
Assume-Guarantee Abstraction Refinement

Meets Hybrid Systems

Sergiy Bogomolov1, Goran Frehse2, Marius Greitschus1, Radu Grosu3,
Corina Pasareanu4, Andreas Podelski1, and Thomas Strump1

1 University of Freiburg, Germany
{bogom,greitsch,podelski,strumpt}@informatik.uni-freiburg.de

2 Université Joseph Fourier Grenoble 1 – Verimag, France
goran.frehse@imag.fr

3 Vienna University of Technology, Austria
radu.grosu@tuwien.ac.at

4 NASA Ames Research Center, USA
Corina.S.Pasareanu@nasa.gov

Abstract. Compositional verification techniques in the assume-
guarantee style have been successfully applied to transition systems to
efficiently reduce the search space by leveraging the compositional nature
of the systems under consideration. We adapt these techniques to the
domain of hybrid systems with affine dynamics. To build assumptions
we introduce an abstraction based on location merging. We integrate
the assume-guarantee style analysis with automatic abstraction refine-
ment. We have implemented our approach in the symbolic hybrid model
checker SpaceEx. The evaluation shows its practical potential. To the
best of our knowledge, this is the first work combining assume-guarantee
reasoning with automatic abstraction-refinement in the context of hybrid
automata.

1 Introduction

Assume-guarantee (AG) reasoning [14] is a well-known methodology for the ver-
ification of large systems. The idea behind is to decompose the verification of a
system into the verification of its components, which are smaller and therefore
easier to verify. A typical example of such systems would be a system comprised
of a controller and a plant. In this work, we mainly concentrate on hybrid sys-
tems [1] with stratified controllers, i.e., controllers consisting of multiple strata
(layers), where each of them is responsible for some particular plant parameter.
Assume-guarantee reasoning can be performed using the following rule, ASym,
where P is a safety property and H1 ‖ H2 denotes the parallel composition of
components H1 and H2, where H1 is a plant and H2 is a controller.

1 : H1 ‖ A |= P
2 : H2 |= A

H1 ‖ H2 |= P

Rule ASym

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 116–131, 2014.
c© Springer International Publishing Switzerland 2014

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 117

ẋ = v
T1 ≤ 1000

(a) Plant H1.

�2

v = 2; T2 ≤ 10

�1

v = 1; T2 ≤ 10

�3

v = 3; T2 ≤ 10

T2 := 0

(b) Controller H2 – unmerged.

�#

1 ≤ v ≤ 3; T2 ≤ 10

T2 := 0

(c) Controller H#
2 – merged.

Fig. 1. A motivating example

In this rule, A denotes an assumption about the controller of H1. Premise 1
ensures that when H1 is a part of a system that satisfies A, the system also
guarantees P . Premise 2 ensures that any system that contains H2 satisfies A.
Together the two premises imply the conclusion of the rule. The rule ASym is
applicable if the assumption A is more abstract than H2, but still reflects H2’s
behavior. Additionally, an appropriate assumption for the rule needs to be strong
enough for H1 to satisfy P in premise 1.

The most challenging part of applying assume-guarantee reasoning is to come
up with appropriate assumptions to use in the application of the assume-
guarantee rules. Several learning and abstraction-refinement techniques [5,13]
have been proposed for automating the generation of assumptions for the veri-
fication of transition systems.

In this paper, we focus on the automated generation of assumptions in the
context of hybrid systems. Similar to the work by Bobaru et al. [5] we use
abstraction-refinement techniques to iteratively build the assumptions for the rule
ASym. In our case, H2, i.e., the controller of H1, is abstracted. The use of over-
approximations guarantees that the assumption describes the component cor-
rectly and hence premise 2 holds by construction. However, it is possible that
premise 1 does not hold, in which case a counterexample is provided. The coun-
terexample is analyzed to see if it is spurious, in which case the abstraction ofH2

is refined to eliminate it. If the counterexample is real, then H1 ‖ H2 violates P .
We present a framework which can efficiently handle the class of affine hybrid

systems. Due to the mixed discrete-continuous nature of hybrid systems, we
need to pay special attention on the abstraction of continuous dynamics. We
illustrate the idea of our compositional analysis on a toy example. Fig. 1 shows
a simple hybrid automaton consisting of the plant H1 in Fig. 1a and controller
H2 in Fig. 1b. We observe that the derivative of variable x in plant H1 depends

118 S. Bogomolov et al.

on the value of v governed by the controller H2. Furthermore, we see that the
controller operates in iterations of length 10. The possible controller options are
grouped in a stratum. While analyzing this system, a hybrid model checker will
consider all the three options on every controller iteration which results in 3n

branches for n iterations. By noting that for some properties only the minimal
and maximal values of v are of relevance, we come up with an abstracted version
of the automaton H2 in Fig. 1c. We replace the three alternative options by only
one coarser option. To ensure that the resulting automaton is indeed an over-
approximation of the original system, we use 1 ≤ v ≤ 3 as an invariant of the
merged location �#, i.e., we replace the exact values of v with its bounds. This
abstraction will be especially useful to prove, e.g., that within the first 1000
seconds of system operation the state x = 4000 will still not be reached. In
the abstraction we will reduce an exponential number of branchings to a linear
one. Note that this kind of location-merging abstractions is especially useful for
the class of stratified controllers. The reason is that the controller structure can
be exploited to efficiently generate an initial abstraction by merging locations
belonging to the same stratum. Intuitively, this step allows us to adjust the
precision level at which the system parameters are taken into account. If the
resulting abstraction is too coarse, a finer-grained abstraction is generated in
the refinement step.

