Software Model Checking for
People who Love Automata

Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski

University of Freiburg, Germany

Abstract. In this expository paper, we use automata for software model
checking in a new way. The starting point is to fix the alphabet: the
set of statements of the given program. We show how automata over
the alphabet of statements can help to decompose the main problem
in software model checking, which is to find the right abstraction of a
program for a given correctness property.

1 Introduction

Automata provide the algorithmic basis in many applications. In particular, we
can use automata-based algorithms to implement a data structure for operations
over sets of sequences. An automaton defines a set of sequences over some alpha-
bet. Or, in the terminology of formal language theory: an automaton recognizes
a language (the elements in the sequence are letters, a sequence of letters is a
word, a set of words is a language).

Formally, an automaton is a finite graph; its edges are labeled by letters of
the alphabet; an initial node and a set of final nodes are distinguished among
its nodes. The labeling of a path is a word. The automaton defines the set of all
words that label a path from the initial node to one of the final nodes.

In this expository paper, we use automata for software model checking in a
new way. The starting point is to fix the alphabet: the set of statements of the
given program. The idea that a statement is a letter may take some time to get
used to. As a letter, a statement is deprived of its meaning; the only purpose of
a letter is to be used in a word. We are not used to freely compose statements
to words, regardless of whether the word makes any sense as a sequence of
statements or not.

In software model checking, a (if not the) central problem is to automatically
find the right abstraction of a program for a given correctness property. In the
remainder of this section, we will use three examples to illustrate how automata
over the alphabet of statements can help to automatically decompose this prob-
lem. Then, in Section 2] we will fix the formal setting that allows us to relate the
correctness of programs with automata over the alphabet of statements. In Sec-
tion[3] we will define the notion of Floyd-Hoare automata for a given correctness
property, and we will present different ways to construct such automata. We will
see that, for a given program, the construction of Floyd-Hoare automata can be
used to automatically decompose the task of finding the right abstraction of the
program for the given correctness property.
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l:assume p != 0;

¢:while(n >= 0) p!=0

Zz:{ assert p != 0; @ n<0
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Fig. 1: Example program Py

Example 1: automata from infeasibility proofs

The program Pey; in is the adaptation of an example in [I5] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of Pey1, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of Py rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to —1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize different cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of Pey;.

We will describe an execution of P.y; through the sequence of statements
on the corresponding path in the control flow graph of Pey1; see The
shortest path from £y to Le, goes via ¢1 and £5. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not
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Fig.2: Automata A; and Ay which are a proof of correctness for
Pox1 (an edge labelled with X' means a transition reading any let-
ter, an edge labeled with X\{{p := 0 }) means a transition reading any letter
except for (p := 0, etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A; in which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). Le., A; recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p # 0 and p = 0).

A sequence of statements is not accepted by A; if it contains p!=0 and p==0
with an update of p in between. The shortest path from ¢y to fe, with such a
sequence of statements goes from ¢o to e, after it has gone from /5 to ¢3 once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A depicted in which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). Le., As recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n' =n—1, and n’ > 0).

To summarize, we have twice taken a path from £y to £e,, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set



of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of Pgy falls into
one of the two cases? — The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from ¢y to e, in the control flow graph of Pey; fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call Peyy (recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

Pex1 € A1 U As.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton Pey1, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A; and Ay in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program Peyo in shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from £y to £ ) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in /5 taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are sufficient
to prove the infeasibility of all those paths. They express that the assertion z > 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {z >0}
{z >0} y:=0 {z >0}
{z >0} x++ {x >0}
{z > 0} x==-1{ false }



lo: x = 0;

li:y = 0;

l3: while(nondet) {x++;}
assert(x != -1);
assert(y != -1);

Fig. 3: Example program Pexo

The automaton A; in has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state go for true, the state
q1 for x > 0, the (only) final state g2 for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [7] applied to the program fragment that corresponds to
one path from £y to feyr; such a static analysis may assign an abstract value
corresponding to x > 0 to the location /5 and determine that £, is not reachable.

In our implementation [I1], the set of Hoare triples comes from an interpo-
lating SMT solver [5] which generates the assertion x > 0 from the infeasibility
proof.

