
Quasi-equal Clock Reduction:
More Networks, More Queries

Christian Herrera1, Bernd Westphal, and Andreas Podelski

Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany

Abstract. Quasi-equal clock reduction for networks of timed automata
replaces equivalence classes of clocks which are equal except for unstable
phases, i.e., points in time where these clocks differ on their valuation,
by a single representative clock. An existing approach yields significant
reductions of the overall verification time but is limited to so-called well-
formed networks and local queries, i.e., queries which refer to a single
timed automaton only. In this work we present two new transformations.
The first, for networks of timed automata, summarises unstable phases
without losing information under weaker well-formedness assumptions
than needed by the existing approach. The second, for queries, now sup-
ports the full query language of Uppaal. We demonstrate that the cost
of verifying non-local properties is much lower in transformed networks
than in their original counterparts with quasi-equal clocks.

1 Introduction

Real-time systems often use distributed architectures and communication pro-
tocols to exchange data in real-time. Examples of such protocols are the classes
of TDMA-based protocols [1] and EPL-based protocols [2].

Real-time systems can be modelled and verified by using networks of timed
automata [3]. In [4] a technique that reduces the number of clocks that model the
local timing behaviour and synchronisation activity of distributed components is
presented in order to reduce the verification runtime of properties in networks of
timed automata that fulfill a set of syntactical criteria called well-formedness. In
systems implementing, e.g., TDMA or EPL protocols this technique eliminates
the unnecessary verification overhead caused by the interleaving semantics of
timed automata, where the automata reset their clocks one by one at the end
of each communication phase. This interleaving induces sets of reachable inter-
mediate configurations which grow exponentially in the number of components
in the system. Model checking tools like Uppaal [5] explore these configurations
even when they are irrelevant for the property being verified. This exploration
unnecessarily increases the overall memory consumption and runtime verification
of the property.

The notion of quasi-equal clocks was presented in [4] to characterise clocks
that evolve at the same rate and whose valuation only differs in unstable phases,

1 CONACYT (Mexico) and DAAD (Germany) sponsor the work of the first author.

2 Herrera, Westphal, Podelski

i.e., points in time where these clocks are reset one by one. Sets of quasi-equal
clocks induce equivalence classes in networks of timed automata.

Although the technique introduced in [4] shows promising results for trans-
formed networks, the technique has two severe drawbacks. Namely, it loses all the
information from intermediate configurations and it supports only local queries,
i.e., properties defined over single timed automaton of well-formed networks. A
concrete consequence of these drawbacks can be observed in the system with
quasi-equal clocks presented in [6] which implements an EPL protocol. In the
transformed model of this system it is not possible to perform the sanity check
that a given automaton receives configuration data from other system compo-
nents right before this automaton resets its quasi-equal clock. The check involves
querying information of several automata from intermediate configurations. Sys-
tem properties are quite often expressed in terms of several automata.
To overcome these limitations, in this work we revisit the reduction of quasi-
equal clocks in networks of timed automata, and we present an approach based
on the following new idea. For each set of quasi-equal clocks we summarise un-
stable configurations using dedicated locations of automata introduced during
network transformation. Queries which explicitly refer to unstable configurations
are rewritten to refer to the newly introduced summary location instead. The
dedicated summary locations also allow us to support complex resetting edges
in the original model, i.e. edges with synchronisation of assignments other than
clock resets. This allows us to extend the queries that we support as per our new
approach which is also a source-to-source transformation, i.e. our approach can
be used with a wide range of model-checking tools.
Our approach aims to provide the modelling engineer with a system optimisation
technique which allows him to naturally model systems without caring to opti-
mise them for verification. Our contributions are: (1) We now support properties
referring to multiple timed automata, in particular properties which query (pos-
sibly overlapping) unstable configurations. (2) We enlarge the applicability of
our new approach by relaxing the well-formedness criteria presented in [4]. Our
approach allows us to prove in a much simpler and more elegant way (without a
need for the reordering lemma from [4]) that transformed networks are weakly
bisimilar to their original counterparts. We show that properties wrt. an original
network are fully preserved in the transformed network, i.e., the transformed
network satisfies a transformed property if and only if the original network sat-
isfies the original property. We evaluate our approach on six real world examples,
three of them new, where we observe significant improvements in the verification
cost of non-local queries compared to the cost of verifying them in the original
networks.
The paper is organized as follows. In Section 2, we provide basic definitions. Sec-
tion 3 introduces the formal definition of well-formed networks and presents the
algorithm that implements our approach. In Section 4, we formalise the relation
of a well-formed network and its transformed network and prove the correctness
of our approach. In Section 5, we compare the verification time of six real world
examples before and after applying our approach. Section 6 concludes.

Quasi-equal Clock Reduction: More Networks, More Queries 3

Related Work. The methods in [7–9] eliminate clocks by using static analysis
over single timed automaton, networks of timed automata and parametric timed
automata, respectively. The approaches in [7, 8] reduce the number of clocks in
timed automata by detecting equal and active clocks. Two clocks are equal in a
location if both are reset by the same incoming edge, so just one clock for each
set of equal clocks is necessary to determine the future behavior of the system.
A clock is active at a certain location if this clock appears in the invariant of
that location, or in the guard of an outgoing edge of such a location, or another
active clock takes its value when taking an outgoing edge. Non-active clocks play
no role in the future evolution of the system and therefore can be eliminated.
In [9] the same principle of active clocks is used in parametric timed automata.
Our benchmarks use at most one clock per component which is always active,
hence the equal and active approach is not applicable on them.

The work in [10, 11] uses observers, i.e., single components encoding proper-
ties of a system, to reduce clocks in systems. For each location of the observer, the
technique can deactivate clocks if they do not play a role in the future evolution
of this observer. Processing our benchmarks in order to encode properties as per
the observers approach may be more expensive than our method (one observer
per property), and may not guarantee the preservation of information from in-
termediate configurations which in the case of our EPL benchmark is needed. In
general using observers to characterise non-local queries is not straightforward.

