
Size-Change Termination and
Transition Invariants

Matthias Heizmann1, Neil D. Jones2, and Andreas Podelski1

1 University of Freiburg, Germany
2 University of Copenhagen, Denmark

Abstract. Two directions of recent work on program termination use
the concepts of size-change termination resp. transition invariants. The
difference in the setting has as consequence the inherent incomparabil-
ity of the analysis and verification methods that result from this work.
Yet, in order to facilitate the crossover of ideas and techniques in further
developments, it seems interesting to identify which aspects in the respec-
tive formal foundation are related. This paper presents initial results in
this direction.

1 Introduction

There have been rapid advances in methods for automatically proving program
termination in recent years, both in theoretical research and in applications as
practical as finding termination bugs in device drivers. A recent wave of activity
began with the work on size-change termination from [22]. Related work and
further developments include, e.g., [7, 20, 22, 28]). A branch of this work is based
on the concept of transition invariants from [26]; see, e.g., [11, 13, 14, 17, 21, 27]).
The motivation behind the work in [26] was to carry over the ideas of [22] to ver-
ification methods in the style of software model checking [3, 4]. This goal entailed
going from a decidable program analysis problem (for functional programs) to
an undecidable verification problem (for imperative and concurrent programs).
The change of setting has as consequence the inherent incomparability of the
methods that result from the work on size-change termination resp. transition
invariants. Yet, in order to facilitate the crossover of ideas and techniques in
further developments of such methods, it seems interesting to identify which as-
pects in the respective formal foundation are related. This paper presents three
initial results. They concern 1. the proof rule, 2. the abstract domain, and 3. the
base algorithm.

1. If we take the proof rule that implicitly underlies the soundness proof for the
size-change termination analysis in [22] and the transition invariant-based
proof rule from [26], then the premise of the former is strictly stronger than
the premise of the latter and the conclusion of the former is strictly stronger
than the conclusion of the latter.
In detail: The size-change termination analysis in [22] decides size-change
termination, a property strictly stronger than termination. The intermediate

Size-Change Termination and Transition Invariants 1

result of the analysis is a set of size-change graphs. The analysis gives a yes-
answer if some of the graphs (the idempotent ones) denote a well-founded
relation. But then, perhaps surprisingly, all of the graphs must denote a
well-founded relation. This means that the premise in the (complete) proof
rule for termination from [26] is satisfied.

2. The abstract domain of size-change graphs in [22] corresponds to a specific
parameter for the transition predicate abstraction used in [11, 13, 14, 17, 27].
In detail: we can fix a specific set of transition predicates such that each size-
change graph can be translated to an equivalent conjunction of transition
predicates in this set, and vice versa. In fact, the arcs correspond to the
conjuncts.

3. When we categorize the base algorithm in the termination analyses by the
decision problem that it solves, we can establish the formal connection be-
tween the base algorithms.
In detail: We define two decision problems, one for size-change termination
and one for transition invariants; let us call them SCT and TI, for short.
Then SCT belongs to a special case of a third decision problem which, in the
special case, can be formulated in terms of TI (in general, the third decision
problem has a strictly higher complexity than TI).

The special case of the third decision problem (in Point 3.) is defined by the
associativity of the abstract composition of relations. The associativity is re-
sponsible not only for the lower complexity but also for the already (in Point 1.)
mentioned feature of size-change termination analysis. I.e., among the elements
in the output of the base algorithm, only the subset of idempotent elements has
to be inspected for well-foundedness (if the binary operation over the elements
is associative).

The definition of the special case thus abstracts away from the graph repre-
sentation and helps us to identify the associativity of their composition as the
crucial property of size-change graphs.3

The question left open by this paper is whether the notions of associativ-
ity and idempotency have correspondent notions for a similar optimization in
transition invariant-based termination analyses.

Roadmap. The first part of this paper presents what we believe is the essence
of size-change termination (Section 2) and transition invariants and transition
predicate abstraction (Section 3). Points 1. and 2. from above are covered in
Section 4. The reader who in interested only in Point 3. can jump directly to
Section 5, which we tried to keep self-contained. The paper ends with a discus-
sion of the qualitative differences that result from the different settings of the
methods. An extended version of this paper is available online [18].

3 The associativity of the composition is lost in the extension of size-change graphs
with finitely many arc weights in the style of [5] (where, for example, the weighted

arc x
k−→ x means that the value of x decreases by at least the integer k).

2 Matthias Heizmann, Neil D. Jones, and Andreas Podelski

2 Size-change termination (SCT)

2.1 A running example

Example 1. Figure 1 is a program example similar to one in [20]. It is a first-
order tail-recursive functional program with three function calls labeled 1, 2 and
3. Argument values range over the natural numbers IN , ordered as usual.

Figure 2 contains the program’s “control flow graph” with the calling function
and called function of each call, e.g., 1 : f→ g. It also associates with each call
τ a “size-change graph”, e.g., Gτ . Example: G1 abstracts the tuple of data flow
size changes that occur in call 1 from f to g. Symbol ↓ in G1, G2, G3 indicates a
value decrease, and symbol ↓= indicates a decrease or equality.

f(x,y) = if x=0 then y else 1: g(x,y,y)

g(u,v,w) = if v>0 then 2: g(u,v-1,2*w) else 3: f(u-1,w)

Fig. 1. Example of a first order tail-recursive functional program.

Informal SCT termination reasoning for the running example. Suppose
(hypothetically) there is an infinite call sequence π = τ1τ2τ3 . . . that follows
program P ’s control flow. We argue that any computation following π would have
an infinitely descending sequence of variable values. But this would contradict
the well-foundedness of set IN . Conclusion: program P terminates.

Case 1: π = . . . 2ω ends in infinitely many 2’s. By safety of graph G2, this
implies that the values of variable v descend infinitely.

Case 2: Since π is infinite, the only other possibility is that it has the
form π = . . . (12∗3)ω. Again by safety, this implies that the values of variable u
descend infinitely (once each time loop 12∗3 is traversed).
Therefore a call of any program function with any data will terminate.

Paper [22] shows two different approaches to make such reasoning algorith-
mic: One is based on Büchi automata, and the other computes the closure of the
given set of graphs as follows (Section 1.2 of [22], and Section 2.4 below).

2.2 Some size-change definitions

Program semantics: [22] is about first-order functional programs, and contains
both syntax and a denotational (big-step) call-by-value semantics. Given a set
Value containing values of expressions, the semantic function has type

E [[]] : Expression→ (Valuen → Value ∪ {⊥})

If e is an expression, then E [[e]]v is the value of expression e, given an an environ-
ment v containing values of the variables occurring in e. We omit the completely
standard definition of E [[]], see [22] or a textbook on semantics for details.

Size-Change Termination and Transition Invariants 3

Control flow graph

f g
-� 2
1

3

l
I

n n
Size-change graph set G

x u

y v

w

G1 : f→ g

↓=→
↓=→
@@R↓=

u u

v v

w w

G2 : g→ g

↓→

↓=→ u x

v y

w�
��↓=

G3 : g→ f

↓→

Fig. 2. Size-change graphs for the running example

Size changes: we assume given a well-founded order > on Value.

Definition 2. Suppose functions f, g are defined in P . A size-change graph
G : f→ g for P is a set of labeled arcs x r→ y where r ∈ {↓=, ↓}, x ∈ Variables(f),

y ∈ Variables(g), and G does not contain both x
↓=→ y and x

↓→ y for any x, y.

Functions f and g are respectively called the source and the target of G. We will
sometimes elide f and g, writing G rather than G : f→ g.

Definition 3. Let G = {Gτ | τ is a call in P} be a set of size-change graphs for
program P .

1. Suppose the definition of f contains a call to g labeled τ :

f(x1, . . . , xm) = . . . τ : g(e1, . . . , en) . . .

The phrase “arc f(i) r→ g(j) safely describes the f(i)-g(j) size relation in call
τ” means: For every v ∈ Value and v = (v1, . . . , vm), if E [[ej]]v = v is
defined, then

r = ↓ implies vi > v ; and r = ↓= implies vi ≥ v

2. Size-change graph Gτ is safe for call τ : f → g if every arc in Gτ is a safe
description as just defined.

3. Set G of size-change graphs is a safe description of program P if graph Gτ
is safe for every call τ .

Assuming values are natural numbers, it is easy to see that all the size-change
graphs shown in Example 1 are safe for their respective calls. No size relation in
{↓=, ↓} can be safely asserted about argument w of call 2, since 2*w may exceed
the current value of w. According to Definition 3, G2 safely models the parameter
size-changes caused by call 2.