The four Hoare triples below are sufficient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true}
{true } y:=0 {y =0}
{y=0} x++ {y=0}
{y = 0} y==-1{false }

We use them in the same way as above in order to construct the automaton
A, in The two automata are sufficient to prove the correctness of the
program; i.e., Pexo C A1 U As.

y:=0

x:=0 A
W x==-1 y:=0 % y==-1
x++ x:=0 x++

Fig.4: Automata A; and Ay for Pexo



The Hoare triple {y = 0} x++ {y = 0} holds trivially. This is related to the
fact that the statement x++ does not modify the variable of the statements in
the infeasible sequence y:=0 y==-1. l.e., we could have based the construction
of the automaton A, in on an infeasibility proof as for the automata
in Example 1.

Example 3: automata for trace partitioning

The Pexs in is a classical example used to motivate trace partitioning for
static analysis (see, e.g., [I8]). As shown in an interval analysis applied
to the program will derive that the value of the variable x at location /3 lies in
the interval [—1,1]. This is not sufficient to prove that the error location is not
reachable. One remedy is to partition the executions into two cases according
to whether the execution takes the then or the else branch of the conditional.
The static analysis applied to each of the two cases separately will derive that
the value of the variable x at location ¢5 lies in the interval [—1, —1] (in the else
case) or in the interval [1,1] (in the then case). In either case, the static analysis
derives the unreachability of the error location.

true
x<0 x>=0 0<zx

lo: if(x>= 0) { =

lq1: x :=1;
< _
} else{ ”“’— !
2% = -1; . g

X =

, g g
l3: assert(x != 0); —1<w<1

Fig.5: Example program Peys (the labeling of program locations with assertions
translates the result of an interval analysis; the labeling of the error location is
not the assertion false which means that the interval analysis does not prove
that the error location is unreachable; for each edge between two nodes, the two
assertions and the statement form a Hoare triple)

We will use the example to illustrate how automata can be used to infer this
kind of partitioning automatically for a given verification task.

Consider the partial annotation shown in As in each

edge corresponds to a Hoare triple, but there is no edge from ¢; to ¢3. The



x<0 x>=0 0<z x>=0 0<z
J; < -1
x:=-1 x:=1
z=-—1 x =1
x==0 x==0
false false
(a) Pixs (b) Pés

Fig. 6: Programs Pl 4 and P25 obtained by automata-based trace partitioning
(the labeling of program locations with assertions translates again the result
of the interval analysis; the programs are defined by PL, = Pexs N A; and
P25 = Pexs \ A1 where the automaton A; is constructed from an intermediate
result of the interval analysis applied to Peys; the intermediate result provides
the assertions © = —1 for /3 and false for £, but does not provide a Hoare triple
for the edge from ¢; to f3; the executions of P2 are exactly those executions
of Pexs that have not yet been proven correct by the intermediate result of an

interval analysis applied to Pexs3)

partial annotation is established by taking the intermediate results of the static
analysis. This includes in particular the Hoare triples {z < —1} x:=-1 {z = —1}
and {x < —1} x==0 {false}. We construct the automaton A; from the set of
Hoare triples used in the partial annotation. Since A; has one state for each of
the five assertions used in the partial annotation (namely true, x < —1, z = —1,
false and 0 < x), we can use the five program locations as automaton states and
take the set of states Q = {{o,...,¥s, ler}. Since A; has one transition for each
of the four Hoare triples, the transitions are exactly the four edges in the graph
in

We now proceed to define the partition of the executions of Peyx3. We compute
the program Pl as the intersection of the program Pexs with the automaton
Aj and the program P2, as the difference between Pey3 and Aj.

Po1x3 = Poxz N A
ng?, = Pexs \ Ay

We here exploit the fact that a program can be viewed as an automaton and vice
versa. When we view a program as an automaton, we can apply set-theoretic
operations (here intersection and set difference). When we view an automaton



as a program, we can consider its operational semantics, apply a static analysis,
check its correctness, and so on.

The executions of P, are exactly those executions of Pexs that have been
proven correct by the annotation in and the executions of P2 are
exactly those executions of Peys that have not yet been proven correct.

In our example, Pl ; happens to be equal to A; (since A; is a subset of
Pex3). We depict the program P2, in The two programs capture
the above-mentioned two cases of executions. For each of them, the application
of interval analysis proves the correctness, i.e., the unreachability of the error

location.

2 Programs, Correctness, and Automata

We first present an abstract formal setting in which we define the notions of:
trace, correctness of a trace, program, and correctness of a program, in terms of
automata-theoretic concepts. To help intuition, we then discuss how the setting
relates to some of the more concrete settings that are commonly used.