In sequential timed automata [12], one set of quasi-equal clocks is syntacti-
cally declared. Those quasi-equal clocks are implicitly reduced by applying the
sequential composition operator. The work in [13] avoids the use of shared clocks
in single timed automaton by replacing shared clocks with fresh ones if the
evolution of these automata does not depend on these clocks. This approach
increments the number of clocks (in contrast to ours). Our benchmarks do not
use shared clocks. The approach in [14] detects quasi-equal clocks in networks of
timed automata. Interestingly, the authors demonstrate the feasibility of their
approach in benchmarks that we also use in this paper.

2 Preliminaries

Following the presentation in [15], we here recall the following definitions.

Let X be a set of clocks. The set Φ(X) of simple clock constraints over X
is defined by the grammar ϕ ::= x ∼ c | x − y ∼ c | ϕ1 ∧ ϕ2 where x, y ∈
X , c ∈ Q≥0, and ∼ ∈ {<,≤,≥, >}. Let Φ(V) be a set of integer constraints
over variables V. The set Φ(X ,V) of constraints comprises Φ(X), Φ(V), and
conjunctions of clock and integer constraints. We use clocks(ϕ) and vars(ϕ)
to respectively denote the set of clocks and variables occurring in a constraint
ϕ. We assume the canonical satisfaction relation “|=” between valuations ν :
X ∪ V → Time ∪ Z and constraints, with Time = R≥0. A timed automaton
A is a tuple (L,B,X,V, I, E, `ini), which consists of a finite set of locations
L, where `ini ∈ L is the initial location, a finite set B of actions comprising
the internal action τ , finite sets X and V of clocks and variables, a mapping

4 Herrera, Westphal, Podelski

I : L → Φ(X), that assigns to each location a clock constraint, and a set of
edges E ⊆ L × B × Φ(X ,V) × R(X ,V) × L. An edge e = (`, α, ϕ, ~r, `′) ∈ E
from location ` to `′ involves an action α ∈ B, a guard ϕ ∈ Φ(X ,V), and a
reset vector ~r ∈ R(X ,V). A reset vector is a finite, possibly empty sequence of
clock resets x := 0, x ∈ X , and assignments v := ψint , where v ∈ V and ψint is
an integer expression over V. We write X (A), `ini(A), etc., to denote the set of
clocks, the initial location, etc., of A; clocks(~r) and vars(~r) to denote the sets
of clocks and variables occurring in ~r, respectively. We use β(e) to denote the
set of basic elements (locations, reset vector, etc.) of an edge e ∈ E(A). We
use the following operation of complementation on actions ·, which is defined
by α! = α?, α? = α! and τ = τ . A network N (of timed automata) consists of
a finite set A1, . . . ,AN of timed automata with pairwise disjoint sets of clocks
and pairwise disjoint sets of locations and a set B(N) ⊆

⋃N
i=1B(Ai) of broadcast

channels. We write A ∈ N if and only if A ∈ {A1, . . . ,AN}.
The operational semantics of the network N is the labelled transition system

T (N) = (Conf (N),Time∪{τ}, { λ−→| λ ∈ Time∪{τ}}, Cini). The set of configura-
tions Conf (N) consists of pairs of location vectors 〈`1, . . . , `N 〉 from ×Ni=1L(Ai)
and valuations of

⋃
1≤i≤N X (Ai)∪V(Ai) which satisfy the constraint

∧N
i=1 I(`i).

We write `s,i, 1 ≤ i ≤ N , to denote the location which automaton Ai assumes

in configuration s = 〈~̀s, νs〉 and νs,i to denote νs|V(Ai)∪X (Ai). Between two con-
figurations s, s′ ∈ Conf (N) there can be four kinds of transitions. There is a

delay transition 〈~̀s, νs〉
t−→ 〈~̀s′ , νs′〉 if νs + t′ |=

∧N
i=1 Ii(`s,i) for all t′ ∈ [0, t],

where νs + t′ denotes the valuation obtained from νs by time shift t′. There is a
local transition 〈~̀s, νs〉

τ−→ 〈~̀s′ , νs′〉 if there is an edge (`s,i, τ, ϕ, ~r, `s′,i) ∈ E(Ai),
1 ≤ i ≤ N , such that ~̀s′ = ~̀

s[`s,i := `s′,i], νs |= ϕ, νs′ = νs[~r], and νs′ |= Ii(`s′,i).

There is a synchronization transition 〈~̀s, νs〉
τ−→ 〈~̀s′ , νs′〉 if there are 1 ≤ i, j ≤

N , i 6= j, a channel b ∈ B(Ai) ∩ B(Aj), and edges (`s,i, b!, ϕi, ~ri, `s′,i) ∈ E(Ai)
and (`s,j , b?, ϕj , ~rj , `s′,j) ∈ E(Aj) such that ~̀s′ = ~̀

s[`s,i := `s′,i][`s,j := `s′,j],
νs |= ϕi∧ϕj , νs′ = νs[~ri][~rj], and νs′ |= Ii(`s′,i)∧ Ij(`s′,j). Let b ∈ B be a broad-
cast channel and 1 ≤ i0 ≤ N such that (`s,i0 , b!, ϕi0 , ~ri0 , `s′,i0) ∈ E(Ai0). Let
1 ≤ i1, . . . , ik ≤ N , k ≥ 0, be those indices different from i0 such that there is an
edge (`s,ij , b?, ϕij , ~rij , `s′,ij) ∈ E(Aij). There is broadcast transition 〈~̀s, νs〉

τ−→
〈~̀s′ , νs′〉 in T (N) if ~̀s′ = ~̀

s[`s,i0 := `s′,i0] · · · [`s,ik := `s′,ik], νs |=
∧k
j=0 ϕij ,

νs′ = νs[~ri0] · · · [~rik], and νs′ |=
∧k
j=0 Iij (`s′,ij). Cini = {〈~̀ini, νini〉} ∩ Conf (N),

where ~̀ini = 〈`ini,1, . . . , `ini,N 〉 and νini(x) = 0 for each x ∈ X (Ai), 1 ≤ i ≤ N .

A finite or infinite sequence σ = s0
λ1−→ s1

λ2−→ s2 . . . is called transition sequence
(starting in s0 ∈ Cini) of N . Sequence σ is called computation of N if and only
if it is infinite and s0 ∈ Cini . We denote the set of all computations of N by
Π(N). A configuration s is called reachable (in T (N)) if and only if there exists
a computation σ ∈ Π(N) such that s occurs in σ.