Definition 4. A multipath M is a graph sequence G1, G2, G3, . . . such that
target(Gi) = source(Gi+1) for i = 1, 2, . . . A thread is a connected path of arcs
in M that starts at some Gt, t ≥ 1: th = zit

rt−→ zit+1

rt+1−→ zit+2

rt+2−→ . . .
with each rt+j ∈ {↓=, ↓}. The thread has infinite descent if it contains infinitely
many ↓’s.

4 Matthias Heizmann, Neil D. Jones, and Andreas Podelski

For example, G2, G3, G1 is a multipath in Figure 2. It contains one thread

with 3 arcs, namely u
↓=→ u

↓→ x
↓=→ u.

Definition 5 (Size-change terminating program). (Section 1.2 of [22]) Let
T be the set of calls in program P . Suppose each size-change graph Gτ : f → g
is safe for every call τ in

G = {Gτ | τ ∈ T }

Define P to be size-change terminating if, for any infinite call sequence π =
τ1τ2τ3 . . . that follows P ’s control flow, there is a thread of infinite descent in the
multipath Mπ = Gτ1 , Gτ2 , Gτ3 ,

2.3 Composition of size-change graphs

Definition 6. The composition of two size-change graphs G : f → g and G′ :

g→ h is G;G′ : f→ h with arc set E defined below. Notation: write x
r→ y

r′→ z

if x r→ y and y
r′→ z are respectively arcs of G and G′.

E = {x ↓→ z | ∃y, r . x ↓→ y
r→ z or x

r→ y
↓→ z}⋃

{x ↓
=

→ z | (∃y . x ↓
=

→ y
↓=→ z) and (∀y, r, r′ . x r→ y

r′→ z implies r = r′ = ↓=)}

Further, we define:

– Size-change graph G is idempotent if G;G = G.
– Gπ = Gτ1 ; . . . ;Gτn

for any finite call sequence π = τ1 . . . τn ∈ T ∗.

Lemma 7. The composition operator “ ; ” is associative.

2.4 A closure algorithm to decide the SCT property

Definition 8. The closure of a set G of size-change graphs is the smallest set
cl(G) such that

– G ⊆ cl(G)
– If G1 : f→ f′ and G2 : f′ → f′′ are in cl(G), then G1;G2 ∈ cl(G).

In the worst case, cl(G) can be exponentially larger than G, see [22].

Example 9. Suppose G = {G1, G2, G3} as in Example 1. Its closure is

cl(G) = {G1, G2, G3, G12, G123, G1231, G13, G131, G1312, G23, G231, G31}

Each graph in cl(G) is the composition Gπ for a finite P call sequence π, e.g.,

G231 = G2;G3;G1

for π = 231 has f as both source and target, and contains one arc: u
↓→ u.

Size-Change Termination and Transition Invariants 5

Theorem 10. Program P is SCT terminating iff every idempotent G in cl(G)

has an arc z
↓→ z.

Proof. This is Theorem 4 from [22]. For “only if” (⇒), suppose P is size-change
terminating and that Gπ in cl(G) is idempotent: Gπ = Gπ;Gπ. By Definition
5, the infinite call sequence πω = π, . . . , π, π, . . . has an infinitely descending
thread. Consider this thread’s position at the start of each π in πω. There are
finitely many variables, so the thread must visit some variable x infinitely often.
Thus there must be n, x such that πn has a thread from x to x containing
x
↓→ x. By Definition 6, arc x

↓→ x is in Gπn . Idempotence of Gπ implies Gπn =
Gπ;Gπ; . . . ;Gπ = Gπ, so x

↓→ x is in Gπ.
“If” (⇐): we show that if P is not size-change terminating, there exists an

idempotent G ∈ cl(G) without an arc z
↓→ z. Assuming P is not size-change

terminating, by Definition 5 there is an infinite call sequence π = τ1τ2 . . . such
that multipath Mπ = Gτ1 , Gτ2 , . . . has no infinitely descending thread. Define

h(k, `) = Gτk
; . . . ;Gτ`−1

for k, ` ∈ IN with 0 < k < `. Define equivalence relation ' on h’s domain by

(k, `) ' (k′, `′) if and only if h(k, `) = h(k′, `′)

Relation ' is of finite index since the closure set cl(G) is finite. By Ramsey’s
Theorem there exists an infinite set K ⊆ IN and fixed m,n ∈ IN such that
(k, `) ' (m,n) for any k, ` ∈ K with k < `. Expanding the definition of ' gives

Gτk
; . . . ;Gτ`−1 = Gτm

; . . . ;Gτn−1

Let G◦ = h(m,n). By associativity of ;, p, q, r ∈ K, with p < q < r implies

G◦ = Gτp
; . . . ;Gτr−1

= (Gτp
; . . . ;Gτq−1); (Gτq

; . . . ;Gτr−1)
= G◦;G◦

so G◦ is idempotent (and so G◦ : f→ f for some f).

If G◦ had an arc z
↓→ z, then the multipath Gτm

, . . . , Gτn−1 would have a
descending thread from z to z. This would implyMπ has an infinite descending
thread, violating the assumption about π. �

Theorem 11. The problem of deciding SCT termination is in pspace (as a
function of program size).

Proof. (Sketch) First, we argue that SCT termination is a path property in a
certain graph. Since the composition operator “ ; ” is associative, a graph G is
in cl(G) iff G = Gπ for some π. Thus by Theorem 10

P is size-change terminating iff there exists no call sequence π such that
Gπ is idempotent and Gπ contains no arc z

↓→ z.

6 Matthias Heizmann, Neil D. Jones, and Andreas Podelski

This is a reachability problem in a directed graph (call it Γ). Each node of Γ is
a size-change graph G, and each arc is from Gπ to Gπ τ where π ∈ T ∗, τ ∈ T .
The number of nodes in Γ is the number of possible size-change graphs G for
program P .

A well-known result by Savitch is that existence of a path in a directed graph
with m nodes can be decided4 in space O(log2m). (See [19] for the “divide-and-
conquer” proof.) The number of size-change graphs is bounded by 3p

2
where p is

the number of variables in P . (Reasoning: between any two variables there may
be no arc, or one arc labeled by ↓, or one labeled by ↓=.) Thus the graph may, by
Savitch’s result, be searched using memory space O(log2(3p

2
)). This is clearly

bounded by a polynomial in the number of variables of program P . �

[22] shows pspace to be a lower bound, so the problem is pspace-complete.

3 Transition invariants (TI)

3.1 Programs defined by transitions

Following [26, 23], in order to abstract away from the syntax of imperative pro-
grams we use transitions to formalize programs. A transition τ can be thought
of as a label of a statement.

Definition 12 (Transition-based program). We define a program to be a
triple

P = (Σ, T , ρ),

consisting of:

– a set of states Σ,
– a finite set of transitions T , and
– a function ρ that assigns to each transition a binary relation over states,

ρτ ⊆ Σ ×Σ, for τ ∈ T .

The transition relation of P , denoted RP , comprises the transition relations ρτ
of all transitions τ ∈ T , i.e.,

RP =
⋃
τ∈T

ρτ .

A program P is terminating if its transition relation RP is well-founded. This
means there is no infinite computation

s1
τ1→ s2

τ2→ s3
τ3→ . . .

i.e., there is no sequence of states s1, s2, . . . and transitions τ1, τ2, . . . such that
for every i ∈ IN , the state pair (si, si+1) is contained in the transition relation ρτi

.
4 A key point is that the entire graph Γ is not held in storage at any time, but just

the nodes currently being investigated. See [19] for the “divide-and-conquer” proof.

Size-Change Termination and Transition Invariants 7

States. Imperative programs in most references use a more concrete version of
states:

Σ = Loc× (Var→ Value)

where Loc,Var are finite sets (of locations and variables), and Value is a perhaps
infinite set of values. Typical elements (perhaps decorated) are: ` ∈ Loc, z ∈ Var
and v ∈ Value. A state in Σ has form s = (`, σ) where σ : Var→ Value.

We only deal with one program at a time, so the objects P, Loc,Var,Value
will have fixed values. Letting Var = {z1, . . . , zm}, a state can be written as
s = (`, σ) or

s = (`, v1, . . . , vm)

Here ` is the current location; v1, . . . , vm ∈ Value are the respective values of
variables z1, . . . , zm.