2.1 Formal setting

Trace 7. We assume a fixed set of statements Y. A trace 7 is a sequence of
statements, i.e.,
T=4&1... Stn

where &1,...,8, € X and n > 0 (the sequence is possibly empty). In order to
connect our formal setting with automata theory, we view a statement & as a
letter and a trace T as a word over the alphabet X; i.e., 7 € X*. Since one calls
a set of words a language, the set of traces is the language of all words over the
alphabet X.

{traces} = X*

Correctness of a trace 7. We assume a fixed set @ of assertions. The set of
assertions @ contains the assertions true and false and comes with a binary
relation, the entailment relation. We write ¢ = 1) if the assertion ¢ entails the
assertion .

We assume a fixed set of triples of the form (¢, &,1) where ¢ and ¢ are
assertions in @ and & is a statement in Y. We say that every triple (¢, &,1) in
the set is a valid Hoare triple and we write

{¢} & {¢} is valid.

The Hoare triple {¢} 7 {¢} is valid for the trace 7 = &7 ...4, if each of
the Hoare triples below is valid, for some sequence of intermediate assertions

@1y, Pn—1-
{et g {e} s {on—1} gn {¥}

If n =0 and 7 is the empty trace (7 = ¢) then ¢ must entail .



In order to define correctness, we assume a fixed pair of assertions which we
call the pre/postcondition pair,

(@Pre» QQPOSt)'
The trace 7 is defined to be correct if the Hoare triple {@pre} 7 {@post } is valid.

{correct traces} = {7 € X | {ppre} T {@post} is valid}

The notion of a trace and the correctness of a trace are independent of a
given program. We will next introduce the notion of a program and define the
set of its control flow traces. We can then define the correctness of the program:
the program is correct if all its control flow traces are correct.

Program. We formalize a program P as a special kind of graph which we call
a control flow graph. The vertices of the control flow graph are called locations.
The (finite) set of locations Loc contains a distinguished initial location £y and
a subset F of distinguished final locations. The edges of the control flow graph
are labeled with statements. We use ¢ for the labeled edge relation; i.e.,

d C Loc x X x Loc.

The edge between the two locations ¢ and ¢’ is labeled by the statement & if §
contains the triple (¢, &,¢').

Given a program P, we say that the trace 7 is a control flow trace if T labels
a path in the control flow graph between the initial location and a final location
(the path need not be simple, i.e., it may repeat locations and edges).

Since a statement & is a letter of the alphabet Y| the program

P = (Loc, 6, 4y, F)

is an automaton over the alphabet X. Since a trace 7 is a word (i.e., 7 € X*),
the automaton P recognizes a set of traces. We write L(P) for the language
recognized by P, which is a language of words over the alphabet X i.e.,

L(P) C Z*.

The condition that a trace 7 is a control flow trace translates to the fact that
the word 7 is accepted by the automaton P. Thus, the set of control flow traces
is the language over the alphabet 3 which is recognized by P, i.e.,

{control flow traces} = L(P).

Correctness of a program P. We define that the program P is correct and write

{‘Ppre} P {‘Ppost}

if the Hoare triple {¢pre} T {¢post} is valid for every control flow trace 7 of P,
which is equivalent to the inclusion

{control flow traces} C {correct traces}.



Thus, the correctness of a program is characterized by the inclusion between
two languages over the alphabet of statements Y. The language of correct traces
is in general not recognizable by a finite automaton; if, for example, the one-
letter alphabet consisting of the statement x++, the precondition “x is equal to
0” and the postcondition “x is a prime number”, then the language of correct
traces is the set of traces whose length is a prime number. However, for every
correct program P there exists a finite automaton A that interpolates between
the language of control flow traces and the language of correct traces (i.e., A
accepts all control flow traces and A accepts only correct traces), formally

{control flow traces} C £L(A) C {correct traces}.

The existence of such an automaton A follows for a trivial reason. If we assume
that the program P is correct, then we can choose A to be the program P itself
(by the definition of control flow traces, P accepts all control flow traces, and
by the definition of program correctness, P accepts only correct traces). In fact,
P is the smallest among all automata that one can use to prove the correctness
of the program P. Many existing methods for proving program correctness are
restricted to this one example as the choice for the automaton \A. In Section [3|we
will discuss other examples (examples of automata 4 that properly interpolate
between the language of control flow traces and the language of correct traces).

2.2 Discussion

We next relate the abstract formal setting used above to some of the more
concrete settings that are commonly used.