The lesson we learn from this example is that merging of locations is a promis-
ing approach to generate abstractions in scope of the assume-guarantee reason-
ing paradigm. To ensure the conservativeness of the resulting abstraction, we
compute the invariants as a convex hull of the original locations. Note that
the computation of minimal and maximal values of v shown above represents a
simple case of a general convex hull computation. Given the continuous, affine
dynamics of the form ẋ(t) = Ax(t)+u(t), the merged locations are computed by
first eliminating the (unprimed) state variables and consequently computing the
convex hull of the resulting polytopes over the derivatives. As outlined above,
sometimes we might end up with spurious counterexamples. To overcome this is-
sue we proceed to the phase of spuriousness checking. If the found path is indeed
spurious, we refine the system by splitting one or multiple locations and continue
with the analysis of this new system. Note that the assume-guarantee reasoning
methodology is a variant of the CEGAR approach [6]. The essential difference
of AGAR compared to CEGAR is the compositional handling of the system. We
develop our approach along these lines by ensuring that the proposed algorithms
work in the compositional fashion, e.g., we only abstract a part of the system
and the refinement algorithm considers a projection of the found counterexam-
ple on the abstracted component. Our implementation in SpaceEx [9] shows the
practical potential.

The remainder of the paper is organized as follows. We introduce the nec-
essary preliminary notions in Sec. 2. In Sec. 3, we introduce our compositional
framework. This is followed by a discussion about related work in Sec. 4. After-
wards, we present our experimental evaluation in Sec. 5. Finally, we conclude
the paper in Sec. 6.

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 119

2 Preliminaries

Hybrid automata [11] provide an expressive formalism suitable for modeling
complex real-world systems.

Definition 1 (Affine Hybrid Automaton). An affine hybrid automaton is a
tuple H = (Loc,Var , Init ,Flow ,Trans , I), where Loc is a finite set of locations,
Var = {x1, . . . , xn} is a set of real-valued variables, Init(�) ⊆ R

n is the convex
set of initial values for x1, . . . , xn for all locations � ∈ Loc. For each � ∈ Loc,
Flow (�) is a relation over the variables in Var and their derivatives

ẋ(t) = Ax(t) + u(t), u(t) ∈ U ,

where x(t) ∈ R
n, A is a real-valued n × n matrix and U ⊆ R

n is a closed and
bounded convex set. Trans is a set of discrete transitions (�, g, ξ, �′), where �
and �′ are the source and the target locations, g is the guard (given as a linear
constraint), and ξ is the update (given by an affine mapping). I (�) ⊆ R

n is the
convex invariant for all locations � ∈ Loc.

The semantics of hybrid automata is defined as follows. A state of H is a tuple
(�,x) consisting of a location � ∈ Loc and a point x ∈ R

n. More formally, x is a
valuation of the continuous variables in Var . Let T = [0, Δ] be a time interval
for some Δ ≥ 0. A trajectory of H from state s = (�,x) to state s′ = (�′,x′) is
defined by a tuple ρ = (L,X), where L : T → Loc and X : T → R

n are functions
that define for each time point in T the location and values of the continuous
variables, respectively. The trajectory ρ starts in (�,x), ends in (�′,x′), and obeys
the following constraints:

– The sequence of time points in ρ, where the location is changed (according
to L) increases strictly monotonically, starts with time point 0, and ends
with time point Δ.

– There are no location changes which are not defined by L (i. e., locations are
not changed during the continuous evolution).

– For all t ∈ T , the continuous variable evolution is consistent with the differ-
ential equation and invariant of L(t).

We define traj(H) as a set of all trajectories ρ for Δ ≥ 0. The length of the
trajectory |ρ| is equal to the number of different locations on it. The initial set
of states Sinit(H) of H is defined as

⋃
�(�, Init(�)). We say that s′ is reachable

from s if a trajectory from s to s′ exists. The reachable state space R(H) of H
is defined as the set of states such that a state s is reachable from Sinit(H). In
this paper, we also refer to symbolic states. A symbolic state s = (�, R) is defined
as a tuple, where � ∈ Loc, and R is a convex set consisting of points x ∈ R

n.
The continuous part R of a symbolic state is also called region. The symbolic
state space of H is called the region space. The convex hull of two regions R1

and R2 is denoted by CH(R1 ∪ R2). The path in the region space is a sequence
of symbolic states π = s0, . . . , sn−1. The length of the path |π| = n is equal to

120 S. Bogomolov et al.

the number of symbolic states on it. We assume without loss of generality that
there is a single bad location �bad with unrestricted invariant and flow. Our goal
is to find a trajectory from Sinit(H) to the bad location. A trajectory that starts
in a state s and leads to a bad location is called an error trajectory ρe(s).