The set of basic formulae over N is given by the grammar β ::= ` | ¬` | ϕ
where ` ∈ L(Ai), 1 ≤ i ≤ n, and ϕ ∈ Φ(X (N),V(N)). Basic formula β is satisfied
by configuration s ∈ Conf (N) if and only if `s,i = `, `s,i 6= `, or νs |= ϕ, resp. A
reachability query EPF over N is ∃♦CF where CF is a configuration formula

Quasi-equal Clock Reduction: More Networks, More Queries 5

over N , i.e., any logical connection of basic formulae. We use β(CF) to denote
the set of basic formulae in CF . N satisfies ∃♦CF , denoted by N |= ∃♦CF , if
and only if there is a configuration s reachable in T (N) s.t. s |= CF .

We recall from [4] the following definitions. Given a network N with clocks
X , two clocks x, y ∈ X are called quasi-equal, denoted by x ' y, if and only
if for all computation paths of N , the valuations of x and y are equal, or the

valuation of one of them is equal to 0, i.e., if ∀ s0
λ1−→ s1

λ2−→ s2 · · · ∈ Π(N) ∀ i ∈
N0 • νsi |= (x = 0 ∨ y = 0 ∨ x = y). In the following, we use ECN to denote
the set {Y ∈ X/' | 1 < |Y |} of equivalence classes of quasi-equal clocks of
N with at least two elements. For each Y ∈ X/', we assume a designated
representative denoted by rep(Y). For x ∈ Y , we use rep(x) to denote rep(Y).
Given a constraint ϕ ∈ Φ(X ,V), we write Γ (ϕ) to denote the constraint that is
obtained by syntactically replacing each occurrence of a clock x ∈ X in ϕ, by the
representative rep(x). Given an automaton A ∈ N , a set of clocks X ⊆ X (A),
and a set of variables V ⊆ V(A), we use SEX(A) to denote the set of simple
resetting edges of A which reset clocks from X, have action τ , no variables occur
in their guards, and do not update any variables, i.e., SEX(A) = {(`, α, ϕ, ~r, `′) ∈
E(A) | clocks(~r)∩X 6= ∅∧α = τ ∧ vars(ϕ) = ∅∧ vars(~r) = ∅}. We use CEX(A)
to denote the set of complex resetting edges of A which reset clocks from X
and have an action different from τ or update some variables, i.e., CEX(A) =
{(`, α, ϕ, ~r, `′) ∈ E(A) | clocks(~r) ∩ X 6= ∅ ∧ (vars(~r) ∩ V 6= ∅ ∨ α 6= τ)}.
We use LSX(A) and LCX(A) to respectively denote the set of locations (source
and destination) of simple and complex resetting edges wrt. X of A. We use
EX(A) = SEX(A) ∪ CEX(A) to denote the set of resetting edges of A which
reset clocks from X, and RESX(N) to denote the set of automata in N which
have a resetting edge, i.e., RESX(N) = {A ∈ N | EX(A) 6= ∅}. A location ` (`′)
is called is called reset (successor) location wrt. Y ∈ ECN in N if and only if
there is a resetting edge in SEY (A)∪ CEY (A) from (to) ` (`′). We use RLY (N)
(RL+

Y (N)) to denote the set of reset (successor) locations wrt. Y in N and we
set RLECN (N) :=

⋃
Y ∈ECN RLY (N) and similarly RL+

ECN (N).

A configuration s ∈ Conf (N) is called stable wrt. Y ∈ ECN if and only if
all clocks in Y have the same value in s, i.e., if ∀x ∈ Y • νs(x) = νs(rep(x)).
We use SCYN to denote the set of all configurations that are stable wrt. Y and
SCN to denote the set

⋂
Y ∈ECN SC

Y
N of globally stable configurations of N . Con-

figurations not in SCN are called unstable. An edge e of a timed automaton
A in network N is called delayed if and only if time must pass before e can

be taken, i.e., if ∀ s0
λ1−→E1

s1 . . . sn−1
λn−−→En sn ∈ Π(N) • e ∈ En =⇒

∃ 0 ≤ j < n • λj ∈ Time \ {0} ∧ ∀ j ≤ i < n • E(A) ∩ Ei = ∅. Where

we write si
λi−→Ei si+1, i ∈ N>0, to denote that the transition si

λi−→ si+1

is justified by the set of edges Ei; Ei is empty for delay transitions, i.e., if
λi ∈ Time. We say ECN -reset edges are pre/post delayed in network N if and
only if all edges originating in reset or reset successor locations are delayed, i.e.,
if ∀ e = (`, α, ϕ, ~r, `′) ∈ E(N) • ` ∈ RLECN (N) ∪RL+

ECN (N) =⇒ e is delayed.

6 Herrera, Westphal, Podelski

wait fill

idle

x ≤ 60

x ≤ 59

x ≤ 60

A1:

x ≥ 50

closed := 0

x ≥ 60

x := 0, closed := 1

wait fill

y ≤ 60y ≤ 60

A2: y ≥ 40

y ≥ 60

y := 0

Fig. 1. Model of a chemical plant controller with quasi-equal clocks.

3 Reducing Clocks in Networks of Timed Automata

Consider the following motivating example of a distributed chemical plant con-
troller. At the end of every minute, the controller fills two containers with gas,
one for at most 10 seconds and the other for at most 20 seconds. Figure 1 shows
a model of this system in form of the network N1 which is composed of automata
A1 and A2 with respective clocks x and y. Additionally, automaton A1 has the
boolean variable closed that is set to true, i.e., closed := 1 , when A1 has filled
its container. Both automata start in a waiting phase at the point in time 0
and after filling the containers they wait for the next round. Both clocks x and
y, together with the variable closed are respectively reset and updated at the
point in time 60. Yet, in the strict interleaving semantics of networks of timed
automata, these resets occur one after the other.