Assertions. Usually, an assertion ¢ is a first-order logic formula over a given
vocabulary. Its variables are taken from a set Var of variables (the program
variables). In our formal setting, we will not introduce states and related notions
(state predicate, postcondition, ...). In a formal setting based on states, an
assertion is used to define a state predicate (i.e., a set of valuations or states).
There, the Hoare triple {¢} & {1} signifies that the postcondition of ¢ under the
statement & entails v, or: if the statement & is executed in a state that satisfies
then the successor state satisfies ¥. In our formal setting, we abstract away from
the procedure (first-order theorem prover, SMT solver, ...) used to establish
entailment or the validity of a Hoare triple. We also abstract away from the
specific procedure (static analysis, interpolant generation, . ..) used to construct
the sequence of intermediate assertions 1, ..., p,—1 needed to establish the
validity of a Hoare triple for a trace of the length n.

Using assume statements. In order to accommodate control constructs like
if-then-else and while of programming languages in a formal setting based on
the control flow graph, we can use a form of statement that is often called assume
statement. That is, for every assertion ¢ we have an statement (also written )
such that the Hoare triple {¢} ¥ {¢’} is valid if the assertion ¢’ is entailed



by the conjunction 1) A ¢. The meaning of assume statements for the purpose
of verification is clear. Their operational meaning is somewhat contrived: if an
execution reaches the statement ¢ in a state that satisfies the assertion 1 then
the statement is ignored, and if an execution reaches the statement 1) in a state
that violates the assertion 1 then the execution is blocked (and the successor
location in the control flow graph is not reached).

Infeasibility =—> Correctness. Formally, we define that a trace is infeasible if
the Hoare triple

{true} 7 {false}

is valid. Intuitively, a trace 7 is infeasible if there is no possible execution of the
sequence of the statements in 7 (in whatever valuation of the program variables
the execution starts, one of the assume statements in the sequence cannot be
executed). For example, the sequence of two assume statements x==0 x==1 is an
infeasible trace; the sequence x:=0 x==1 is another example. An infeasible trace
thus satisfies every possible pre/postcondition pair. In other words, an infeasible
trace is correct (for whatever pre/postcondition pair (@pre, Ppost) defining the
correctness).

The fact that infeasibility implies correctness is crucial. In general, the set of
feasible correct control flow traces is not regular (the feasible control flow traces
are exactly the sequences of statements along paths in the transition system of
the program, i.e., in the—in general infinite—graph formed by transitions be-
tween program states). We obtain a regular set because we include the infeasible
control flow traces (in addition to the feasible ones). As an aside, if the program
P is not correct then the subset of correct control flow traces is in general not
regular.

Non-reachability of error locations. In some settings, it is convenient to express
the correctness of a program by the non-reachability of distinguished locations
(often called error locations). In our setting, this corresponds to the special case
where the set F' consists of those locations and the postcondition ¢pest is the
assertion false. Moreover, if the precondition is true, the non-reachability of
error locations is exactly the infeasibility of all control flow traces.

As mentioned above, an infeasible trace is correct (for any pre/postcondition
pair (Ypre, Ppost) that is used to define correctness of traces). In the special case
of the pre/postcondition pair (true, false), the converse holds as well. Le., in this
case we have: a trace is correct exactly when it is infeasible.

Validity of assert statements. In other settings, it is convenient to express
the correctness by the validity of assert statements. Informally, the statement
assert(e) is valid if, whenever the statement is reached in an execution of the
program, the Boolean expression e evaluates to true. This notion of correctness
can be reduced to non-reachability (for each assert statement assert(e) for
the expression e, one adds an edge to a new error location labeled with the
assume statement assume (not e) for the negation of the expression e.)



Partial correctness. The partial correctness wrt. a general pre/postcondition
pair (Ppre; Ppost) can always be reduced to the partial correctness wrt. the spe-
cial case of the precondition being true and the postcondition being false (by
modifying the control flow graph of the program: one adds an edge from a new
initial location to the old one labeled with the assume statement [¢pr] for the
precondition and an edge from each old final location to a new final location
(an “error location”) labeled with the assume statement [—@post] for the negated
postcondition).

3 Floyd-Hoare Automata

Given an automaton A = (Q, d, go, Qfinal) over the alphabet of statements X' and
given a pre/postcondition pair (¢pre, Ppost), When do we know that A accepts
only correct traces (i.e., traces 7 such that the Hoare triple {¢pre} 7 {®post} is
valid)? The definition below gives a general condition (and provides a general
method to construct an automaton that accepts only correct traces).

