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Andreas Podelski

Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany

Abstract. We introduce the novel notion of quasi-equal clocks and use
it to improve the verification time of networks of timed automata. Intu-
itively, two clocks are quasi-equal if, during each run of the system, they
have the same valuation except for those points in time where they are
reset. We propose a transformation that takes a network of timed au-
tomata and yields a network of timed automata which has a smaller set
of clocks and preserves properties up to those not comparing quasi-equal
clocks. Our experiments demonstrate that the verification time in three
transformed real world examples is much lower compared to the original.

1 Introduction

Modelling the local timing behaviour of components and the synchronisation
between them is the natural way to model distributed real-time systems by
networks of timed automata [1]. This is achieved in a straightforward manner
by using independent clocks.

For designs where a set of clocks is intended to be synchronized, e.g., the
class of TDMA-based protocols [2], using independent clocks causes unnecessary
verification overhead for those specifications where the order of resets of syn-
chronised clocks is not relevant. For instance, in network traversal time require-
ments, resetting synchronised clocks does not contribute to the time lapses being
measured. The unnecessary overhead is caused by the interleaving semantics of
timed-automata where the automata do their resets one by one and thereby in-
duce a set of reachable intermediate configurations which grows exponentially in
the number of components in the system. Although the interleaving semantics
of timed-automata offers a practical solution for model checking in tools like
Uppaal [3], it artificially introduces intermediate states that are explored when
verifying models of physical systems, although they may be irrelevant for the
property being verified.

The overhead could be eliminated by manually optimising models for veri-
fication. Nonetheless, modelling without technicalities — in particular without
manual optimizations for verification — is desired to improve on the readability
and maintainability of the models. We aim to bridge the gap between efficiency
and readability by enabling the modelling engineer to use more natural represen-
tations of a system. Unnecessary overhead can be mechanically removed as per
our approach, thus enabling both readable models and efficient model checking.
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To this end, we characterise clocks intended to be synchronised in the real
world by the novel notion of quasi-equality. Intuitively, two clocks are quasi-equal
if, during each run of the system, they have the same valuation except for those
points in time where they are reset. We call the properties which, for a given
network of timed automata, are independent from the ordering in which the
quasi-equal clocks are reset, validable. Sets of quasi-equal clocks induce equiv-
alence classes in networks of timed-automata. We present an algorithm that
replaces all clocks from an equivalence class of quasi-equal clocks by a represen-
tative clock. The result is a network of timed automata with a smaller set of
clocks. It is weakly bisimilar to the original network and thus preserves validable
properties. We show that when performing clock replacement alone, properties
are not necessarily preserved. Our algorithm introduces a new automaton in the
network and uses auxiliary variables and broadcast synchronization channels to
ensure that the semantics of the original network are preserved, up to configura-
tions where quasi-equal clocks have different valuations. The use of our algorithm
can lead to significant improvements in the verification cost of validable proper-
ties compared to the cost of verifying them in the original network.

This paper is organized as follows. In Section 2, we provide basic definitions.
Section 3 introduces the formal definition of quasi-equal clocks, presents the
algorithm that implements our approach on the set of well-formed networks,
and proves its correctness. In Section 4, we compare the verification time of
three real world examples before and after applying our approach. In Section 5,
we draw conclusions and propose future work.

1.1 Related Work

The reduction of the state space to be explored in order to speed up the verifica-
tion of properties of a system, is a well-known research topic. Diverse techniques
have been proposed to achieve such a reduction, many of them by using static
analysis over timed automata [4–7]. One method that uses static analysis is
presented in [8], originally defined for single automata and later generalized for
networks of timed automata [9]. This method reduces the number of clocks in
single timed automata by detecting equal clocks. Two clocks are equal in a loca-
tion if both are reset at the same time and by the same edge, or both are set to
clocks that are themselves equal in the source location. Equal clocks always have
the same valuation, so just one clock for every set of equal clocks in a given loca-
tion is necessary to determine the behavior of the system at that location. The
case studies we considered for experiments do not have equal clocks therefore
applying the method in [8] would not reduce clocks.

In sequential timed automata [10], one set of quasi-equal clocks is syntacti-
cally declared. Those quasi-equal clocks are implicitly reduced by applying the
sequential composition operator, which also exploits other properties of sequen-
tial timed automata, and thereby achieves further improvements in verification
time.

In [11], clocks are reduced while abstracting systems composed of timed com-
ponents which represent processes. Each process uses one internal clock for its



Reducing Quasi-equal Clocks in Networks of Timed Automata 3

internal operations. The approach exploits the fact that each component works
in a sort of sequence in order to process events, and each internal clock is only
used for a small fraction of time during such a sequence, thus only one clock can
be used instead. The networks we consider can in general not be reduced to this
approach as we do not assume a working sequence.