Extensional versus intensional representation. Program P ’s semantics is by Def-
inition 12 its transition relation RP ⊆ Σ × Σ, that is, a set of pairs of states
(s, s′), where s is the “current state” and s′ is the “next state”. Natural op-
erations on such sets include boolean operations ∪,∩, \ and set-formers. This
corresponds to an extensional view of semantics.

For practical uses (e.g., in a theorem prover) many writers use as alterna-
tive an intensional view of semantics, and represent a set of state-pairs, i.e., a
transition relation, by a logic formula with implicit universal quantification over
free logical variables. The universe of discourse (for a given, fixed, program P):
a formula will always denote a subset of Σ×Σ. Formulas are built using logical
operations ∨,∧,⇒,¬. These correspond exactly to ∪,∩,⊆ and Σ \ .

We follow the usual convention of naming values in s by unprimed logical
variables, and values in s′ by primed logical variables. Logical variables are pro-
gram counters pc, pc′ and the variables of program P . Locations: the atomic
formula pc = ` means that the control location of s is `; and pc′ = `′ means that
the control location of s′ is `′. Formula variables other than pc, pc′ are program
variables ranging over Value. Formulas can represent state pair sets compactly,
since variables not occurring in a formula are simply not constrained (they range
over all of Value or Loc).

`1 `2

τ1

τ2

τ3

ρτ1 is pc = `1, pc
′ = `2, x 6= 0, x′ = x, y′ = y, u′ = x, v′ = y, w′ = y

ρτ2 is pc = `2, pc
′ = `2, v > 0, x′ = x, y′ = y, u′ = u, v′ = v − 1, w′ = 2 ∗ w

ρτ3 is pc = `2, pc
′ = `1, v = 0, x′ = u− 1, y′ = w, u′ = u, v′ = v, w′ = w

Fig. 3. Transition relation and corresponding control flow graph of a program P =
(Σ, T , ρ) where the set of states Σ is {`1, `2}×IN5, the set of transitions T is {τ1, τ2, τ3}
and the program’s transition relation RP is ρτ1 ∨ ρτ2 ∨ ρτ3

8 Matthias Heizmann, Neil D. Jones, and Andreas Podelski

Example 13. Figure 3 expresses a transition-based program in the sense of Def-
inition 12, using an intensional representation, and comma to abbreviate con-
junction ∧. As we will see in Section 4, the program stems from translating the
functional program from Example 1.

3.2 Termination by transition invariants

In this section we give a brief description of terminology and results of [26]
restricted to termination ([26] also deals with general liveness properties and
fairness). We write r+ to denote the transitive closure of a relation r.

Definition 14 (Transition invariant). Given a program P = (Σ, T , ρ), a
transition invariant T is a binary relation over states T that contains the tran-
sitive closure R+

P of the program’s transition relation RP , i.e.,

R+
P ⊆ T.

Definition 15 (Disjunctively well-founded relation). A relation T is dis-
junctively well-founded if it is a finite union of well-founded relations:

T = T1 ∪ · · · ∪ Tn

Theorem 16 (Proof rule for termination). A program P is terminating if
and only if there exists a disjunctively well-founded transition invariant for P .

Using the above proof rule, we can prove termination of a program P as follows.

1. Find a finite number of relations T1, . . . , Tn.
2. Show that the inclusion R+

P ⊆ T1 ∪ · · · ∪ Tn holds.
3. Show that each relation T1, . . . , Tn is well-founded.

Proof. This is Theorem 1 from [26]. “Only if” (⇒) is trivial: if P is terminating,
then both RP and R+

P are well-founded. Choose n = 1 and T1 = R+
P .

“If” (⇐): we show that if P is not terminating and T1∪· · ·∪Tn is a transition
invariant, then some Ti is not well-founded. Nontermination of P means there
exists an infinite computation:

s0
τ1→ s1

τ2→ s3
τ3→ . . .

Let choice function f satisfy

f(k, `) ∈ { Ti | (sk, s`) ∈ Ti }

for k, ` ∈ IN with k < `. (The condition R+
P ⊆ T1∪· · ·∪Tn implies that f exists,

but does not define it uniquely.) Define equivalence relation ' on f ’s domain by

(k, `) ' (k′, `′) if and only if f(k, `) = f(k′, `′)

Size-Change Termination and Transition Invariants 9

Relation ' is of finite index since the set of T ’s is finite. By Ramsey’s Theorem
there exists an infinite sequence of natural numbers k1 < k2 < . . . and fixed
m,n ∈ IN such that

(ki, ki+1) ' (m,n) for all i ∈ IN.

Hence (ski
, ski+1) ∈ Tmn for all i. This is a contradiction: Tmn is not well-

founded. �

In comparison to Theorem 10 the proof of Theorem 16 uses a weaker ver-
sion of Ramsey’s theorem. The weak version of Ramsey’s theorem states that
every infinite complete graph that is colored with finitely many colors contains
a monochrome infinite path.

Example 17. Consider the program P in Figure 3 and the binary relations
T1, . . . , T5 given by the five formulas below.

T1 : pc = f ∧ pc′ = f ∧ x > x′,

T2 : pc = g ∧ pc′ = g ∧ v > v′,

T3 : pc = g ∧ pc′ = g ∧ u > u′,

T4 : pc = f ∧ pc′ = g,

T5 : pc = g ∧ pc′ = f,

The union of these relation is a transition invariant for P , i.e., the inclusion R+
P ⊆

T1 ∪ · · · ∪ T5 holds. Since every Ti is well-founded, their union is a disjunctively
well-founded transition invariant and hence, by Theorem 16 the program P is
terminating.

3.3 Transition predicate abstraction (TPA)

Transition predicate abstraction [27] is a method to compute transition in-
variants, just as predicate abstraction is a method to compute invariants. The
method takes as input a selection of finitely many binary relation over states.
We call these relations transition predicates. For this section we fix a finite set of
transition predicates P. We usually refer to a transition predicate by the formula
that defines it.

Definition 18 (Set of abstract transitions T #
P). Given the set of transition

predicates P, the set of abstract transitions T #
P is the set that contains the

conjunction of every subset of transition predicates {p1, . . . pm} ⊆ P, i.e.,

T #
P = {p1 ∧ . . . ∧ pm | pi ∈ P, 0 ≤ m, 1 ≤ i ≤ m}

Clearly T #
P is closed under intersection, and the set of all binary relations over

states Σ ×Σ is a member of T #
P (the case m = 0).

10 Matthias Heizmann, Neil D. Jones, and Andreas Podelski

Example 19. Consider the following set of transition predicates.

P = {x = x′, x > x′, y > y′}

The set of abstract transitions T #
P is

{true, x = x′, x > x′, y > y′, x = x′ ∧ y > y′, x > x′ ∧ y > y′, false}

The abstract transition written as true is the set of all state pairs Σ×Σ and
is the empty conjunction of transition predicates. The abstract transition false
is the empty relation; e.g., the conjunction of x = x′ and x > x′ is false.

We next define a function that assigns to a binary relation T over states the
least (wrt. inclusion) abstract transition that is a superset of T .

Definition 20 (Abstraction function α). A set of transition predicates P
defines the abstraction function

α : 2Σ×Σ → T #
P

that assigns to a relation r ⊆ Σ × Σ the smallest abstract transition that is a
superset of r, i.e.,

α(r) =
∧
{p ∈ P | r ⊆ p}.

We note that α is extensive, i.e., the inclusion

r ⊆ α(r)

holds for any binary relation over states r ⊆ Σ ×Σ.

`τ1 τ2 ρτ1 is pc = ` ∧ pc′ = ` ∧ x′ = x− 1
ρτ2 is pc = ` ∧ pc′ = ` ∧ x′ = x ∧ y′ = y − 1

Fig. 4. Transition relation and corresponding control flow graph of a program P =
(Σ, T , ρ) where the set of states Σ is {`} × IN × IN , the set of transitions T is {τ1, τ2}
and the program’s transition relation RP is ρτ1 ∨ ρτ2 .

Example 21. Application of the abstraction function α to the transition relations
ρ1 and ρ2 of the program in Figure 4 results in the following abstract transitions.

α(ρτ1) is x > x′

α(ρτ2) is x = x′ ∧ y > y′

We next present an algorithm that uses the abstraction α to compute (a
set of abstract transitions that represents) a transition invariant. The algorithm
terminates because the set of abstract transitions T #

P is finite.

Size-Change Termination and Transition Invariants 11

Algorithm (TPA)
Transition invariants via transition predicate abstraction.