Composition of hybrid automata. A product automaton N = H1|| . . . ||Hm de-
notes a set of interacting hybrid automata. The semantics of N is defined based
on the semantics of a single hybrid automaton, with the following extensions.
Every automaton in N is associated with a finite set of synchronization labels,
including a special label τ in all label sets. The discrete component of a state
s of N is defined as a vector of locations that denotes the current locations of
every component in N . Similarly, in addition to single automata, a trajectory of
N maps time points to vectors of locations of each automaton. For a time point
t, changes in the location vectors in a trajectory can either be caused by a single
transition labeled with τ of one automaton in N (“interleaving transition”), or
there are several automata in N that simultaneously fire transitions with equal
synchronization labels other than τ (“synchronized transition”). We refer to the
work by Donzé et al. [7] for more details.

3 Compositional Framework for Hybrid Systems

In this section, we introduce the main ingredients of our compositional frame-
work: the abstraction of a hybrid system, an algorithm for spuriousness check,
and a refinement algorithm.

3.1 Abstraction Algorithm

We construct our abstraction by partially merging system locations. To formally
define the abstraction, we introduce a location abstraction function α and a
location concretization function α−1 as follows.

Definition 2 (Location Abstraction Function). Location abstraction func-
tion α : Loc → Loc# provides a mapping from every concrete location in Loc
to its abstract counterpart. Furthermore, we require |Loc#| ≤ |Loc|, i.e., the ab-
stract system should have at most the same number of locations as the original
one.

Definition 3 (Location Concretization Function). Location concretization
function α−1 : Loc# → 2Loc provides a mapping from every abstract location in
Loc# to the set of concrete locations which were merged into it.

If � ∈ α−1(�#), then � is a corresponding location to the abstract location �#.
Furthermore, we abuse the notation and apply a concretization function not only
to abstract locations, but also to abstract symbolic states and abstract symbolic
paths. We define an abstract hybrid automaton H# induced by the location
abstraction function α and concrete hybrid automaton H as follows:

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 121

Definition 4 (Location-Merging Abstraction). Let H = (Loc,Var , Init ,
Flow ,Trans, I) be a hybrid automaton and α : Loc → Loc′ be a lo-
cation abstraction function. The abstract automaton H# =
(Loc#,Var#, Init#,Flow#,Trans#, I#) induced by the location-merging
abstraction with respect to the location function α is defined as follows:

– Loc# = Loc′, i.e., the location abstraction function provides which locations
of H are to be merged. We assume that α keeps the bad location �bad as a
singleton.

– Var# = Var, i.e., the abstraction preserves the continuous variables of the
original system.

– ∀�# ∈ Loc# : Init#(�#) = CH(
⋃

�∈α−1(�#) Init(�)), i.e., the regions describ-

ing the initial values in concrete locations are first merged into one (possibly
non-convex) set and afterwards are over-approximated by a convex hull.
Note that if an abstract location is a singleton, the application of the con-
vex hull operator will result in the original set as we consider only hybrid
automata with Init(�) being a convex set (see Def. 1).

– ∀�# ∈ Loc# :

Flow#(�#)(x, ẋ) =

{
CH(

⋃
�∈α−1(�#) F�), |α−1(�#)| > 1

Flow (α−1(�#))(x, ẋ), |α−1(�#)| = 1

where F� = ∃x : (Flow (�)(x, ẋ) ∧ I (�)(x)).

– Trans# = {(�#, g, ξ, �̂#)|∃� ∈ α−1(�#), �̂ ∈ α−1(�̂#) s.t. (�, g, ξ, �̂) ∈ Trans},
i.e., an abstract transition between �# and �̂# is added when a transition in
the concrete state space connecting the corresponding locations exists.

– ∀�# ∈ Loc# : I#(�#) = CH(
⋃

�∈α−1(�#) I (�)), i.e., similarly to the initial
regions, the invariants are merged and over-approximated by a convex hull.

In other words, we merge the dynamics of multiple locations in two steps. We
first over-approximate the original dynamics in every concrete location by quan-
tifying away unprimed variables, i.e., we obtain a constraint reasoning only about
derivatives (see Fig. 2). Secondly, we define abstract dynamics by constructing a
convex hull of the constraints computed in the first step. If an abstract location
is a singleton, i.e., |α−1(�#)| = 1, we just keep its original dynamics.

We observe that by construction the set of reachable states of the abstract
automaton H# leads to an over-approximation compared to the states reachable
by the concrete automaton H. Therefore, the following proposition holds:

Proposition 1. Let H# be a location-merging abstraction of the concrete hybrid
automaton H. Then the non-reachability of the bad location �bad in H# implies
its non-reachability also in the concrete automaton H.