The technique in [4, 5] is based on so called observers, which are single compo-
nents representing safety or liveness requirements of a given network of timed au-
tomata. For each location of the observer, the technique deactivates (or ignores)
irrelevant components (clocks or even a whole automaton) if such components
do not play a role in the future evolution of such an observer. The networks of
our experiments do not have observers, therefore we can not use this technique.
However, their case studies may benefit from our approach if observer clocks are
quasi equal to component clocks.

2 Preliminaries

Following the presentation in [12], we here recall timed automata definitions.

Let X be a set of clocks. The set Φ(X ) of simple clock constraints over X is
defined by the grammar ϕ ::= x ∼ y | x−y ∼ c | ϕ1∧ϕ2 where x, y ∈ X , c ∈ Q≥0,
and ∼ ∈ {<,≤,≥, >}. Let Φ(V) be a set of integer constraints over variables V.
The set Φ(X ,V) of constraints comprises Φ(X ), Φ(V), and conjunctions of clock
and integer constraints. We use clocks(ϕ) to denote the set of clocks occurring
in a constraint ϕ. We assume the canonical satisfaction relation “|=” between
valuations ν : X ∪ V → Time ∪ Z and constraints, with Time = R≥0.

A timed automaton A is a tuple (L,B,X,V, I, E, `ini), which consists of a
finite set of locations L, a finite set B of actions comprising the internal action
τ , finite sets X and V of clocks and variables, a mapping I : L 7→ Φ(X ), that
assigns to each location a clock constraint, and a set of edges E ⊆ L × B ×
Φ(X ,V) × R(X ,V) × L. An edge e = (`, α, ϕ, ~r, `′) ∈ E from location ` to `′

involves an action α ∈ B, a guard ϕ ∈ Φ(X ,V), and a reset vector ~r ∈ R(X ,V).
A reset vector is a finite, possibly empty sequence of clock resets x := 0, x ∈ X ,
and assignments v := ψint , where v ∈ V and ψint is an integer expression over
V. We write X (A), `ini(A), etc. to denote the set of clocks, the initial location,
etc. of A, and clocks(~r) to denote the set of clocks occurring in ~r.

A finite sequence A1, . . . ,AN of timed automata with pairwise disjoint sets of
clocks and pairwise disjoint sets of locations together with a set B ⊆

⋃N
i=1B(Ai)

of broadcast channels is called network (of timed automata). To indicate that N
consists of A1, . . . ,AN , we write N (A1, . . . ,AN ), and we write A ∈ N if and
only if A ∈ {A1, . . . ,AN}. Given a set of clocks X ⊆ X (N ), we use RESX(N ) to
denote the set of automata in N which have an outgoing edge that resets a clock
from X, i.e. RESX(N ) = {A ∈ N | ∃ (`, α, ϕ, ~r, `′) ∈ E(A)• clocks(~r)∩X 6= ∅}.

The operational semantics of the network N is the labelled transition system
T (N ) = (Conf (N ),Time ∪ B, { λ−→| λ ∈ Time ∪ B}, Cini). The set of configura-
tions Conf (N ) consists of pairs of location vectors 〈`1, . . . , `N 〉 from ×Ni=1L(Ai)
and valuations of

⋃
1≤i≤N X (Ai)∪V(Ai) which satisfy the constraint

∧N
i=1 I(`i).
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We write `s,i, 1 ≤ i ≤ N , to denote the location which automaton Ai assumes
in configuration s = 〈`s, νs〉 and νs,i to denote νs|V(Ai)∪X (Ai). Between two con-
figurations s, s′ ∈ Conf (N ) there can be three kinds of transitions. There is a

delay transition 〈`s, νs〉
t−→ 〈`s′ , νs′〉 if νs + t′ |=

∧N
i=1 Ii(`s,i) for all t′ ∈ [0, t],

where νs + t′ denotes the valuation obtained from νs by time shift t′. There
is a synchronization transition 〈`s, νs〉

τ−→ 〈`s′ , νs′〉 if there are 1 ≤ i, j ≤ N ,
i 6= j, a channel b ∈ B(Ai) ∩ B(Aj), and edges (`s,i, b!, ϕi, ~ri, `s′,i) ∈ E(Ai)
and (`s,j , b?, ϕj , ~rj , `s′,j) ∈ E(Aj) such that `s′ = `s[`s,i := `s′,i][`s,j := `s′,j ],
νs |= ϕi ∧ ϕj , νs′ = νs[~ri][~rj ], and νs′ |= Ii(`s′,i) ∧ Ij(`s′,j). Let b ∈ B be a
broadcast channel and 1 ≤ i0 ≤ N such that (`s,i0 , b!, ϕi0 , ~ri0 , `s′,i0) ∈ E(Ai0).
Let 1 ≤ i1, . . . , ik ≤ N , k ≥ 0, be those indices different from i0 such that
there is an edge (`s,ij , b?, ϕij , ~rij , `s′,ij ) ∈ E(Aij ). There is broadcast transi-
tion 〈`s, νs〉

τ−→ 〈`s′ , νs′〉 in T (N ) if `s′ = `s[`s,i0 := `s′,i0 ] · · · [`s,ik := `s′,ik ],

νs |=
∧k
j=0 ϕij , νs′ = νs[~ri0 ] · · · [~rik ], and νs′ |=

∧k
j=0 Iij (`s′,ij ).