According to the definition of quasi-equal clocks, clocks x and y are quasi-
equal because their valuations are only different from each other when they
are reset at the point in time 60. Now consider verifying in N1, whether the
container of automaton A1 is closed before automaton A2 resets its clock. A
query that states this property is ∃♦φ with configuration formula φ : closed =
1 ∧ y ≥ 60. Clearly in N1, this query is satisfied only when clocks x and y have
different valuations, i.e., in unstable configurations. Property ∃♦φ cannot be
treated by the approach in [4] since that approach supports only local queries,
i.e., queries which refer to properties of at most one automaton. The approach
in [4] completely eliminates all unstable configurations, those where quasi-equal
clocks have different valuations, since no alternative representation of them was
proposed for transformed models. Furthermore, N1 does not satisfy the well-
formedness criteria of [4] because the resetting edge also assigns a variable.

3.1 Transformational Reduction of Quasi-equal Clocks

In the following we present an algorithm which reduces a given set of quasi-
equal clocks in networks of timed automata and preserves all possible queries.
For simplicity, we impose a set of syntactical criteria called well-formedness rules
over networks of timed automata.

Definition 1 (Well-formed Network). A network N is called well-formed if
and only if it satisfies the following restrictions for each set of quasi-equal clocks
Y ∈ ECN :

Quasi-equal Clock Reduction: More Networks, More Queries 7

(R1) An edge resets at most one clock x ∈ Y , in the constraint (guard) of this
edge there is a clause of the form x ≥ CY , and the source location of that
edge has an invariant x ≤ CY for some constant CY > 0, i.e.,

∃CY ∈ N>0 ∀A ∈ N ∀ (`, α, ϕ, ~r, `′) ∈ EY (A) ∃x ∈ Y, ϕ0 ∈ β(ϕ) •
clocks(~r) = {x} ∧ I(`) = x ≤ CY ∧ ϕ0 = x ≥ CY
∧ ∀ϕ1 ∈ β(ϕ) • clocks(ϕ1) 6= ∅ =⇒ ϕ1 = ϕ0.

(R2) Resetting edges do not coincide on source locations.

∀A ∈ N ∀ (`i, αi, ϕi, ~ri, `
′
i) 6= (`j , αj , ϕj , ~rj , `

′
j) ∈ EY (A) • `i 6= `j .

(R3) For pairs of edges that synchronise on some channel a ∈ B(N), either all
edges reset a clock from Y , or none of these edges resets a clock from Y , or
the output a! is in one edge resetting a clock from Y , and the inputs a? are
in the edges of automata which do not reset clocks from Y , i.e.,

∀A1 6= A2 ∈ N ∀ ei = (`i, αi, ϕi, ~ri, `
′
i) ∈ E(Ai), i = 1, 2, α1 = α2 •

(e1 /∈ EY (A1) ∧ e2 /∈ EY (A2)) ∨ (e1 ∈ EY (A1) ∧ e2 ∈ EY (A2))

∨ (∃ i ∈ {1, 2}, a ∈ B(N) • αi = a! ∧ ei ∈ EY (Ai) ∧ A3−i /∈ RESY (N)).

(R4) At most one clock from Y occurs in the guard of any edge, i.e.,

∀ (`, α, ϕ, ~r, `′) ∈ E(N) • |clocks(ϕ) ∩ Y | ≤ 1.

The transformation algorithm presented here which was developed in order
to support all queries and in particular those interested in unstable configura-
tions, allows us to easily relax the syntactical restrictions presented in [4]. The
relaxations done in this work are the following. By restriction R1, now looped
edges or those edges from initial locations can reset clocks from Y ∈ ECN as well
as update variables, and we now allow the guard of such edges to conjoin integer
constraints over variables. By R2 we now allow more edges from a reset loca-
tion (but still only one resetting edge from it). By R3, we now allow a resetting
edge to have a limited but still useful synchronisation. The new well-formedness
criteria are less restrictive then they look on first sight. They allow us to extend
the applicability of our new approach by treating three new case studies. Note
that the network in Figure 1 satisfies the new well-formedness criteria.

In the following we describe the transformation algorithm K. It works with
two given inputs, a well-formed network N and a set of equivalence classes
ECN = {Y1, . . . , Yn} of quasi-equal clocks. The output of K is the transformed
network N ′ = {A′1, . . . ,A′n} ∪ {RY | Y ∈ ECN } with broadcast channels
B(N ′) = B(N) ∪ {resetY | Y ∈ ECN }. The automata A′i are obtained by apply-
ing repeatedly (in any order) the algorithm K0 to Ai for each equivalence class
in ECN , i.e., A′i = K0(. . .K0(Ai, Y1), . . . Yn). Algorithm K0 is defined as follows.

K0(A, Y) =

{
A , if A /∈ RESY (N),

(L′, B′,X ′,V ′, I ′, E′, `′ini) , otherwise

8 Herrera, Westphal, Podelski

wait fill

`ξY

idle

x ≤ 60

x ≤ 59

x ≤ 60

A1:

closed := 1

closed := 0

rstOY −−

x ≤ 0

rstIY ++

rstIY −−rstIY ++

x ≥ 50

resetY ?

wait fill

x ≤ 60x ≤ 60

A2:
x ≥ 40

rstIY ++

resetY ?

rstOY −−

`ini,RY `nst,Y

x ≤ 0

x := 0

resetY !

RY : x ≥ 60 ∧ rstIY = 2

rstIY := 0

rstOY := 2

rstOY = 0 ∧ x ≤ 0

Fig. 2. The model the chemical plant controller after applying K.

where per equivalence class

– intermediate locations for each complex resetting edge are added, L′ =
L(A) ∪ΞY (A) with ΞY (A) = {`ξY,e | e ∈ CEY (A)}, `′ini = `ini(A),

– the broadcast channel resetY is added, B′ = B(A)∪{resetY }; clocks except
for each representative clock are deleted, X ′ = (X (A) \ Y) ∪ {rep(Y)}; and
rst variables are added, V ′ = V ∪ {rstIY , rstOY },

– quasi-equal clocks occurring in invariants are replaced by the respective rep-
resentative clock, I ′(`) = I(`)[y/rep(y) | y ∈ Y] for ` ∈ L(A); and a zero
delay invariant is added to each intermediate location
I ′(`) = rep(y) ≤ 0 for ` ∈ ΞY (A); On non-resetting edges each quasi-equal
clock is replaced by the respective representative clock; the input resetY ? is
placed and the reset of quasi-equal clocks is removed from simple edges; and
intermediate locations and reset successor locations are linked, respectively,