3.2 Compositional Analysis

Our compositional analysis is illustrated in Algorithm 1. In order to simplify
the presentation we consider a case of a system consisting of two components

122 S. Bogomolov et al.

Dynamics:
ẋ = 2x+ 3y
ẏ = 4x− 5y

Invariant:
0 ≤ x ≤ 1

∧ 0 ≤ y ≤ 1

F1:
−5ẋ− 3ẏ ≤ 0

∧ −22 + 5ẋ+ 3ẏ ≤ 0
∧ −2ẋ+ ẏ ≤ 0
∧ −11 + 2ẋ− ẏ ≤ 0

(a) Location �1

Dynamics:
ẋ = −x+ 3y + 5
ẏ = x+ 2y

Invariant:
1 ≤ x ≤ 3

∧ −1 ≤ y ≤ 0.3

F2:
−5 + 2ẋ− 3ẏ ≤ 0

∧ −5− 2ẋ+ 3ẏ ≤ 0
∧ −ẋ− ẏ ≤ 0
∧ −6.5 + ẋ+ ẏ ≤ 0

(b) Location �2 (c) Convex Hull

Fig. 2. Elimination of unprimed variables before merging of the locations

H1 and H2, where H1 is a plant and H2 is a controller. However, the scheme is
applicable to systems with more than two components [5].

In the following we provide a conceptual description of the algorithm. The
algorithm checks whether the bad state Sbad can be reached by the system
H1||H2.The algorithm starts by computing an abstraction of H2 in the function
ConstructAbstraction (line 1). For more details on the abstraction con-
struction see Sec. 3.1. The algorithm iteratively refines the original abstraction
(lines 2–14). Note that in the worst case we will end up with the original sys-
tem. However, in many cases we will need to refine only a part of the system
(see Sec. 5 for the detailed discussion). In every refinement iteration the algo-

rithm proceeds as follows. First, the state space of the abstract system H1||H#
2

is analyzed in the function Analysis (line 3). This function returns an abstract
bad path or “empty” if no such path has been found. If no abstract bad path
has been found, we can conclude that also the original system is safe as we
consider only over-approximations (line 5). Otherwise, the algorithm proceeds
in the function SpuriousnessAnalysis (line 7) with the spuriousness analysis
of the found abstract bad path π#. The function SpuriousnessAnalysis re-
turns the information on how to refine H#

2 or “empty” if the abstract path π#

can be concretized. In the latter case, we exit with status “System is unsafe”
(line 9). Otherwise, H#

2 is refined in the function Refinement based on the
structure of the abstract bad path gained during the spuriousness analysis.

3.3 Spuriousness Check

In this section, we consider the function SpuriousnessAnalysis (see Algorithm

2) in more detail. Given an abstract bad path π# = s#0 , . . . , s
#
m−1, the function

enumerates concrete paths corresponding to π# and looks for the ones which end
up in a bad state. The enumeration of concrete paths of the composed automaton

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 123

Algorithm 1. Compositional analysis of H1||H2

Input: Hybrid automata H1 and H2

Output: Is the composed system H1||H2 safe?
1: H#

2 := ConstructAbstraction (H2)
2: while true do
3: π# := Analysis (H1||H#

2)
4: if π# is empty then
5: return “System is safe”
6: else
7: SP := SpuriousnessAnalysis (H1,H2,H#

2 , π#)
8: if SP is empty then
9: return “System is unsafe”
10: else
11: H#

2 := Refinement (H#
2 ,SP)

12: end if
13: end if
14: end while

H1||H2 along the abstract path π# is organized in a breadth-first fashion. In
particular, we make use of two lists: Lwaiting and Lpassed . Lwaiting stores symbolic
states which still have to be considered and Lpassed stores symbolic states which
have already been considered and thus do not have to be visited again. The data
structure SP stores information relevant for the refinement step. In particular,
tuples (π#, π), where π is a path in the concrete state space which does not
belong to α−1(π#), are kept in SP . In other words, in the last symbolic state
s|π|−1 of π we cannot take any discrete transition which would lead to some

concrete state represented by an abstract state s#|π|. Therefore, a tuple (π#, π)

essentially provides a possible reason for the spuriousness of π with respect to
π#. We will use this information to refine the abstract component H#

2 (see
Sec. 3.4).

The algorithm starts by pushing the concrete initial states which correspond
to the first abstract symbolic state s#0 in Lwaiting (line 2). It is important to
mention that α−1 concretizes only the part of the symbolic state relevant to
H#

2 . This property also holds for the algorithm described in Sec. 3.4. Note that
we furthermore store the position of the abstract state which corresponds to
the considered concrete symbolic state in the waiting list (we start with s#0 and
thus the position is 0). We will consequently use this information to compute
the discrete symbolic successors of a given symbolic state which correspond to
the analyzed bad path π#. In lines 3–20 the concrete state space is iteratively
explored in a breadth-first manner. Every iteration consists of the following
steps. First, the next tuple (scurr, i) is picked from the waiting list Lwaiting

(line 4), where scurr is a symbolic state and i shows its position with respect to
the abstract path. Afterwards, the continuous successor, i.e., a symbolic state
reflecting the states reachable according to the continuous dynamics, is computed
and added to the passed list Lpassed (lines 5–6). If the end of the abstract path

124 S. Bogomolov et al.

Algorithm 2. Spuriousness analysis

Input: Concrete automaton H1, concrete automaton H2 and its abstract version H#
2

and abstract bad path π# = s#0 , . . . , s#m−1 in the state space of H1||H#
2 .