Input: program P = (Σ, T , ρ)
set of transition predicates P
abstraction α defined by P (according to Def. 20)

Output: set of abstract transitions P# = {T1, . . . , Tn}
such that T1 ∪ · · · ∪ Tn is a transition invariant

P# := {α(ρτ) | τ ∈ T }
repeat

P# := P# ∪ {α(T ◦ ρτ) | T ∈ P#, τ ∈ T , T ◦ ρτ 6= ∅}
until no change

Our notation P# for the set of abstract transitions computed by Algo-
rithm TPA stems from [27]. There, P# is called an abstract transition program.
In contrast to [27] we do not consider edges between the abstract transitions.

Theorem 22 (TPA). Let P# = {T1, . . . , Tn} be the set of abstract transi-
tions computed by Algorithm TPA. If every abstract relation T1, . . . , Tn is well-
founded, then program P is terminating.

Proof. The union of the abstract relations T1 ∪ · · · ∪Tn is a transition invariant.
If every abstract relation T1, . . . , Tn is well-founded, the union T1 ∪ · · · ∪ Tn is a
disjunctively well-founded transition invariant and by Theorem 16 the program
P is terminating. �

Example 23. Consider the program P in Figure 4 and the set of transition pred-
icates P in Example 19. The output of Algorithm TPA is

P# = {x > x′, x = x′ ∧ y > y′}

Both abstract transitions in P# are well-founded. Hence P is terminating.

4 Proof rules and abstract domains

In this section, we compare methods based on size-change termination and tran-
sition invariants wrt. the underlying proof rules (Section 4.2) and wrt. the under-
lying abstract domains (Section 4.3). As a preliminary, we translate the setting
of size-change termination to transition-based programs (Section 4.1).

We have defined size-change termination for functional programs, and tran-
sition invariants for transition-based programs. For the purpose of comparison,
we now restrict size-change termination to the transition-based programs that
we obtain from translating functional programs.

12 Matthias Heizmann, Neil D. Jones, and Andreas Podelski

From now on, we deal only with tail-recursive functional programs where
all functions use a common variable name space (the latter condition is not a
proper restriction since we can always add redundant parameters, and rename
parameters if necessary to ensure uniqueness).

Under this restriction, the translation of a functional program into a
transition-based program P = (Σ, T , ρ) with the same termination behavior
is straightforward:

– the set of states Σ is the Cartesian product of the set of locations Loc and
the data domains for the function parameters; we have a location `f in Loc
for every function f,

– the set of transitions T contains a transition τc for each call c,
– the transition relation ρτc

of the transition τc is defined by

ρτc
= {((`f,v), (`g,w)) | E [[e1]]v = w1, . . . , E [[en]]v = wn}.

if the call c occurs in a function definition of the form

f(x1, . . . , xn) = . . . c : g(e1, . . . , en)

From now on we fix a transition-based program P which stems from the trans-
lation of a (tail-recursive) functional program. The size-change termination of P
is equivalent to the size-change termination of the original functional program.

Example 24. The transition-based program in Figure 3 is obtained by translating
the functional program in Figure 1 after adding parameters in order to obtain a
common variable name space.

f(x,y,u,v,w) = if x=0 then y else 1: g(x,y,x,y,y)

g(x,y,u,v,w) = if v>0 then 2: g(x,y,u,v-1,2*w)

else 3: f(u-1,w,u,v,w)

Fig. 5. The functional program of Figure 1, modified to have a common name space.

4.1 From graphs to transition relations

Suppose size-change graph G safely describes call c as in Definition 3. Clearly
G expresses a conjunction of relations (each one either ↓ or ↓=) between some
parameters of source f and some parameters of target g. By the common name
space assumption, f and g have the same parameters. This section shows that
graph G defines an abstraction of c’s transition relation ρτc .

Since a graph is not a set of pairs of states (and not a formula either), we
devise a notation Φ(G) for the set of state pairs described by size-change graph
G. Therefore we define as a first step a class of binary relations that represent
the atomic pieces of information contained in a size-change graph (which are:
source, target, value decrease and strict value decrease).

Size-Change Termination and Transition Invariants 13

Definition 25 (Set of size-change predicates PSCT). We call a binary re-
lation a size-change predicate if it is defined by one of the formulas

pc = `
pc′ = `
zi ≥ z′j
zi > z′j

where the variable pc ranges over the set of program locations Loc, and zi and
zj are program variables. We use PSCT for the (finite) set of all size-change
predicates for the current program P .

As a second step, we define the relation Φ(G) to be a conjunction of these size-
change predicates (parallel to Definition 2).

Definition 26. Given a size-change graph G : `→ `′ with arc set E, define the
binary relation over states Φ(G) ⊆ Σ ×Σ by the following formula.

pc = ` ∧ pc′ = `′ ∧
∧
{zi ≥ z′j | (zi, ↓=, zj) ∈ E} ∧

∧
{zi > z′j | (zi, ↓, zj) ∈ E}

Example 27. The binary relations over states assigned to the size-change graphs
of Figure 2 are the following.

Φ(G1) is pc = f ∧ pc′ = g∧ x ≥ x′∧ y ≥ y′∧ x ≥ u′∧ y ≥ v′∧ y ≥ w′

Φ(G2) is pc = g ∧ pc′ = g∧ x ≥ x′∧ y ≥ y′∧ u ≥ u′∧ v > v′

Φ(G3) is pc = g ∧ pc′ = f∧ u > x′∧ w ≥ y′∧ u ≥ u′∧ v ≥ v′∧ w ≥ w′

The inclusion RP ⊆ Φ(G1)∨Φ(G2)∨Φ(G3) means that the transition relation RP
is approximated by the set {G1, G2, G3} of size-change graphs. The inclusion is
strict, meaning that the approximation loses precision. An instance of precision
loss: the set PSCT does not contain any of the transition predicates x 6= 0, v > 0,
v = 0 that account for the tests.

The following definition extends Definition 3 from a functional program to
its translation to a transition-based program P .

Definition 28. Let Gτ be the size-change graph assigned to the transition τ of
program P . We say that Gτ is safe for τ if the inclusion ρτ ⊆ Φ(Gτ) holds. A
set of graphs {Gτ | τ ∈ T } is a safe description of program P if Gτ is safe for
τ for every transition τ of P .

We now consider the composition of size-change graphs (Definition 6).

Lemma 29. The composition of the two size-change graphs G1 : ` → `′ and
G2 : `′ → `′′ overapproximates the composition of the relations they define, i.e.,

Φ(G1) ◦ Φ(G2) ⊆ Φ(G1;G2).

14 Matthias Heizmann, Neil D. Jones, and Andreas Podelski

Corollary 30. If Gτ is a size-change graph that is safe for τ , then for every
transition relation T and every size-change graph G such that G;Gτ is defined

T ⊆ Φ(G) implies T ◦ ρτ ⊆ Φ(G;Gτ)

Proof. ρτ ⊆ Φ(Gτ) by Definition 28, so T ◦ ρτ ⊆ Φ(G) ◦ Φ(Gτ) ⊆ Φ(G;Gτ) by
Lemma 29. �

Lemma 31. Let G be a size-change graph such that source and target of G
coincide. If G has an arc of form x

↓→ x then the relation Φ(G) is well-founded.

Proof. Let G be a size change graph with an an arc x
↓→ x. By Definition 26 the

relation Φ(G) is a subset of the relation x′ < x. Since x′ < x is well-founded, all
subsets are also well-founded. �

Remark: The converse of Lemma 31 is false, e.g., for the arc set {x ↓→ y, y
↓→ x}.

4.2 SCT and disjunctive well-foundedness

Theorem 32 (Idempotence and well-foundedness). If every idempotent
size-change graph in the closure cl(G) of the set of size-change graphs G defines
a well-founded relation, i.e.,

∀G ∈ cl(G) : G;G = G =⇒ Φ(G) well-founded

then Φ(G) is well-founded for every graph in cl(G).

Proof. Let G ∈ cl(G) be a size-change graph.

Case 1: Source and target of G do not coincide.
Then there exist two different locations `, `′ such that Φ(G) ⊆ pc = `∧pc′ =
`′ and therefore Φ(G) ◦ Φ(G) = ∅ which implies that Φ(G) is well-founded.