E′ = {(`, α, ϕ[y/rep(y) | y ∈ Y], ~r; ρe, `
′) | e = (`, α, ϕ, ~r, `′) ∈ E(A) \ EY (A)}

∪ {(`, resetY ?, ϕ[y ∼ c/true | y ∈ Y], ~r[y := 0/ε | y ∈ Y]; ρe, `
′) |

e = (`, τ, ϕ, ~r, `′) ∈ SEY (A)}
∪ {(`ξY,e , α, ϕ[y ∼ c/true | y ∈ Y], ~r[y := 0/ε | y ∈ Y]; ρe, `

′),

(`, resetY ?, true, ε, `ξY,e) | e = (`, α, ϕ, ~r, `′) ∈ CEY (A)}
where the reset sequence ρe = r1; r2; r3 depends on the edge e as follows:

– r1 = rstIY := rstIY + 1 if e is to a reset location in RLY (N), and r1 = ε
otherwise,

– r2 = rstIY := rstIY −1 if e is from a reset location in RLY (N) and e /∈ EY (A),
and r2 = ε otherwise, and

– r3 = rstOY := rstOY − 1 if e ∈ EY (A), and r3 = ε otherwise.

The resetter RY for equivalence class Y is the timed automaton

({`ini,RY
, `nst,Y }, {resetY }, {rep(Y)}, {rstIY := iLY , rstOY := nY }, I, E, `ini,RY

).

Quasi-equal Clock Reduction: More Networks, More Queries 9

It initializes the variable rstIY to iLY := |{A ∈ N | `ini,A ∈ RLY (N)}|, i.e. the
number of automata whose initial location is a reset location of Y , and rstOY
to nY := |RESY (N)|, i.e. the number of automata that reset the clocks of Y .
There are two locations with the invariants I(`ini,RY) = true and I(`nst,Y) =
rep(Y) ≤ 0. The set of edges E consists of

(`ini,RY
, resetY !, (rstIY = nY ∧ rep(Y) ≥ CY), rstIY := 0; rep(Y) := 0, `nst,Y)

and (`nst,Y , τ, (rstOY = 0 ∧ rep(Y) ≤ 0), rstOY := nY , `ini,RY)

where CY is the time at which the clocks in Y are reset (cf. R1).

Example 1. Applying K to N1 from Figure 1 yields network N ′1 (cf. Figure 2).
Similar to the algorithm in [4], only the representative clock of each equivalence
class remains. All guards and invariants with quasi-equal clocks are re-written
to refer to the representative clock, and the reset operation is delegated to the
resetter. The variable rstIY together with well-formedness enforces a blocking
multicast synchronisation between resetter and the automata in RESY (N).

In order to support non-local queries, and in particular queries for possibly
overlapping unstable configurations, the approach presented here introduces one
resetter per equivalence class with two locations each. The location `nst,Y rep-
resents all unstable configuration wrt. Y . To support complex edges, and thus
non-trivial behaviour during unstable phases, complex edges are basically split
into two. The first one synchronises with the resetter and the second one carries
out the actions of the original complex edge. As long as the second edge has not
been taken, the system is unstable. The variable rstOY is introduced to indicate
to automaton RY when this unstability finishes. Its value gives the number of
automata which still need to take their reset edge in the current unstable phase.

In N ′1, we have thereby eliminated the interleaving induced by resetting the
clocks x and y in N1, but the interleaving wrt. variable updates during reset of
quasi-equal clocks is preserved by splitting the complex edge into two. Note that
in transformed networks, configurations with the locations `nst,Y1 , . . . , `nst,Yn ,
where 1 < n, reflect overlapping unstable phases, i.e. instability wrt. multiple
equivalence classes at one point in time.

The following function Ω syntactically transforms properties over a well-
formed network N into properties over N ′ = K(N , ECN). Function Ω treats
queries for source or destination locations of resetting edges special and outputs
an equivalent property which can be verified in N ′.

For instance, consider a simple resetting edge e ∈ SEY (A) of some A ∈ N .
The source location ` of e can be assumed in N in different configurations:
either the reset time is not yet reached, or the reset time is reached but A did
not reset yet, while other automata in RESY (N) may have reset their clocks
already. In N ′, all edges resulting from simple edges fire at once on the broadcast
synchronisation, so all source locations are left together. Because the resetter
moves to `nst,Y , a configuration of N ′ which assumes location `nst,Y represents
all similar configurations of N where all simple edges are in their source or

10 Herrera, Westphal, Podelski

destination location. Thus the location ` is reachable in N if and only if (i) N ′
reaches `nst,Y , or (ii) if ` is reached while being stable, i.e., not being in `nst,Y .

A similar reasoning is applied to properties querying elements of a complex
resetting edge wrt. Y , but instead of using `nst,Y we use the intermediate location
`ξY,e from N ′, since this location represents unstability before updating any
variable that occurs in a complex edge.

In this sense, configurations involving location `nst,Y summarise unstable
phases of N . Assuming `nst,Y in N ′ represents both cases for a simple edge,
that it has already been taken or not, and that the clock x reset by this edge is
still CY or already 0. Although involving two choices, there are essentially two
cases (not four): having taken the reset edge and being unstable implies that, x
is 0 and some other clocks are still CY , or x is still CY and some other clocks
are already 0. To this end, we introduce fresh existentially quantified variables ˜̀

and x̃ in Ω0 and conjoin it with a consistency conjunction. By R1, we only need
to consider 0 and CY as values of x̃, thus the existential quantification can be
rewritten into a big disjunction, and hence is a proper query.