Definition 1. The automaton A = (Q, 9, qo, Qfinat) over the alphabet of state-
ments X (with the finite set of states @, the transition relation § C Q X X x Q,
the initial state qo and the set of final states Qfinat) is a Floyd-Hoare automaton
if there exists a mapping

GEQ — p, €P

that assigns to each state q an assertion ¢, such that

— for every transition (q,4,q") € § from state q to state ¢’ reading the letter &,
the Hoare triple {¢q} & {pq } is valid for the assertions @, and ¢4 assigned
to q and ¢’, respectively,

— the precondition ppre entails the assertion assigned to the initial state,

— the assertion assigned to a final state entails the postcondition @post.

(g,8,¢") €6 = {pq} & {pqy} is valid
9=q0 = Ppe E ¥q
q € Qfinal = Pq |: Ppost

The mapping g — ¢, from states to assertions in the definition above is called
an annotation of the automaton A.

Theorem 1. A Floyd-Hoare automaton A accepts only correct traces,
L(A) C {correct traces}

i.e., if the trace T is accepted by A then the Hoare triple {ppre} & {@Ppost} is valid.

Proof. We first prove, by induction over the length of the trace 7, the statement:
for every pair of states ¢ and ¢’ and their corresponding assertions ¢, and ¢,
if the trace 7 labels some path from ¢ to ¢’ then the Hoare triple {¢g} 7 {¢g}
is valid. The base case (7 = ¢ and ¢ = ¢’) holds trivially. The induction step
(1" = 1. and (¢, &,¢") € J) uses the Hoare triple {¢q } ¢ {¢q} to show that
{pq} 7.8 {py} is valid. The theorem is the instance of the statement where we
set ¢ to the initial state and ¢’ to a final state. a



A Floyd-Hoare automaton A is a correctness proof for the program P if it accepts
all control flow traces, i.e., if L(P) C L(A). Many (if not all) existing verification
methods amount to constructing an annotation for the program P and thus to
showing that P is a Floyd-Hoare automaton. Trivially, P can only be the smallest
among all the Floyd-Hoare automata that prove the correctness of P.

A well-known fact from the practice of automata is that the size of an au-
tomaton can be drastically reduced if the automaton is allowed to recognize a
larger set. This is interesting in a setting where the size of the automaton we
construct correlates with the number of Hoare triples we have to provide for an
annotation. That is, instead of providing Hoare triples for an annotation of the
control flow graph of the program P which recognizes exactly the set of control
flow traces, it may be more efficient to provide Hoare triples for an annotation
of the transition graph of an automaton A that recognizes a larger set (one can
easily give examples of programs where an exponential reduction in proof size
(when going from P to A) can be obtained). If A is different from P, one still
needs to check that A is indeed a proof for P, i.e., that the inclusion between
the two automata, £(P) C L(A), does indeed hold. The efficiency of the proof
check is thus an issue of efficient implementations of automata.

The next statement means that we can compose correctness proofs in the
form of Floyd-Hoare automata to a correctness proof for the program P.

Theorem 2. If the Floyd-Hoare automata Az, ..., A, cover the set of control
flow traces of the program P (i.e., P C Ay U...UA,) then P is correct.

Construction of a Floyd-Hoare automaton. The definition of Floyd-Hoare au-
tomata provides a general method to construct an automaton that accepts only
correct traces, namely from a set of Hoare triples. We obtain different instances
of the method by changing the approach to obtain the set of Hoare triples. For
example, the set may stem from a partial annotation for the program, or the set
of Hoare triples may be implicit from the infeasibility proof for a trace.

Let H be a finite set of Hoare triples, i.e., for each (¢, &,%) in H, the Hoare
triple {¢} & {4} is valid (for now, we leave open how H is obtained). Let $y
be the finite set of assertions occurring in H. We assume that @y includes the
precondition ¢pe and the postcondition ¢pest. We construct the Floyd-Hoare
automaton Ag as follows.

An = (Qm, 9,90, Qfinat) Where  Qp ={q, | ¢ € Pu}
6 ={(qp, &, qy) | (p,4,¢) € H}
do = q‘Ppre

Qﬁnal = {QLppost }

That is, we form the set of states Q g by introducing a state g, for every assertion
v in H (i.e., @y is bijective to Qg ). The transition relation ¢ defines a transition
labeled by the letter & from the state ¢, to the state g, for every Hoare triple
(p, &,) in H. The initial state is the state assigned to the precondition @pre.
The (unique) final state is the state assigned to the postcondition @post.