Output: Information about the possible splitting points store or empty set if the
abstract bad path π# is concretizable

1: SP := ∅
2: Push (Lwaiting , (α

−1(s#0) ∩ Sinit(H1||H2), 0))
3: while Lwaiting �= ∅ do
4: (scurr, i) := GetNext (Lwaiting)
5: s′curr := ContSuccessors (scurr)
6: Push (Lpassed , s

′
curr)

7: if i = m− 1 then
8: if s′curr is a symbolic error state then
9: return empty set, i.e., concrete bad state found
10: else
11: Store the abstract bad path π# and the corresponding concrete path π

ending in s′curr into SP
12: end if
13: end if
14: S′ := DiscreteSuccessors (s′curr) ∩ α−1(s#i+1)
15: if S′ is empty then
16: Store the abstract bad path π# and the corresponding concrete path π ending

in s′curr into SP
17: else
18: Push (Lwaiting , S

′ \ Lpassed , i+ 1)
19: end if
20: end while
21: return SP

is reached then the intersection with the bad state is checked (lines 8–10). If the
end of the abstract path is reached, but no intersection with the bad state is
detected, we store both the abstract and concrete paths in SP in order to use
this information in the refinement step. If the algorithm is still in the middle of
the abstract bad path, it moves on to the computation of the concrete symbolic
states which correspond to the abstract bad path (line 14). We achieve this by
computing discrete successors and intersecting them with the concrete states
represented by the next symbolic state on the abstract path. Note that the
position i allows the algorithm to easily find the next abstract symbolic state on
the path with respect to the currently considered concrete state.

If the set of discrete successors is empty, we say that a possible splitting point
has been found. In other words, we could refine the abstract location �#i of

s#i = (�#i , R
#
i) by splitting it (see Sec. 3.4). We store the abstract bad path and

the concrete path we have considered up to now into SP (line 16). Otherwise,
we add the discrete state into the waiting list Lwaiting (line 18). After having
analyzed all concrete paths corresponding to π#, the function Spuriousness-
Analysis returns SP . It is only possible to report that the considered abstract

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 125

bad path is not concretizable after having considered all possible concrete paths
corresponding to it. Thus, the algorithm does not stop after discovering a partic-
ular splitting point, but just stores it for the later reuse during the refinement.

While mapping an abstract bad path to a concrete one, Algorithm 2 refers
to the functions ContSuccessors and DiscreteSuccessors which are ap-
plied to concrete symbolic states. Thus, if the function SpuriousnessAnalysis
declares some abstract bad path π# to be genuine by finding its concrete coun-
terpart π, then we can automatically conclude that the standard SpaceEx reach-
ability algorithm would also have reported π to be a bad path. Therefore, our
framework provides the same level of precision as the standard SpaceEx reacha-
bility algorithm. Finally, we note that the full concretization of a symbolic path
is known to be a highly nontrivial problem. Once a concrete symbolic bad path
is found with our approach, further concretization to hybrid automaton trajec-
tories can be achieved using techniques from optimal control such as the one
proposed in the work by Zutshi et al. [17].

3.4 Refinement Algorithm

The refinement algorithm Refinement uses SP in order to appropriately refine
the abstraction H#

2 in a compositional way. The data structure SP contains in-
formation about multiple possible splitting points. For the refinement we choose
a tuple (π#, πmax) ∈ SP which maximizes the length of the concrete path π over
all the elements of SP . Intuitively, by choosing a tuple with this property, we
ensure that πmax cannot be extended for all concrete paths which correspond to
π#. Let the abstract bad path π# = s#0 , . . . , s

#
i , . . . , s

#
n and the concrete path

πmax = s0, . . . , si, . . . , sm (m ≤ n), where si = (�i, Ri) and s#i = (�#i , R
#
i).

Furthermore, �i = (�
(1)
i , �

(2)
i), where �

(1)
i and �

(2)
i are locations of H1 and H2, re-

spectively. The location of the abstracted composed automaton H1||H#
2 is given

by the tuple �#i = (�
(1)
i , �

#(2)
i). Depending on the location partitioning of H#

2

the refinement algorithm distinguishes three cases:

1. |α−1(�
#(2)
m)| > 1, i.e., the abstract location corresponding to the last concrete

location can be split:

The refinement algorithm proceeds by splitting the abstract location �
#(2)
m

of H#
2 into two locations: α−1(�

#(2)
m) \ �(2)m and �

(2)
m , where �

(2)
m is a location

of H2 corresponding to the concrete symbolic state sm = ((�
(1)
m , �

(2)
m), Rm).

2. |α−1(�
#(2)
m)| = 1 and |α−1(�

#(2)
m+1)| > 1, i.e., the abstract location ofH#

2 corre-
sponding to the last concrete location cannot be split, whereas the successor
abstract location still comprises multiple locations:

The refinement algorithm splits �
#(2)
m+1 into α−1(�

#(2)
m+1) \ �′ and �′, where �′ =

{�|� ∈ �
#(2)
m+1 and � is a target location of discrete transition from �

#(2)
m }. In

other words, we look for locations in �
#(2)
m+1 which have incoming transitions

from �
#(2)
m and split them apart. Note that in this case we do not look at the

transition guard and any other continuous artifacts.