Definition 2 (Function Ω). Let Y ∈ ECN be sets of clocks of a well-formed
network N and let N ′ = K(N , ECN). Let CY be the constant described in re-
striction R1. Let `nst,Y be the unique non initial location of RY , the resetter
automaton wrt. Y in N ′. Let β be a basic formula over N . Then the function Ω
is defined as follows where LY = LSY (N) ∪ (LCY (N) ∩RLY (N)):

Ω0(β) =

(` ∧ ¬`nst,Y) ∨ (`nst,Y ∧ ˜̀) , if β = `, ` ∈ LY .
(¬` ∧ ¬`nst,Y) ∨ (`nst,Y ∧ ¬˜̀) , if β = ¬`, ` ∈ LY .(
Γ (ϕ) ∧ ¬`nst,Y

)
∨
(
`nst,Y ∧ ϕ̃

)
, if β = ϕ, ϕ̃ = ϕ[x/x̃ | x ∈ X (N)].

β , otherwise

Ω(CF) = ∃ x̃1, .., x̃k ∃ ˜̀
1, .., ˜̀

m •Ω0(CF) ∧
∧

(`,α,ϕ,~r,`′)
∈CEY (A),
`i=`

(˜̀
i =⇒ `ξY,e) ∧

∧
1≤i 6=j≤m,

1≤p≤n
`i,`j∈Lp,

¬(˜̀
i ∧ ˜̀

j)

∧
∧

1≤i≤k,1≤j≤m,
xj∈Xp∩Y,1≤p≤n,

`i∈Lp∩(RLY (N)\RL+
Y (N))

(˜̀
i =⇒ x̃j = CY) ∧

∧
1≤i≤k,1≤j≤m,
xj∈Xp∩Y,1≤p≤n,

`i∈Lp∩(RL+
Y (N)\RLY (N))

(˜̀
i =⇒ x̃j = 0) ∧

∧
(`,α,ϕ,~r,`′)
∈SEY (A),

`i∈{`,`′}

(˜̀
i =⇒ `′)

For example, for Ω(φ) we obtain, after some simplifications given that A2

has only simple resetting edges, the following transformed formula:

∃ x̃ ∈ {0, CY } • closed = 1 ∧ ((x ≤ 60 ∧ ¬`nst,Y) ∨ (`nst,Y ∧ x̃ ≥ 60)).

4 Formal Relation of a Well-formed Network and Its
Transformed Network

In order to prove our approach correct we establish a weak bisimulation relation
between a well-formed network and its respective transformed network. To this
end, we firstly extend the notion of (un)stability to N ′ as follows.

Quasi-equal Clock Reduction: More Networks, More Queries 11

Definition 3 (Stable Configuration of N ′). Let N be a network and let
Y ∈ ECN be a set of quasi-equal clocks. Let N ′ = K(N , ECN).

A configuration r ∈ Conf (N ′) is called stable wrt. Y if and only if the initial
location `ini,RY of resetter RY ∈ N ′ occurs in r, i.e., if r |= `ini,RY . We use

SCYN ′ to denote the set of all configurations that are stable wrt. Y and SCN ′ to
denote the set

⋂
Y ∈ECN SC

Y
N ′ of globally stable configurations of N ′. We call a

configuration r 6∈ SCN ′ unstable.

We recall that configurations induced when each clock from Y ∈ ECN is
reset in well-formed networks N , are summarised in transformed networks N ′ in
configurations where the `nst,RY

-location occurs together with the valuations of
rstIY and rstOY reflecting these resets. Hence with the valuations from rstIY and
rstOY we unfold information summarised in these configurations from N ′.

Lemma 1 (Weak Bisimulation).
Any well-formed network N where ECN -reset edges are pre/post delayed, is

weakly bisimilar to N ′ = K(N , ECN), i.e., there is a weak bisimulation relation
S ⊆ Conf (N)× Conf (N ′) such that

1. ∀ s ∈ Cini(N) ∃ r • (s, r) ∈ S and ∀ r ∈ Cini(N ′) ∃ s • (s, r) ∈ S.
2. For all config. formulae CF over N , ∀ (s, r) ∈ S • s |= CF =⇒ r |= Ω(CF)

and ∀ r ∈ CONSECN •r |= Ω(CF) =⇒ ∃ s ∈ Conf (N)•(s, r) ∈ S∧s |= CF .
3. For all (s, r) ∈ S,

(a) if s
λ−→ s′ with

i. s ∈ SCYN , s′ /∈ SCYN , where Y ∈ ECN , and justified by a simple
resetting edge, there is r′ such that r

λ−→ r′ and (s′, r′) ∈ S.
ii. s, s′ /∈ SCYN , or s /∈ SCYN and s′ ∈ SCYN , where Y ∈ ECN , and

justified by a simple resetting edge, then r
0−→ r and (s′, r) ∈ S.

iii. s, s′ ∈ SCYN , or s ∈ SCYN and s′ /∈ SCYN , where Y ∈ ECN , and
justified by the set CEY ⊆ CEY (N) of complex resetting edges wrt. Y ,
then there exist r′, r′′ such that r

τ−→ r′
λ−→ r′′ and (s, r′), (s′, r′′) ∈ S.

iv. s /∈ SCYN , s′ ∈ SCYN , where Y ∈ ECN , and justified by CEY ⊆
CEY (N), there is r′ s.t. r

λ−→ r′ and (s′, r′) ∈ S.
v. s, s′ ∈ SCYN , `r = `nst,RY

for some Y ∈ ECN , and λ = d > 0, there
exist r′, r′′ such that r

τ−→ r′
λ−→ r′′ and (s, r′), (s′, r′′) ∈ S.

vi. Otherwise there exists r′ such that r
λ−→ r′ and (s′, r′) ∈ S.

(b) if r
λ−→ r′ with

i. r ∈ SCYN ′ , r′ /∈ SCYN ′ , where Y ∈ ECN , νr′(rstOY) < N , where N =
νr(rstOY), there exist s1, . . . , sn where n = N − νr′(rstOY), such that
s
τ−→ s1

τ−→ . . .
τ−→ sn and (si, r

′) ∈ S, 1 ≤ i ≤ n.
ii. r ∈ SCYN ′ , r′ /∈ SCYN ′ , νr′(rstOY) = νr(rstOY), where Y ∈ ECN , then

s
0−→ s and (s, r′) ∈ S.

iii. `r = `nst,RY , `r′ 6= `nst,RY , Y ∈ ECN , then s
0−→ s and (s, r′) ∈ S.

iv. Otherwise there exists s′ such that s
λ−→ s′ and (s′, r′) ∈ S.