Case 2: Source and target of G coincide.
Then Gn is defined for all n ∈ IN . The semigroup ({Gn | n ∈ N}, ;) is finite
and has therefore an idempotent elementGk (since every finite semigroup has
an idempotent element). By assumption Φ(Gk) is well-founded. By induction
over k and Lemma 29 the inclusion Φ(G)k ⊆ Φ(Gk) holds. Hence Φ(G)k is
well-founded and therefore also Φ(G) is well-founded (Reason: If a relation
r is not well-founded, then for all n ∈ N, rn is not well-founded.)

Therefore, for every G ∈ cl(G) the transition Φ(G) is well-founded. �

Since size-change termination is equivalent to the premise of Theorem 32,
and its conclusion can be expressed in terms of disjunctive well-foundedness, we
obtain the following statement directly.

Size-Change Termination and Transition Invariants 15

Corollary 33 (SCT and disjunctive well-foundedness). Let G be a set of
size-change graphs that is a safe description of program P . If program P is size-
change terminating for a set of size-change graphs G that is a safe description
of P , then the relation defined by its closure cl(G)⋃

{Φ(G) | G ∈ cl(G)}

is a disjunctively well-founded transition invariant for P .

Proof. We first show, that the disjunction is a transition invariant, i.e.,

R+
P ⊆

⋃
{Φ(G) | G ∈ cl(G)}.

Let (s, s′) ∈ R+
P . By definition of R+

P there is a sequence of transition relations
ρτ1 , ρτ2 , . . . , ρτn

such that (s, s′) is contained in the composition ρτ1◦ρτ2◦· · ·◦ρτn
.

For every such sequence there is a size-change graph G ∈ cl(G) such that
the inclusion ρτ1 ◦ ρτ2 ◦ · · · ◦ ρτn ⊆ Φ(G) holds. This can be shown by induction
over n, where the induction basis holds by Definition 28 and the induction step
follows from Corollary 30. Hence (s, s′) ∈ Φ(G) for some G ∈ cl(G), so (s, s′) ∈⋃
{Φ(G) | G ∈ cl(G)}.

Since P is size-change terminating for G, every idempotent size change-graph
G ∈ cl(G) contains an arc of form x

↓→ x (by Theorem 10, or Theorem 4
of [22]). By Lemma 31, for every idempotent size change-graph G ∈ cl(G) the
relation Φ(Gk) is well-founded. Hence by Theorem 32 for every size change-graph
G ∈ cl(G) the relation Φ(Gk) is well-founded. Therefore

⋃
{Φ(G) | G ∈ cl(G)}

is a disjunctively well-founded transition invariant for P . �

4.3 Size-change graphs and transition predicate abstraction

Lemma 34. Let α be the abstraction function for the set of size-change predi-
cates PSCT . If the size-change graph G denotes a superset of a binary relation
over states T , then the size-change graph G denotes a superset of the abstract
transition α(T), i.e.

T ⊆ Φ(G) implies α(T) ⊆ Φ(G)

Proof. For every size-change graph G, the relation Φ(G) is a conjunction of
size-change predicates. Therefore the inclusion α(T) ⊆ Φ(G) holds if for every
p ∈ PSCT the inclusion Φ(G) ⊆ p implies the inclusion α(T) ⊆ p. Let p be a
size-change predicate. Let Φ(G) ⊆ p. Assume that the inclusion T ⊆ Φ(G) holds.
Then the inclusion T ⊆ p holds and by Definition 20 the inclusion α(T) ⊆ p
holds.

Corollary 35. Let α be the abstraction function for the set of size-change pred-
icates PSCT . The abstract transition α(ρτ) is a subset of the denotation of any
size-change graph Gτ that is safe for τ , formally

α(ρτ) ⊆ Φ(Gτ)

16 Matthias Heizmann, Neil D. Jones, and Andreas Podelski

This inclusion can be strict in case Gτ is not the “best” description of ρτ . An
extreme example: Gτ has the empty set of arcs.

Lemma 36. Let cl(G) be the closure (Definition 8) for a set of size-change
graphs G that is a safe description of program P . Let P# be a set of abstract
transitions computed by Algorithm TPA for the set of size-change predicates
PSCT .

For every abstract transition T in P# there exists a size-change graph G in
cl(G) that contains T, formally

Φ(G) ⊇ T.

Proof. Let T ∈ P#. By Algorithm TPA there is a sequence of transitions
τ1, . . . , τ2 such that the equation

T = α(. . . α(α(ρτ1) ◦ ρτ2) · · · ◦ ρτn)

holds. Let Gτi be a graph that is safe for τi and G be a size-change graph defined
by the following equation.

G = Gτ1 ; . . . ;Gτn

The inclusion Φ(G) ⊇ T holds by induction, where the induction basis holds by
Definition 28 and Lemma 34 and the induction step follows from Corollary 30.

Theorem 37. Let G be a set of size-change graphs that is a safe description of
program P . Let P# be a set of abstract transitions computed by Algorithm TPA
for the set of size-change predicates PSCT . If P is size-change terminating for
G then P# defines a disjunctively well-founded transition invariant.

Proof. The output of Algorithm TPA P# defines a transition invariant for P . If
P is size-change terminating, then by Corollary 33 every element of {Φ(G) | G ∈
cl(G)} is well-founded. Hence by Lemma 36 every element of P# is well-founded.
Therefore

⋃
P# is a disjunctively well-founded transition invariant. �

5 Base algorithms

In this section, we categorize the base algorithm in the different termination
analyses by the decision problem that it solves, and then establish an formal
connection between the decision problems.

Part of the input of those decision problems will be a transition abstraction.
A transition abstraction fixes a set of abstract values T # and their meaning via
the denotation function γ. Each abstract value a denotes a relation over states,
i.e., γ(a) ⊆ Σ×Σ. The transition abstraction fixes also a distinguished abstract
value aτ for every transition τ of the given program. A termination analysis
starts with those values.

Programs, transition relations, states, etc. are as defined in Section 3.

Size-Change Termination and Transition Invariants 17

Definition 38 (Transition Abstraction). Given a program P = (Σ, T , ρ), a
transition abstraction is a triple

(T #, γ, {aτ |τ ∈T })

consisting of:

1. a finite set T # of abstract values called abstract relations,
2. a denotation function γ that assigns to each abstract relation a relation over

the program’s states, i.e.,

a ∈ T # =⇒ γ(a) ⊆ Σ ×Σ

3. a set of distinguished abstract values indexed by transitions τ of the program,
i.e.,

aτ ∈ T #, for τ ∈ T .

The abstract relation for the transition τ must safely abstract the transition
relation defined by τ , formally

ρτ ⊆ γ(aτ)

for each transition τ in T .

A set X of abstract relations denotes their union, i.e.,

γ(X) =
⋃
{γ(a) | a ∈ X}, for X ⊆ T .

Example 39 (SCT). In order to rephrase size-change analysis as presented in
Section 2, one may use the transition abstraction where:

– the abstract relations a ∈ T # are size-change graphs G,
– the denotation function γ is the function Φ of Definition 26, i.e., a graph G

denotes the transition relation defined by the formula Φ(G),
– the distinguished abstract transitions aτ for transitions τ are exactly the

size-change graphs Gτ for calls τ in the set G fixed in Definition 5.

Since we translate the function Φ on size-change graphs to the denotation func-
tion γ, the safety required for the size-changes graphs Gτ translates directly to
the safety requirement for the aτ in Definition 38; see Definition 28.

Example 40 (TPA). In order to rephrase transition predicate abstraction as pre-
sented in Section 3.3, one may use the transition abstraction where:

– the abstract relations a ∈ T # are the abstract transitions p1 ∧ . . . ∧ pm,
which are conjunctions of transition predicates pj ∈ P, for the given set of
transition predicates P.

T # = {p1 ∧ . . . ∧ pm | p1, . . . , pm ∈ P, 0 ≤ m}

18 Matthias Heizmann, Neil D. Jones, and Andreas Podelski

– the denotation function γ is essentially the identity function, i.e., the de-
notation of a conjunction of transition predicates is the intersection of the
transition relations they denote,

– the abstract transition aτ is the abstraction α applied to the transition rela-
tion ρτ . This is the strongest abstract transition that contains ρτ , or, equiv-
alently, is the conjunction of all transition predicates in P that contain ρτ ;
see Definition 20.

aτ = α(ρτ) (=
∧
{p ∈ P | ρτ ⊆ p})

5.1 Transformer on abstract relations

Given a transition τ of the program, we consider a function F#
τ that assigns

to each abstract relation a another abstract relation a′ = F#
τ (a). The idea is

that the function F#
τ abstracts the relational composition with the transition

relation ρτ (i.e., it abstracts the function Fτ such that Fτ (T) = T ◦ ρτ).
For better legibility, we write F#(a, τ) instead of F#

τ (a). We call F# a
(parametrized) abstract-relation transformer.