126 S. Bogomolov et al.

3. |α−1(�
#(2)
m)| = 1 and |α−1(�

#(2)
m+1)| = 1, i.e., neither the abstract location

corresponding to the last concrete location nor its successor can be split:
The algorithm iterates over the abstract path and looks for a abstract state
in H#

2 with a location which still can be split, i.e., we look for i s.t. i < m∧
|α−1(�

#(2)
i)| > 1. The location �

#(2)
i is split into locations α−1(�

#(2)
i) \ �(2)i

and �
(2)
i , where �

(2)
i is a location of H2 corresponding to si = ((�

(1)
i , �

(2)
i), Ri).

Therefore, during the refinement process, we only refer to the locations of the
abstracted component H#

2 , i.e., we consider the projection of the found path to

H#
2 . The refinement algorithm as described above also has a progress property:

Proposition 2 (Progress Property). The size of the location partitioning
increases by one location after every application of the refinement algorithm over
cases 1–3.

Proof. By construction, the number of locations in H#
2 increases by one in cases

1 and 2 after every refinement iteration. In case 3 the refinement can be only done

under the assumption that there exists an index i s.t. i < m ∧ |α−1(�
#(2)
i)| > 1

holds. This statement is true as the opposite would mean that the whole ab-
stract bad path π# only consists of concrete states. This in turn would lead to
the fact that π# is already a concrete path to the bad state. The function Re-
finement is, however, called only for abstract bad paths which were found to be
spurious. �

This proposition lets us conclude that Algorithm 1 terminates after a finite
number of iterations after having considered the original system in the worst
case. By combining this result with Proposition 1 and rule ASym, we can derive
the following soundness and relative completeness results:

Theorem 1 (Soundness). If our compositional framework is able to prove that
H1||A cannot reach the (abstract) error states, then the composition H1||H2 is
safe, that is, it cannot reach the (concrete) error states.

Theorem 2 (Relative Completeness). If our compositional framework is
able to find a symbolic error path in H1||A which is not spurious, then there
exists a concrete symbolic error path in the composition H1||H2, too.

The existence of a symbolic error path does not necessarily imply the existence
of an error trajectory (due to the undecidability of the reachability problem for
affine hybrid automata). This is why we call the above result (for symbolic paths)
relative completeness.

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 127

4 Related Work

The framework developed by Pasareanu et al. [13] enables automated composi-
tional verification using rule ASym. In that work, both assumptions and prop-
erties are expressed as finite state automata. The framework uses the L* [4]
automata-learning algorithm to iteratively compute assumptions in the form
of deterministic finite-state automata. Other learning-based approaches for au-
tomating assumption generation for rule ASym have been suggested as well [3].
All these approaches were done in the context of transition systems, not for
hybrid systems as we do here.

Several ways to compute abstractions of hybrid automata have been proposed.
Alur et al. [2] propose to use a variant of predicate abstraction to construct a
hybrid automaton abstraction. In a slightly different setting, Tiwari [16] suggests
to use Lie derivatives to generate useful predicates. Both mentioned approaches
essentially reduce the analysis of a hybrid automaton to the level of a discrete
transition system. Jha et al. [12] partially eliminate continuous variables in the
system under consideration. Prabhakar et al. [15] propose the use of CEGAR for
initialized rectangular automata (IRA), where the abstractions reduce the com-
plexity of both the continuous and the discrete dynamics. In this paper, we use a
similar idea, but apply it to the more general class of affine hybrid automata, and
even more importantly, we extend it to a compositional verification framework.
Finally, Doyen et al. [8] take an affine automaton, and, through hybridization,
obtain its abstraction in the form of a rectangular automaton with larger dis-
crete space. We do the opposite: we take an affine automaton, and construct a
much smaller linear hybrid automaton.

5 Evaluation

5.1 Benchmarks

For the evaluation of our approach we have extended the switched buffer net-
work benchmark [10]. The system under consideration consists of multiple tanks
connected by channels. The channels are used to transport the liquid stored in
the tanks. There are two special tanks: the liquid enters the network through the
initial tank and is transported towards the sink tank. We consider properties
reasoning about the fill level of the sink tank.

The rate of change of the fill level fT of a tank T , depends on the rates of inflow
vin i and the rates of outflow vout j of the liquid, where vin i is the velocity at which
the liquid flows into the tank of the i-th input channel, and vout j is the velocity at
which the liquid flows out of the tank for the j-th output channel. Therefore, the
evolution of the fill level of the tank T is described by the differential equation
˙fT =

∑
i vin i −

∑
j vout j , where i and j range over incoming and outgoing

channels of T , respectively. Note that due to fine-granular modelling of tanks and
channels this benchmark class exhibits a large number of continuous variables.
In particular, in our benchmark suite the number of continuous variables is in
the range from 17 to 21 for the buffer networks with up to 4 tanks, whereas it is

128 S. Bogomolov et al.

well-known that the analysis complexity of hybrid automata rapidly grows with
the number of variables in the system under consideration.