Proof (sketch). Let N be a well-formed network and let N ′ = K(N , ECN). For
each Y ∈ ECN use the following six conditions to obtain a weak bisimulation

12 Herrera, Westphal, Podelski

(N)

(N ′)

s s̄′τ

λ

(i) Get unstable by SE-edge.

r r̄′

s s̄′τ

τ λ

(iv) Get unstable by CE-edge.

r r̄′ r̄′′

(N ′)

(N)

r r̄′τ

τ τ τ

(i) Reset some SE-edges.

s s̄1 s̄n

...

r r̄′τ

0

(ii) Reset all CE-edges.

s s′

Fig. 3. Some involved weak bisimulations cases between the transition system (TS) of a
well-formed network N and the TS of the network N ′ = K(N , ECN). Dots with the leg-
end (s̄)s and (r̄)r represent (unstable) stable configurations of N and N ′, respectively.
Arrows represent transitions between configurations of the same TS. Configurations s
and r are in transition simulation if they are linked by a dotted line.

relation S between configurations s ∈ Conf (N) and consistent configurations
r ∈ CONSECN of N ′, i.e., configurations whose valuations of variables rstIY
match the number of reset locations wrt. Y assumed in r, and if r is unsta-
ble, variables rstOY match the number of intermediate locations assumed in r,
otherwise match |Y |. (1) any pair (s, r) matches the valuations of variables and
non-quasi-equal clocks. (2) automata from N and N ′ which do not reset clocks
from Y must coincide on locations. (3) relate stable configurations from N where
all quasi-equal clocks from Y have the valuation CY and the variable rstIY = |Y |,
to either stable configurations in N ′ where the clock rep(Y) = CY , or to unsta-
ble configurations which reflect the synchronisation on the channel resetY . (4)
take unstable configurations from N and N ′ and relate them if they show the
effect of taking the same complex resetting edge. (5) relate unstable configura-
tions wrt. Y in N to the unstable configuration in N ′ whose variable rstOY = 0
and the location `r,RY = `nst,RY . (6) relate stable configurations from N which
show the effect of resetting each clock from Y , to the unstable configuration of
N ′ which shows the same effect, i.e., the valuation of the variable rstOY = 0. This
last restriction allows N ′ to make the return transition to stability.

During stability phases there is a strong bisimulation (one-to-one) between
the networks N and N ′. Only during unstability phases there is a weak bisimu-
lation (one-to-many) in both directions. There are cases (reset of simple edges)
where N simulates one step of N ′ with multiple steps, and cases (reset of com-
plex edges) where N ′ simulates one step of N with multiple steps. Figure 3
shows some involved simulation steps between unstable phases in N and N ′. ut

Quasi-equal Clock Reduction: More Networks, More Queries 13

Network C kStates M t(s) Network C kStates M t(s)

EP-21 21 3,145.7 507.4 498.4 FS-8 14 5,217.7 181.4 758.7
EP-21K 1 5,242.9 624.9 167.5 FS-8K 5 1,081.9 41.6 32.8
EP-22 22 6,291.5 1,025.9 1,291.7 FS-10 16 17,951.3 568.2 4,271.2
EP-22K 1 10,485.8 1,269.6 358.3 FS-10K 5 1,215.0 44.1 39.0
EP-23 23 - - - FS-11 17 - - -
EP-23K 1 18,431.8 2,490.2 646.8 FS-126K 5 9,512.3 300.5 1,529.8

TT-6 7 2,986.0 114.9 38.1 CD-14 16 7,078.1 591.8 1,384.3
TT-6K 1 2,759.6 106.7 30.6 CD-14K 2 442 52.5 42.3
TT-7 8 16,839.9 611.5 276.4 CD-16 18 13,441.1 1,996.4 3,806.3
TT-7K 1 15,746.7 577.3 262.7 CD-16K 2 2,031.9 240.9 389.0
TT-8 9 - - - CD-17 19 - - -
TT-8K 1 66,265.9 2,367.7 1,227.6 CD-18K 2 9,1975.3 1,142.8 2,206.1

LS-7 18 553.3 74.5 22.7 CR-6 6 264.5 18.7 2.9
LS-7K 6 605.3 83.2 11.5 CR-6K 1 129.4 18.2 1.5
LS-9 22 8,897.6 1,283.5 686.6 CR-7 7 7,223.7 496.5 136.3
LS-9K 6 9,106.3 1,417.9 238.8 CR-7K 1 2,530.1 342.4 42.5
LS-11 26 - - - CR-8 8 - - -
LS-11K 6 7,694.0 2,188.2 460.6 CR-8K 1 5,057.6 785.0 109.4

Table 1. Column XX-N(K) gives the figures for case study XX with N sensors (and
K applied). ‘C’ gives the number of clocks in the model, ‘kStates’ the number of visited
states times 103, ‘M’ memory usage in MB, and ‘t(s)’ verification time in seconds.
FraTTA transformed each of our benchmarks in at most 5 seconds.
(Env.: Intel i3, 2.3GHz, 3GB, Ubuntu 11.04, verifyta 4.1.3.4577 with default options.)

Theorem 1. Let N be a well-formed network where ECN -resets are pre/post
delayed. Let CF be a configuration formula over N . Then

K(N , ECN) |= ∃♦Ω(CF) ⇐⇒ N |= ∃♦CF .

Proof. Use Lemma 1 and induction over the lenght of paths to show that CF
holds in N if and only if Ω(CF) holds in K(N , ECN). ut

5 Experimental Results

We applied our approach to six industrial case studies using FraTTA [16], our
implementation of K. The three case studies FS [17], CR [18], CD [19] are from
the class of TDMA protocols and appear in [4]. The relaxed well-formedness cri-
teria (compared to [4]) allowed us to include the three new case studies EP [6],
TT [20], LS [21]. We verified non-local queries as proposed by the respective
authors of these case studies. None of these queries could be verified with the
approach presented in [4]. Our motivating case study is inspired by the network
from [6] which use the Ethernet PowerLink protocol in Alstom Power Control
Systems. The network consists of N sensors and one master. The sensors ex-
change information with the master in two phases, the first is isochronous and the

14 Herrera, Westphal, Podelski

second asynchronous. An error occurs if a sensor fails to update the configuration
data as sent by the master in the beginning of the isochronous phase. Specif-
ically, each sensor should update its internal data before the master has reset
its clock. The query configData := ∀� A.configData = 1 ∧ A.x = 0 ∧M.y > 0,
where A is a sensor and M is the master, x and y are quasi-equal clocks from
the same equivalence class, and configData is a boolean variable set to true by
the edge that resets x when A has successfully updated its configuration data,
checks whether this network is free from errors as explained before. Note that
query configData is non-local and in addition refers to an unstable configuration.
We refer the reader to [17–21] for more information on the other case studies.