Clearly, A is a Floyd-Hoare automaton: the inverse of the mapping ¢ — g,
is a mapping of states to assertions as required in Definition [T}

Construction of automaton from infeasibility proof. Assume, for example, that
the trace 7 =81 ... &; ... &5 ... &y is infeasible and that we have a proof of
the form: the sequence of the two statements &; and &; is infeasible and the
statements in between do not modify any variable used in &; and ;. We can
construct an automaton with the set of states @ = {qo,q1,¢2} as follows. The
initial state gy has a transition to a state ¢; reading &;. The state g; has a tran-
sition to the final state go reading &;. The initial state and the final state each
have a self-loop standing for a transition reading any letter of the alphabet. The
state ¢; has a self-loop standing for a transition reading any letter except for
statements that modify a variable used in &; or &;. The construction general-
izes to the case where the infeasibility involves more than two statements; see
Example 1 in the introduction.

To see that this construction is a special case of the construction above,
we take any assertion ¢ such that the two Hoare triples {true} &; {»} and
{¢} &; {false} are valid (for example, we can take the strongest postcondition
of true under the statement &;) and we form the set of Hoare triples H by those
two Hoare triples, the Hoare triples of the form {¢} ¢ {p} for any statement
& in X' that does not modify a variable used in &; or &;, and the trivial Hoare
triples {true} & {true} and {false} s {false} for every statement & in X. Thus,
the special case consists of leaving the assertion ¢ implicit. This is not always
possible; see Example 2 in the introduction.

Construction of a correctness proof for the program P. By we can

construct an automaton A for a correctness proof for the program P, i.e.,
{control flow traces} C L(A) C {correct traces}. (1)

as the union of Floyd-Hoare automata, i.e., 4 = A3 U...UA,. The construction
of A,..., A, can be done in parallel from the n correctness proofs (i.e., infea-
sibility proofs or sets of Hoare triples) for some choice of traces 7i,...,7,. The
construction of A as the union A = A;U...UA, can also be done incrementally
(for n = 0,1,2,...) until holds. Namely, if the inclusion does not yet hold
(which is the case initially, when n = 0), then there exists a control flow trace
Tn+1 Which is not in A. We then construct the automaton 4,41 from the proof
for the trace 7,41 and add it to the union, i.e., we update A to AU A, 1. This
is how we proceeded for the examples in the introduction.

If holds for A = A; U...U A, then the programs P, ..., P, where
P; =PNA; (fori =1,...,n) define a decomposition of the program P (i.e., P =
P1U...UPy,). This decomposition is constructed automatically from correctness
proofs (in contrast with an approach where one constructs correctness proofs for
the modules of a given decomposition).



lo: if (nondet){
x:=0
} else {
y:=0

li: if(z==0) {
la: assert (z==0)
} else {
12 assert(x==0 || y==0)

}

Fig. 7: Example program where it is useful to remove the restriction that the
correctness argument must be based on (an unfolding of) the control flow graph

4 Conclusion and Future Work

We have presented a new angle of attack at the problem of finding the right
abstraction of a program for a given correctness property. Existing approaches
(see our list of references) differ mainly in their techniques to decompose the
problem. Often the techniques (unfolding, splitting nodes, abstract states, ...)
are based on the control flow graph. Phrased in the terminology of our setting,
the techniques amount to constructing a cover (often a partitioning) of the set
of control flow traces by automata A, ..., A,. The construction is restricted in
that the automata must be merged into one automaton and, moreover, the states
and transitions of the resulting automaton must be in direct correspondence with
the nodes and edges of the control flow graph. This is needed to ensure that all
control flow traces are indeed covered (in the absence of an inclusion check). Our
approach allows one to remove this restriction. The example in may be
used to illustrate the difference between the approaches.

It is a topic of future work to position existing approaches to software model
checking in our setting. Since an abstraction refinement step eliminates in general
not just one counterexample trace but a whole set, it may be interesting to
characterize this set by an automaton and thus quantify the progress property.

The setting presented here can be extended to automata over nested words
in order to account for programs with (possibly recursive) procedures [12], and
to alternating automata in order to account for concurrent programs [9]. It is
still open how one can extend the setting to Biichi automata in order to account
for termination and cost analysis, although the use of omega-regular expressions
to decompose the set of infinite traces in [I0] may be a step in this direction.

The development of a practical method based on Floyd-Hoare automata must
address a wide range of design choices. An initial implementation is part of
ongoing work [I1].
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