We extend the switched buffer network [10] by the model of a complex strat-
ified controller. The controller is organized in a number of phases of some given
length, where multiple options (governing the modes of particular channels) are
available in every phase. After having finished the last phase the controller re-
turns to the first one. The controller can open/close channels and adjust the
throughput values at every step. We consider the following modes of controller
operations:

1. Throughput provided by an interval (“No Dynamics”): when the channel is
activated, its throughput v is constrained by the inequality vmin ≤ v ≤ vmax.

2. Throughput evolving at a constant rate (“Constant Dynamics”): the
throughput is defined by the differential equation of the form v̇ = c for
some constant c.

3. Throughput evolving according to affine dynamics v̇ = c(vtarget−v) (“Affine
Dynamics”): the controller provides a target throughput velocity vtarget and
some constant factor c. According to this dynamics the channel opens grad-
ually with the opening speed decaying towards the target velocity.

5.2 Experiments

We have implemented our approach in SpaceEx [9]. The implementation and
the benchmarks are available at http://swt.informatik.uni-freiburg.de/

tool/spaceex/agar. The experiments were conducted on a machine with an
Intel Core i7 3.4 GHz processor and with 16 GB of memory. In the following,
we report the results for our compositional analysis implemented in SpaceEx.
We compare the analysis results of the original concrete system and the com-
positional analysis. For both settings, we compare the number of iterations of
SpaceEx and the whole analysis run-time in seconds (see Table 1). The best
results are highlighted in bold. We analyze 12 structurally different benchmark
instances. For each of them we vary forbidden states and in this way end up with
36 different benchmark settings. We also vary controller dynamics. In particu-
lar, we provide 12 instances for each of the modes “No Dynamics”, “Constant
Dynamics” and “Affine Dynamics”. The number of continuous variables varies
in the considered benchmark instances from 17 to 21 variables. The initial ab-
straction is generated by merging some of the strata in the controller.

We observe that our compositional reasoning algorithm generally boosts the
run time compared to the analysis of the original system. For example, in in-
stance 4 (system is safe) the analysis of the concrete system takes around 609
seconds compared to around 158 seconds with the compositional analysis. The
speed-up is justified by the smaller branching factor due to location merging. In
Fig. 3a and Fig. 3b the fill level of sink tank vs. time for the original system
and the initial abstraction are plotted. Fig. 3b particularly shows that multiple
“thin” flow-pipes are merged into a couple of “thick” ones, i.e., the system stops
differentiating between some options in the controller.

http://swt.informatik.uni-freiburg.de/tool/spaceex/agar
http://swt.informatik.uni-freiburg.de/tool/spaceex/agar

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 129

Table 1. Experimental results for the switched buffer benchmark. Abbreviations: #:
benchmark instance number, Res.: result of the system analysis, i.e., whether the bad
state can be reached, Tanks: number of tanks in the instance, Vars.: number of continuous
variables in the system, Phases: number of phases in the controller and number of options
in every phase, Refs.: number of refinement steps, It. (u): number of SpaceEx iterations
when analyzing the concrete (unmerged) system, It. (m): number of SpaceEx iterations
in scope of the compositional analysis, Time (u): total time in seconds of the analysis of
the concrete system, Time (m): total time in seconds of the compositional analysis.

Res. Tanks Vars. Phases Refs. It. (u) It. (m) Time (u) Time (m)

No Dynamics

1 safe 3 17 2 (5,1) 0 4640 253 779.754 14.692
2 unsafe 3 17 2 (5,1) 0 2555 191 299.437 35.370
3 safe 3 17 2 (5,1) 1 4640 1744 796.218 191.841

4 safe 3 17 4 (6,1,2,1) 0 3242 1115 608.796 157.924
5 unsafe 3 17 4 (6,1,2,1) 0 2410 756 196.461 66.740
6 safe 3 17 4 (6,1,2,1) 2 3242 1648 639.838 254.653

7 safe 4 21 2 (5,1) 0 2345 690 2162.273 621.137
8 unsafe 4 21 2 (5,1) 0 1348 483 1139.365 479.811
9 safe 4 21 2 (5,1) 1 2345 1001 2164.069 937.064

10 safe 4 21 4 (4,1,2,1) 0 1361 394 1327.062 406.592
11 unsafe 4 21 4 (4,1,2,1) 0 1070 316 502.992 303.988
12 safe 4 21 4 (4,1,2,1) 1 1361 684 1174.735 700.072

Constant Dynamics

13 safe 3 17 4 (2,1,5,1) 0 1386 424 90.457 21.484
14 unsafe 3 17 4 (2,1,5,1) 0 461 232 18.773 10.807
15 safe 3 17 4 (2,1,5,1) 2 1386 1261 81.076 77.938

16 safe 3 17 6 (2,1,6,1,2,1) 0 1989 1027 146.726 63.878
17 unsafe 3 17 6 (2,1,6,1,2,1) 0 809 352 32.961 14.279
18 safe 3 17 6 (2,1,6,1,2,1) 2 1989 2041 142.385 250.451

19 safe 4 21 4 (2,1,4,1) 0 1293 787 1350.973 1318.623
20 unsafe 4 21 4 (2,1,4,1) 0 1080 682 1429.120 1298.147
21 safe 4 21 4 (2,1,4,1) 1 1293 814 1579.792 1197.098