In this section, we fix a program P = (Σ, T , ρ) and a transition abstraction
(T #, γ, {aτ |τ ∈T }) defining a set of abstract relations, their denotation, and a
set of abstract relations for the transitions of the program.

Definition 41 (Abstract-relation transformer F#). Given a program P =
(Σ, T , ρ) and a transition abstraction (T #, γ, {aτ |τ ∈T }), an abstract-relation
transformer is a function

F# : T # × T → T #

such that
γ(F#(a, τ)) ⊇ γ(a) ◦ ρτ

In words, the application of F# to the abstract relation a and the transition τ
overapproximates the relational composition of the relation denoted by a with the
transition relation defined by τ .

Example 42 (Continuing Example 40).
Continuing Example 40, where we use abstract transitions (i.e., conjunc-

tions of transition predicates) as abstract relations, one may define the abstract-
relation transformer by

F#(T, τ) = α(T ◦ ρτ),

where α is the abstraction function defined by the given set of transition predi-
cates; see Definition 20.

We next introduce an expression to denote a set of abstract relations. We call
it “the least fixpoint of the abstract-relation transformer F#” although, strictly
speaking, it is not a fixpoint of the function F#. (Instead, it is the fixpoint of a
functional that can be derived from F#. This functional ranges over the powerset

Size-Change Termination and Transition Invariants 19

lattice generated by the abstract relations. The least fixpoint is the least fixpoint
of this functional above the set {aτ |τ ∈T }, i.e., the set of abstract relations aτ
for the transitions of the given program P . For notational economy we will not
formally define the lattice and the functional.)

Definition 43 (Least fixpoint of the abstract-relation transformer F#).
Given a program P = (Σ, T , ρ), a transition abstraction (T #, γ, {aτ |τ ∈T }), and
an abstract-relation transformer F#, the “least fixpoint of the abstract-relation
transformer F#”, written

lfp({aτ |τ ∈T }, F#),

is defined as the least set of abstract relations X such that

– X contains the set of abstract relations aτ for each transition τ ,

X ⊇ {aτ |τ ∈T }

– and X is closed under application of the abstract-relation transformer for
every transition τ , i.e., the application of F# to an abstract relation a in X
and a transition τ is again an element of X, formally

X ⊇ {F#(a, τ) | a ∈ X, τ ∈ T }.

Example 44 (Continuing Example 42). The least fixpoint lfp({aτ |τ ∈T }, F#) of
the abstract-relation transformer F# defined in Example 42 is the set of abstract
transitions P# which is the output of Algorithm TPA.

Lemma 45. The least fixpoint of the abstract-relation transformer F# can be
indexed by the sequences of transitions τ1, . . . , τn, i.e.,

lfp({aτ |τ ∈T }, F#) = {aτ1...τn
| n ≥ 1, τ1, . . . , τn ∈ T }

where aτ1τ2 = F#(aτ1 , τ2), aτ1τ2τ3 = F#(aτ1τ2 , τ3), etc..

The following lemma states that we can use a transition abstraction and an
abstract-relation transformer to compute a transition invariant for the pro-
gram P .

Lemma 46 (Transition invariants via the abstract-relation trans-
former F#). Given a program P = (Σ, T , ρ) with transition relation RP , a
transition abstraction (T #, γ, {aτ |τ ∈T }), and an abstract-relation transformer
F#, the least fixpoint of the abstract-relation transformer F# denotes a transi-
tion invariant for P , i.e.,

R+
P ⊆ γ(lfp({aτ |τ ∈T }, F#)).

We next define a decision problem, and then characterize a specific class of
termination analyses as decision procedures for the problem.

20 Matthias Heizmann, Neil D. Jones, and Andreas Podelski

Problem: Lfp Checking for Abstract Relations

Input:

– a program P = (Σ, T , ρ)
– a transition abstraction (T #, γ, {aτ |τ ∈T })
– an abstract-relation transformer F# : T # × T → T #

– a subset GOOD ⊆ T # such that every element of GOOD denotes
a well-founded relation

Property: lfp({aτ |τ ∈T }, F#) ⊆ GOOD

Theorem 47 (Lfp Checking for Abstract Relations and Termination).
The program P is terminating if the decision procedure Lfp Checking for
Abstract Relations answers yes.

This decision procedure is a semi-test for termination: a yes-answer is defi-
nite, a no-answer is no.

Proof. If the procedure answers yes, the least fixpoint of the abstract-relation
transformer F# is not only a transition invariant (by Lemma 46) but it is also
disjunctively well-founded. Thus, Theorem 16 applies and P is terminating. �

Next, a complexity result. To make the statement simpler, we (reasonably)
assume henceforth that the number of abstract relations is greater than the
number of transitions, i.e., |T #| ≥ |T |. In the setting of Examples 39, 40, and 42,
the number of abstract relations is:

– (in the setting of SCT, as in Examples 39 and 42) exponential in the square
of the size of the program (to be precise, it is bound by 3p

2
where p is the

number of program variables),
– (in the setting of TPA, as in Examples 40 and 42) exponential in the number

of transition predicates in P.

Theorem 48. Lfp Checking for Abstract Relations is decidable in time
polynomial in |T #|, and (by another algorithm) in space O(log2|T #|).

Proof. Consider a directed graph Γ . The nodes of Γ are the abstract relations in
T # plus two special nodes init and fin so the graph Γ contains |T #|+ 2 nodes.
Let a, a′ ∈ T #, we define that

– Γ contains an edge from a to a′ if and only if there is a τ ∈ T such that
F#(a, τ) = a′,

– Γ contains an edge from init to a if and only if a ∈ {aτ |τ ∈T }},
– and Γ contains an edge from a to fin if and only if a /∈ GOOD.

Size-Change Termination and Transition Invariants 21

We conclude: Γ contains a path from init to a iff a ∈ lfp({aτ |τ ∈T }, F#). Fur-
ther, Γ contains a path from init to fin iff lfp({aτ |τ ∈T }, F#) * GOOD. For time:
the graph can be searched by, for example, Dijkstra’s algorithm. For space: a
well-known result by Savitch is that existence of a path in a directed graph with
n nodes can be decided in space O(log2 n). �

5.2 Composition of abstract relations

In Section 5.1, we used the function F# to abstract the relational composition
of relations with the transition relations ρτ for the program transitions τ . In this
section, we introduce a binary operator on abstract relations in order to abstract
the binary relational composition operator.

Definition 49 (Abstract composition ◦#). Given a program P = (Σ, T , ρ)
and a transition abstraction (T #, γ, {aτ |τ ∈T }), an abstract composition is a
binary operation on abstract relations,

◦# : T # × T # → T #

such that
γ(a1 ◦# a2) ⊇ γ(a1) ◦ γ(a2).

In words, the abstract composition of two abstract relations a1 and a2 overap-
proximates the relational composition of the two relations denoted by a1 resp.
a2.

Example 50 (continuing Example 39). In the setting of size-change termination,
the composition operator on size-change graphs (written G1;G2) is an abstract
composition by Lemma 29.

Example 51 (continuing Example 40). In the setting of transition predicate ab-
straction, we can define the abstract composition over abstract transitions T1

and T2 (i.e., conjunctions of transition predicates) by T1◦#T2 = α(T1◦T2), where
α is the abstraction function defined by the given set of transition predicates;
see Definition 20. Note that, the abstract composition over abstract transitions
is in general not associative.

Definition 52 (Closure of an abstract composition). Given a program
P = (Σ, T , ρ), a transition abstraction (T #, γ, {aτ |τ ∈T }), and an abstract com-
position ◦#, the “closure of the abstract composition ◦#”, written

cl({aτ |τ ∈T }, ◦#)

is the smallest set of abstract relations X such that

– X contains the set of abstract relations aτ for the transitions τ ,

X ⊇ {aτ |τ ∈T }

22 Matthias Heizmann, Neil D. Jones, and Andreas Podelski

– and X is closed under abstract composition, i.e., the abstract composition of
two abstract relations a1 and a2 in X is again an element in X:

X ⊇ {a1 ◦# a2 | a1 ∈ X, a2 ∈ X}.

Example 53 (Continuing Example 50). If the abstract composition ◦# is the
composition operator on size-change graphs “ ; ”, the closure in the sense of
Definition 52 is the closure in the sense of Definition 8.

