbare Architektur auch zukünftigen

Anforderungen gewachsen ist.

Wir besprechen in dieser Arbeit vor allem wie STALIN beschaffen ist, welche

Hindernisse es auf dem Weg der Entwicklung gab und welche Werkzeuge wie

auch welche Teile der Infrastruktur bereits fertiggestellt worden sind und welche

uns noch als Aufgaben für die Zukunft bleiben.

Wir orientieren uns dabei an einer von uns festgelegten Liste von Eigenschaften

die ein solches Framework unserer Überzeugung nach in sich vereinigen muss, um

den anstehenden Anforderungen gerecht zu werden:

• Wir benötigen eine universelle Sprache die verschiedene moderne Program-

miersprachen in einer geeigneten Weise beschreiben kann.

• Wir benötigen Parser die zumindest die wichtigen modernen Programmier-

sprachen in diese Sprache übersetzen können.

• Wir benötigen komplett spezifizierte und formalisierte Modelle sowie

geeignete Werkzeuge um Abstraktionen unserer universellen Sprache zu

erzeugen.

• Wir brauchen verschiedene Methoden um diese Modelle effizient zu speich-

ern und zu verwalten.

• Wir benötigen einfache und effiziente Zugangsmethoden zu diesen Mod-

ellen.

• Wir benötigen standardisierte Schnittstellen für die Interaktion zwischen

verschiedenen Tools.
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• Wir benötigen Übergänge zwischen den verschiedenen Theorien der Theo-

rembeweiser und SMT Solver.

Verschiedene Arbeiten haben sich bereits der Herausforderung gestellt und

dabei teilweise ähnliche Frameworks geschaffen. Die C Intermediate Language

(CIL) [13] ist ein Beispiel für solch ein Programmanalyse-Framework. CIL bein-

haltet Werkzeuge für das Parsen, Verändern und Vereinigen von Programmen in

ANSI C, MS C oder GNU C. CIL transformiert außerdem Eingabeprogramme

in eine Untermenge von C, indem es komplexere Sprachkonstrukte reduziert und

ein semantisch äquivalentes Programm erzeugt. Leider sind die vorgenomme-

nen Transformationen nicht konfigurierbar, sodass eine Rückführung in den ur-

sprünglichen Code nicht mehr möglich ist. Außerdem ist CIL, wie bereits der

Name suggeriert, auf C als Eingabesprache begrenzt.

Ein weiterer Ansatz wird von Michael Huth in [15, 14] vorgeschlagen. Er

beschreibt eine Interaktion zwischen verschiedenen Tools und wie verschiedene

Abstraktionen in einander überführt werden können. Die Arbeit beschreibt ein

formales Framework für Abstraktion und Verfeinerung welches eine generische

Spezifikationssprache beinhaltet. Nach unserem aktuellen Kenntnisstand wurde

dieses Framework jedoch nie implementiert, sodass wir seine Eignung für die En-

twicklung von Algorithmen nicht geeignet abschätzen können.

Zusammen ergaben beide Arbeiten den Ausschlag für die Entwicklung von

STALIN. Wir verwenden die Eclipse Rich Client Platform (Eclipse RCP) [18,17,

19, 16] als Basis unseres Frameworks, da diese als sehr robuste und zuverlässige

Platform bereits in zahlreichen anderen Projekten zum Einsatz kam und die von

uns benötigten Funktionen mehr als ausreichend zur Verfügung stellt.

Wir beschreiben in dieser Arbeit was für verschiedene Schnittstellen für Parser
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und Werkzeuge durch unser Framework bereitgestellt werden, wie STALIN Mod-

elle verwaltet und wie von einer gegebene Eingabesprache zu unserer Universal-

sprache transformiert wird. STALIN bietet verschiedene Schnittstellen für En-

twickler von Werkzeugen für Programanalyse, die die Kommunikation zwischen

diesen Werkzeugen und mit STALIN selbst ermöglichen. Diese Werkzeuge, von

uns Tools genannt, können nacheinander auf denselben, standardisierten Mod-

ellen einer Eingabesprache ausgeführt werden, sei es auf Kontrollflussgraphen,

Datenflussgraphen oder auf abstrakten Syntaxbäumen. Wir stellen außerdem

Werkzeuge und Methoden bereit, die verschiedene gebräuchliche Operationen auf

diesen Modellen sowie graphische Ausgaben der Modelle ermöglichen und damit

die Arbeit der Entwickler entschieden erleichtern. Neben diesen Tools stellen wir

außerdem Parser für verschiedene Sprachen wie Java, C#, ANSI C und C++

bereit.
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