Table 1 gives figures for the verification of the non-local queries in instances
of the original and the transformed model. The rows without results indicate the
smallest instances for which we did not obtain results within 24 hours. For all
examples except for TT, we achieved significant reductions in verification time.
The quasi-equal clocks in the TT model are reset by a broadcast transition so
there is no interleaving of resets in the original model. Still, verification of the
transformed TT instances including transformation time is faster than verifica-
tion of the original ones. Regarding memory consumption, note that verification
of the K -models of EP and LS takes slightly more memory than verification of
the original counterparts. We argue that this is due to all resetting edges be-
ing complex in these two networks. Thus, our transformation preserves the full
interleaving of clock resets and the whole set of unstable locations whose size
is exponential in the number of participating automata, and it adds the transi-
tions to and from location `nst . The shown reduction of the verification time is
due to a smaller size of the DBMs that Uppaal uses to represent zones [22] and
whose size grows quadratically in the number of clocks. If the resetting edges are
simple (as in FS, CD, and CR), our transformation removes all those unstable
configurations.

6 Conclusion

Our new technique reduces the verification time of networks of timed automata
with quasi-equal clocks. It represents all clocks from an equivalence class by one
representative, and it eliminates those configurations induced by automata that
reset quasi-equal clocks one by one. All interleaving transitions which are induced
by simple resetting edges are replaced by just two transitions in the transformed
networks. We use nst-locations to summarise unstable configurations. This al-
lows us to also reduce the runtime of non-local properties or properties explicitly
querying unstable phases. With variables rstI , rstO we unfold information sum-
marised in nst-locations, and together with a careful syntactical transformation
of properties, we reflect all properties of original networks in transformed ones.
Our new approach fixes the two severe drawbacks of [4], which only supports
local queries and whose strong well-formedness conditions rules out many in-
dustrial case-studies. Our experiments show the feasibility and potential of the

Quasi-equal Clock Reduction: More Networks, More Queries 15

new approach, even if some interleavings are preserved and only the number of
clocks is reduced.

References

1. T.S. Rappaport. Wireless communications, volume 2. Prentice Hall, 2002.
2. G. Cena, L. Seno, et al. Performance analysis of ethernet powerlink networks for

distributed control and automation systems. CSI, 31(3):566 – 572, 2009.
3. R. Alur and D. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.
4. C. Herrera, B. Westphal, et al. Reducing quasi-equal clocks in networks of timed

automata. In FORMATS, volume 7595 of LNCS, pages 155–170. Springer, 2012.
5. G. Behrmann, A. David, and K. Larsen. A tutorial on Uppaal. In SFM, volume

3185 of LNCS, pages 200–236. Springer, 2004.
6. S. Limal, S. Potier, B. Denis, and J. Lesage. Formal verification of redundant

media extension of ethernet powerlink. In ETFA, pages 1045–1052. IEEE, 2007.
7. C. Daws and S. Yovine. Reducing the number of clock variables of timed automata.

In RTSS, pages 73–81. IEEE, 1996.
8. C. Daws et al. Model checking of real-time reachability properties using abstrac-

tions. In TACAS, volume 1384 of LNCS, pages 313–329. Springer, 1998.
9. É. André. Dynamic clock elimination in parametric timed automata. In FSFMA,

OASICS, pages 18–31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.
10. V. Braberman, D. Garbervetsky, N. Kicillof, D. Monteverde, et al. Speeding up

model checking of timed-models by combining scenario specialization and live com-
ponent analysis. In FORMATS, volume 5813 of LNCS, pages 58–72. Springer, 2009.

11. V. Braberman et al. Improving the verification of timed systems using influence
information. In TACAS, volume 2280 of LNCS, pages 21–36. Springer, 2002.

12. M. Muñiz, B. Westphal, and A. Podelski. Timed automata with disjoint activity.
In FORMATS, volume 7595 of LNCS, pages 188–203. Springer, 2012.

13. S. Balaguer and T. Chatain. Avoiding shared clocks in networks of timed automata.
In CONCUR, volume 7454 of LNCS, pages 100–114. Springer, 2012.

14. M. Muñiz, B. Westphal, and A. Podelski. Detecting quasi-equal clocks in timed
automata. In FORMATS, pages 198–212. Springer, 2013.

15. E.-R. Olderog and H. Dierks. Real-time systems - formal specification and auto-
matic verification. Cambridge University Press, 2008.

16. K. Fitriani. FraTTA: Framework for transformation of timed automata, 2013.
Master Team Project, Albert-Ludwigs-Universität Freiburg.

17. D. Dietsch, S. Feo-Arenis, et al. Disambiguation of industrial standards through
formalization and graphical languages. In RE, pages 265–270. IEEE, 2011.

18. S. Gobriel, S. Khattab, D. Mossé, et al. RideSharing: Fault tolerant aggregation in
sensor networks using corrective actions. In SECON, pages 595–604. IEEE, 2006.

19. H. Jensen, K. Larsen, and A. Skou. Modelling and analysis of a collision avoidance
protocol using SPIN and Uppaal. In 2nd SPIN Workshop, 1996.

20. W. Steiner and W. Elmenreich. Automatic recovery of the TTP/A sensor/actuator
network. In WISES, pages 25–37. Vienna University of Technology, 2003.

21. P. Kordy, R. Langerak, et al. Re-verification of a lip synchronization protocol using
robust reachability. In FMA, volume 20 of EPTCS, pages 49–62, 2009.

22. J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In
ACPN, volume 3098 of LNCS, pages 87–124. Springer, 2003.