The following lemma states (in analogy with Lemma 46) that we can use
a transition abstraction and an abstract composition over abstract relations to
compute a transition invariant for the program P .

Lemma 54 (Transition invariants via abstract composition ◦#). Given
a program P = (Σ, T , ρ) with transition relation RP , a transition abstraction
(T #, γ, {aτ |τ ∈T }), and an abstract composition ◦#, the closure of the abstract
composition denotes a transition invariant for P , i.e.,

R+
P ⊆ γ(cl({aτ |τ ∈T }, ◦#)).

In analogy to Section 5.1, we state a decision problem. In contrast with
Section 5.1, the input contains not an abstract-relation transformer F#, but an
abstract composition ◦#. It is checked if the closure of ◦# is a subset of GOOD.

This enables us to characterize a second class of termination analyses as
decision procedures for this problem.

Problem: Closure Checking for Abstract Relations

Input:

– a program P = (Σ, T , ρ)
– a transition abstraction (T #, γ, {aτ |τ ∈T })
– an abstract composition ◦# : T # × T # → T #

– a subset GOOD ⊆ T # such that every element of GOOD denotes
a well-founded relation

Property: cl({aτ |τ ∈T }) ⊆ GOOD

Theorem 55 (Closure Checking for Abstract Relations and Termina-
tion). Program P is terminating if the decision procedure Closure Checking
for Abstract Relations answers yes.

Proof. Analogous to Theorem 47. �

The next result investigates the complexity of the decision problem Closure
Checking for Abstract Relations .

Size-Change Termination and Transition Invariants 23

Theorem 56. The problem Closure Checking for Abstract Relations
is ptime-complete in the number of transition relations |T #|.

Proof. First, the problem Closure Checking for Abstract Relations is
in ptime, since a straightforward bottom-up algorithm can compute and test
for well-foundedness all elements in cl({aτ |τ ∈T }). (Remark: we count the well-
foundedness test a ∈ GOOD? as one step.)

Second, we show the problem is ptime-hard by reduction from a known
ptime-complete problem to Closure Checking for Abstract Relations.
The problem gen is a membership problem for the closure of an operation,
defined as follows. Given: A finite set W , a binary operation op on W, a subset
V ⊆W , and w ∈W . To decide: Is w ∈ cl(V, op)?

Given a gen instance (W, op, V, w), let P = (Σ, T , ρ) be a program such that

– the set of states is the empty set
– the set of transitions T is V
– the transition relation ρτ of every transition τ is the empty set.

Let (T #, γ, {aτ |τ ∈T }) be a transition abstraction such that

– the set of abstract relations is T # = W
– the denotation γ assigns to each abstract relation the empty set.
– the set of program transition relations is {aτ |τ ∈T } = V .

Since every abstract relation denotes the empty relation, op = ◦# is trivially an
abstract composition. We choose GOOD = W\{w}. This is a valid choice since
every abstract relation denotes a well-founded relation.

Clearly w /∈ cl(V, op) if and only if the inclusion cl({aτ |τ ∈T }, op) ⊆ GOOD
holds. The complexity result follows since the negation of any ptime-complete
problem is also ptime-complete. �

Abstract-relation transformers F# versus abstract composition ◦#: Precision.
A termination analysis A has higher precision than a termination analysis B if
A returns a yes-answer whenever B does, and possibly strictly more often (a
yes-answer is definite in proving termination of the input program).

One might expect, by the complexity results above, that a termination anal-
ysis based on abstract composition has higher precision than one based on
abstract-relation transformers (as a trade-off for the higher complexity). In fact,
one can always define a termination analysis based on abstract-relation trans-
formers that has higher precision than one based on abstract composition, some-
times strictly higher.5 We distinguish two distinct causes for the difference in
precision.

– Both the abstract relation transformer F#(a, τ) and the abstract compo-
sition a ◦# aτ define an abstraction of the relation γ(a) ◦ ρτ . However the
former can be strictly more precise than the latter, since the abstract com-
position has to be an abstraction of a superset of γ(a) ◦ γ(aτ). In fact, there

5 An example can be found in the online version of this paper [18].

24 Matthias Heizmann, Neil D. Jones, and Andreas Podelski

are cases of abstract-relation transformers F# with a yes-answer (proving
that the input program terminates) such that no abstract composition ◦#
exists with a yes-answer.

– A set of abstract relations X that contains all elements a◦# aτ where a ∈ X
can be strictly smaller than one that contains all elements a1 ◦# a2 where
a1 ∈ X and a2 ∈ X.
Even if we require the abstract-relation transformers F# to be defined by
F#(a, τ) = a ◦# aτ , there are cases where the Lfp Checking for Ab-
stract Relations returns a yes-answer but the Closure Checking for
Abstract Relations returns a no-answer.

Finally, a potential advantage of abstract composition above abstract-relation
transformers. The latter can be defined and constructed only once the input pro-
gram with its transitions τ is known. The former can be defined and constructed
in a pre-processing step, once the set of abstract relations T # is fixed.

5.3 Special case: associative composition of abstract relations

In this section we investigate the special case where the abstract composition
◦# of abstract relations is associative. The example of size-change termination
falls into this case, i.e., the composition of size-change graphs is associative. We
will see that associativity has two consequences.

– The decision problem Closure Checking for Abstract Relations can
be reduced to the decision problem Lfp Checking for Abstract Rela-
tions . We thus obtain a better upper bound for the complexity.

– The decision problem can be further reduced to a decision problem where
the inclusion in the question “cl({aτ | τ ∈ T }) ⊆ GOOD” is restricted to a
subset of abstract relations. The subset consists of idempotent elements a,
i.e., where a ◦# a = a. Thus, we can replace the input parameter GOOD by
a subset of GOOD (containing idempotent elements only), and reserve the
well-foundedness check for only those elements.

We recall that both of the above decision problems require the well-foundedness
of every relation denoted by an abstract relation a in GOOD.

Theorem 57. The closure of an associative abstract composition ◦# equals the
least fixpoint of the abstract-relation transformer F# defined by

F#(a, τ) = a ◦# aτ

i.e.,
lfp({aτ |τ ∈T }, F#) = cl({aτ |τ ∈T }, ◦#).

Corollary 58. If the abstract composition ◦# is associative, Closure Check-
ing for Abstract Relations is decidable in space O(log2|T #|).

We note the correspondence to Theorem 11.

Size-Change Termination and Transition Invariants 25

Theorem 59. If every idempotent element in the closure cl({aτ |τ ∈T }, ◦#) of
an associative abstract composition denotes a well-founded relation, then every
element (idempotent or not) denotes a well-founded relation.

Proof. We show that whenever some element of cl({aτ |τ ∈T }) denotes a relation
that is not well-founded, then cl({aτ |τ ∈T }) contains an idempotent element that
denotes a non-well-founded relation.

Let a ∈ T # be an abstract relation. We define the following notation recur-
sively for n ≥ 1.

an =

{
a if n = 1
an−1 ◦# a otherwise

γ(a)n =

{
γ(a) if n = 1
γ(a)n−1 ◦ γ(a) otherwise

Since (cl({aτ |τ ∈T }), ◦#) is a finite semigroup, ({an | n ≥ 1}, ◦#) is also a fi-
nite semigroup. By stepwise induction and definition of an abstract composition,
we get that the inclusion

γ(a)n ⊆ γ(an)

holds for n ≥ 1.
A well-known result is that every finite semigroup has an idempotent element.

Let k ∈ IN be a natural number, such that ak is idempotent. Assume the relation
γ(a) is not well-founded. Then the relation γ(a)k and its superset γ(ak) are also
not well-founded. Hence the idempotent element ak denotes a relation that is
not well-founded. �

This proves a slightly stronger result than Theorem 59: a sufficient condition
is associativity of the abstract composition on the elements of the closure.

In the decision problem we define below, one may obviously restrict the
elements in the input parameter GOOD to idempotent elements.

Problem: Associative Closure Checking for Abstract Relations

Input:

– a program P = (Σ, T , ρ).
– a transition abstraction (T #, γ, {aτ |τ ∈T }).
– an associative abstract composition ◦#
– a subset GOOD ⊆ T # such that every element of GOOD denotes

a well-founded relation.

Property: {a ∈ cl({aτ |τ ∈T }) | a is idempotent} ⊆ GOOD

Example 60. In the setting of size-change termination, where the transitions τ
are the calls, the abstract relations are the size-change graphs, the (associative!)
abstract composition is the composition operator “ ; ” of size-change graphs, we
choose GOOD to be the set of all idempotent size-change graphs G with an arc
z
↓→ z (the denotation of G is then a well-founded relation).