22 safe 4 21 6 (2,1,4,1,2,1) 0 903 563 1255.978 1140.114
23 unsafe 4 21 6 (2,1,4,1,2,1) 0 798 510 1230.193 1141.791
24 safe 4 21 6 (2,1,4,1,2,1) 1 903 581 1365.629 1318.049

Affine Dynamics

25 safe 3 17 4 (2,1,5,1) 0 7747 1168 1544.363 86.046
26 unsafe 3 17 4 (2,1,5,1) 0 5103 1042 939.430 100.871
27 safe 3 17 4 (2,1,5,1) 1 7747 6214 1669.268 1240.215

28 safe 3 17 6 (2,1,6,1,2,1) 0 6129 2760 717.462 231.727
29 unsafe 3 17 6 (2,1,6,1,2,1) 0 5382 2397 639.342 203.143
30 safe 3 17 6 (2,1,6,1,2,1) 7 6129 15068 706.960 2158.671

31 safe 4 21 4 (2,1,4,1) 0 1718 1451 3603.238 3125.016
32 unsafe 4 21 4 (2,1,4,1) 0 1692 1392 3776.840 3247.464
33 safe 4 21 4 (2,1,4,1) 1 1718 2559 4372.284 3805.045

34 safe 4 21 6 (2,1,4,1,2,1) 0 983 642 1382.567 1078.893
35 unsafe 4 21 6 (2,1,4,1,2,1) 0 922 611 1206.011 1213.798
36 safe 4 21 6 (2,1,4,1,2,1) 1 983 755 1442.506 1321.658

130 S. Bogomolov et al.

0 20 40 60 80 100
0

5

10

15

20

25

30

(a) Original system

0 20 40 60 80 100
0

5

10

15

20

25

30

(b) Initial abstraction

Fig. 3. Fill level of the sink tank for instance 4 vs. time

Furthermore, we remark that our compositional algorithm shows promising
results also in the falsification setting, i.e., when the bad state is reachable. In
instance 5, our approach reduces the run-time from around 196 seconds for the
concrete system to only 67 seconds in scope of the compositional framework.

The necessity to refine the abstraction, in case a spurious abstract bad path
has been discovered, can generally be handled efficiently by our framework, e.g.,
in instance 6 our approach takes around 254 seconds (including two refinement
steps) compared to 640 seconds for the concrete system. However, due to an
unfortunate choice of the abstract bad path, we might need to refine an excessive
number of times (instance 30) which in turn decreases the overall performance.

6 Conclusion

In this paper, we have adapted the idea of compositional analysis to the domain
of hybrid systems. We have presented an abstraction based on location merging.
The abstract location invariant is computed by taking a convex hull of the con-
crete locations to be merged. The abstract continuous dynamics are computed
by eliminating the state variables and computing a convex hull.

Acknowledgments. This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative Research Cen-
ter “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS, http://www.avacs.org/). We thank Jannik Rebmann and Simon Ganz
for their help with the benchmark suite preparation.

http://www.avacs.org/

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 131

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P., Nicolin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138, 3–34 (1995)

2. Alur, R., Dang, T., Ivančić, F.: Reachability analysis of hybrid systems via pred-
icate abstraction. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS,
vol. 2289, pp. 35–48. Springer, Heidelberg (2002)

3. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learn-
ing assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 548–562. Springer, Heidelberg (2005)

4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87–106 (1987)

5. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008)

6. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

7. Donzé, A., Frehse, G.: Modular, hierarchical models of control systems in SpaceEx.
In: European Control Conference (ECC) (2013)

8. Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic rectangular refinement of
affine hybrid systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS,
vol. 3829, pp. 144–161. Springer, Heidelberg (2005)

9. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

10. Frehse, G., Maler, O.: Reachability analysis of a switched buffer network. In:
Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416,
pp. 698–701. Springer, Heidelberg (2007)

11. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292 (1996)
12. Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hybrid

automata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A., But-
tazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg
(2007)

13. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the L* algorithm to automate assume-
guarantee reasoning. Formal Methods in System Design (FMSD) 32(3), 175–205
(2008)

14. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Logics and Models of Concurrent Systems. NATO ASI Series (1985)

15. Prabhakar, P., Duggirala, P.S., Mitra, S., Viswanathan, M.: Hybrid automata-
based CEGAR for rectangular hybrid systems. In: Giacobazzi, R., Berdine, J.,
Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 48–67. Springer, Heidelberg
(2013)

16. Tiwari, A.: Abstractions for hybrid systems. Formal Methods in System Design
(FMSD) 32(1), 57–83 (2008)

17. Zutshi, A., Sankaranarayanan, S., Deshmukh, J., Kapinski, J.: A trajectory splicing
approach to concretizing counterexamples for hybrid systems. In: Conference on
Decision and Control (CDC), pp. 3918–3925 (2013)

	Assume-Guarantee Abstraction Refinement Meets Hybrid Systems
	Introduction
	Preliminaries
	Compositional Framework for Hybrid Systems
	Abstraction Algorithm
	Compositional Analysis
	Spuriousness Check
	Refinement Algorithm

	Related Work
	Evaluation
	Benchmarks
	Experiments

	Conclusion