26 Matthias Heizmann, Neil D. Jones, and Andreas Podelski

Theorem 61 (Associative Closure Checking for Abstract Relations
and Termination). Program P is terminating if the answer to the decision
problem Associative Closure Checking for Abstract Relations is yes.

Proof. by Theorem 55 (or Theorem 57 together with Theorem 47) and Theo-
rem 59. �

6 Discussion: qualitative differences

The research on concepts and methods based on size-change termination (SCT)
resp. transition invariants (TI) involves somewhat different assumptions. All are,
however, related to linear computational paths and to relations among first-order
values. This is in contrast to other approaches, for example Gödel’s higher-order
primitive recursive functions, and analyses of higher-order programs studied
among others by Bohr and by Sereni [20, 28, 29]. In this section, we discuss
qualitative differences between SCT and TI.

Analysis principles. The SCT analysis traces flow of data in a well-founded
data set between single variables over all of a program’s transition sequences. It
reports termination if every infinite transition sequence would cause an infinitely
descending value flow between variables. A TI analysis, in contrast, focuses on
showing that the program’s overall state transition relation is well-founded; there
is no a-priori known well-founded data set in which to trace program data flow.

SCT models are uninterpreted. SCT program data may be any well-founded
set, not necessarily well-ordered and not fixed, e.g., to the integers or natural
numbers. Thus SCT analysis cannot conclude, e.g., that x < y implies x+1 ≤ y.
The TI frameworks do not explicitly mention a value domain, although practical
tools (based on RankFinder) search for ranking functions over the (positive or
negative) integers.

Intensionality/extensionality: size-change analysis is intensional: it works by
manipulating not semantic objects themselves, but rather a priori determined
syntactic objects that describe them: size-change graphs. TI analyses, in con-
trast, are formulated extensionally, in terms of direct manipulation of semantic
values, i.e., binary relations on states. In practice, formulas in first-order logic
are used to denote these relations.

Decidability: The size-change termination property is decidable, and. its com-
plexity is understood. The calculations in the SCT analysis are done according
to fixed combinatorial techniques known in advance: the definition of “ ; ” and
the recognition of in-place decreases z

↓→ z.
In contrast, a TI analysis addresses an undecidable verification problem. As

already mentioned, the very motivation behind the work in [26] was to carry over
the ideas of [22] to verification methods in the style of software model checking [3,

Size-Change Termination and Transition Invariants 27

4].6 A software model checker uses theorem provers and decision procedures
as oracles that ‘solve’ potentially undecidable problems to implement predicate
abstraction and counterexample-guided abstraction refinement (see [3, 4]).

Parametrisation: SCT is a relatively rigid framework. It uses a generic set of
building blocks to define size-change graphs for every program. Thus, for exam-
ple, SCT never traces the flow of values that may increase. It is also insensitive
to tests in the program being analysed.

In contrast, the starting point of the TI analysis based on transition predi-
cate abstraction (TPA) is a set of predicates P that parametrizes the abstraction
function α. The TI analysis, if used together with counterexample-guided ab-
straction refinement, requires (in addition to testing well-foundedness) the ability
to compute a suitable approximation to the abstraction function α.

An example of reasoning based on abstraction: The generic class PSCT cap-
tures the expressivity of size-change graphs. Inspection of PSCT reveals that
comparisons can be made only between a current variable value and a next vari-
able value. Thus it is impossible to express relations between two current values,
as would be required to model tests in the program being analysed.

Acknowledgements. This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative Research Cen-
ter “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS). The second author thanks the Alexander von Humboldt-Stiftung for
supporting a stimulating half-year stay at the Institut für Informatik at the
University of Freiburg.

References

1. James Avery. Size-change termination and bound analysis. In FLOPS 2006, pages
192–207. Springer, 2006.

2. Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani.
Automatic predicate abstraction of C programs. In PLDI, pages 203–213. ACM,
2001.

3. Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Relative completeness
of abstraction refinement for software model checking. In TACAS, pages 158–172.
Springer, 2002.

4. Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging system
software via static analysis. In POPL, pages 1–3. ACM, 2002.

5. Amir M. Ben-Amram. Size-change termination with difference constraints. ACM
Trans. Program. Lang. Syst., 30(3):1–31, 2008.

6. Amir M. Ben-Amram. A complexity tradeoff in ranking-function termination
proofs. Acta Inf., 46(1):57–72, 2009.

6 By principle, software model checking, if based on predicate abstraction (or any other
abstraction of a program to a finite-state system), is unable to prove termination of
programs with executions of unbounded length.

28 Matthias Heizmann, Neil D. Jones, and Andreas Podelski

7. Amir M. Ben-Amram. Size-change termination, monotonicity constraints and
ranking functions. Logical Methods in Computer Science, 6, 2010.

8. Amir M. Ben-Amram and Michael Codish. A SAT-based approach to size change
termination with global ranking functions. In TACAS, pages 218–232. Springer,
2008.

9. Amir M. Ben-Amram and Chin Soon Lee. Program termination analysis in poly-
nomial time. ACM Trans. Program. Lang. Syst., 29(1), 2007.

10. Amir M. Ben-Amram and Chin Soon Lee. Ranking functions for size-change ter-
mination II. Logical Methods in Computer Science, 5(2), 2009.

11. Josh Berdine, Aziem Chawdhary, Byron Cook, Dino Distefano, and Peter W.
O’Hearn. Variance analyses from invariance analyses. In POPL, pages 211–224.
ACM, 2007.

12. Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Testing for termination with
monotonicity constraints. In ICLP, pages 326–340. Springer, 2005.

13. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for
systems code. In PLDI, pages 415–426. ACM, 2006.

14. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Summarization for ter-
mination: no return! Formal Methods in System Design, 35(3):369–387, 2009.

15. Patrick Cousot. Partial completeness of abstract fixpoint checking. In SARA,
pages 1–25. Springer, 2000.

16. Arne J. Glenstrup and Neil D. Jones. Termination analysis and specialization-
point insertion in offline partial evaluation. ACM Trans. Program. Lang. Syst.,
27(6):1147–1215, 2005.

17. Alexey Gotsman, Byron Cook, Matthew J. Parkinson, and Viktor Vafeiadis. Prov-
ing that non-blocking algorithms don’t block. In POPL, pages 16–28. ACM, 2009.

18. Matthias Heizmann, Neil D. Jones, and Andreas Podelski. Size-change ter-
mination and transition invariants (online version). http://swt.informatik.uni-
freiburg.de/staff/heizmann/SCTandTI.pdf, 2010.

19. Neil D. Jones. Computability and Complexity from a Programming Perspective.
Foundations of Computing. MIT Press, Boston, London, 1 edition, 1997.

20. Neil D. Jones and Nina Bohr. Call-by-value termination in the untyped lambda-
calculus. Logical Methods in Computer Science, 4(1), 2008.

21. Daniel Kroening, Natasha Sharygina, Aliaksei Tsitovich, and Christoph Winter-
steiger. Termination analysis with compositional transition invariants. In CAV,
pages 89–103. Springer, 2010.

22. Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle
for program termination. In POPL, pages 81–92. ACM, 2001.

23. Zohar Manna and A. Pnueli. Temporal verification of reactive systems: safety.
Springer, 1995.

24. T. Æ. Mogensen, D. A. Schmidt, and I. H. Sudborough, editors. The Essence of
Computation; Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones, volume 2566 of Lecture Notes in Computer Science. Springer, 2002.

25. Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis
of linear ranking functions. In VMCAI, pages 239–251. Springer, 2004.

26. Andreas Podelski and Andrey Rybalchenko. Transition invariants. In LICS, pages
32–41. IEEE Computer Society, 2004.

27. Andreas Podelski and Andrey Rybalchenko. Transition predicate abstraction and
fair termination. In POPL, pages 132–144. ACM, 2005.

28. Damien Sereni. Termination analysis and call graph construction for higher-order
functional programs. In ICFP, pages 71–84. ACM, 2007.

Size-Change Termination and Transition Invariants 29

29. Damien Sereni and Neil D. Jones. Termination analysis of higher-order functional
programs. In APLAS, pages 281–297. Springer, 2005.

30. Stephan Swiderski, Michael Parting, Jürgen Giesl, Carsten Fuhs, and Peter
Schneider-Kamp. Termination analysis by dependency pairs and inductive the-
orem proving. In CADE, pages 322–338. Springer, 2009.