A finite or infinite sequence σ = s0
λ1−→ s1

λ2−→ s2 . . . is called transition
sequence (starting in s0 ∈ Cini) of N . Sequence σ is called computation of N if
and only if it is infinite and s0 ∈ Cini . We denote the set of all computations of
N by Π(N ). A configuration s is called reachable (in T (N )) if and only if there
exists a computation σ ∈ Π(N ) such that s occurs in σ. A timed automaton
or network configuration s is called timelocked if and only if there is no delay
transition in any transition sequence starting at s.

A basic formula over N is either Ai.`, 1 ≤ i ≤ n, ` ∈ L(Ai), or a constraint ϕ

from Φ(
⋃N
i=1 X (Ai),

⋃N
i=1 V(Ai)). It is satisfied by a configuration s ∈ Conf (N )

if and only if `s,i = ` or νs |= ϕ, respectively. A reachability query EPF over N is
∃♦CF where CF is a configuration formula over N , i.e. any logical connection
of basic formulae. N satisfies ∃♦CF , denoted by N |= ∃♦CF , if and only
if there is a configuration s reachable in T (N ) such that s |= CF . We write
N |=¬timelock ∃♦CF if and only if CF is satisfied by a reachable, not timelocked
configuration of T (N ).

3 Reducing Clocks in Networks of Timed Automata

3.1 Quasi-Equal Clocks

Definition 1 (Quasi-Equal Clocks). Let N be a network with clocks X . Two
clocks x, y ∈ X are called quasi-equal, denoted by x ' y, if and only if for all
computation paths of N , the valuations of x and y are equal, or the valuation of
one of them is equal to 0, i.e., if

∀ s0
λ1−→ s1

λ2−→ s2 · · · ∈ Π(N ) ∀ i ∈ N0 • νsi |= (x = 0 ∨ y = 0 ∨ x = y).

For example, consider a distributed chemical plant controller. At the end of
every minute, the controller fills two containers with gas, one for at most 10
seconds and one for at most 20 seconds. In Figure 1, a model of the system, the
network N which is composed of automata A1 and A2, is shown. Both automata
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wait fill

x ≤ 60x ≤ 60

A1:
x ≥ 50

x ≥ 60

x := 0

wait fill

y ≤ 60y ≤ 60

A2:
y ≥ 40

y ≥ 60

y := 0

Fig. 1. The model of a chemical plant controller with quasi-equal clocks.

start in a waiting phase and after filling the containers, they wait for the next
round. Both clocks, x and y, are reset when their valuation is equal to 60. Yet, in
the strict interleaving semantics of networks of timed automata, the resets occur
one after the other. According to Definition 1, x and y are quasi-equal because
their valuations are only different from each other when one of the clocks has
already been reset and the other still has value 60.

Lemma 1. Let N be a network with clocks X . The quasi-equality relation ' ⊆
X × X is an equivalence relation.

Proof. For transitivity, show (x = 0 ∨ y = 0 ∨ x = y) ∧ (x = 0 ∨ z = 0 ∨ x =
z) ∧ (y = 0 ∨ z = 0 ∨ y = z) by induction over indices in a computation. ut

In the following, we use ECN to denote the set {Y ∈ X/' | 1 < |Y |} of
equivalence classes of quasi-equal clocks of N with at least two elements. For
each Y ∈ X/', we assume a designated representative rep(Y ) ∈ Y . We may
write rep(x) to denote rep(Y ) if x ∈ Y is the representative clock of Y .

Given a constraint ϕ ∈ Φ(X ,V), we write Γ (ϕ) to denote the constraint that
is obtained by syntactically replacing in ϕ each occurrence of a clock x ∈ X by
the representative rep(x).

3.2 Transformational Reduction of Quasi-equal Clocks

In the following we present an algorithm which reduces a given set of quasi-equal
clocks in networks of timed automata. For simplicity, we limit the discussion to
the syntactically characterised class of well-formed networks. The syntactical
rules, although restrictive at first sight, still enabled us to apply our approach
to relevant real world examples.

Definition 2 (Well-formed Network). A network N is called well-formed if
and only if it satisfies the following restrictions for each set of quasi-equal clocks
Y ∈ ECN :

(R1) An edge resetting a clock x ∈ Y is not a loop and has a guard of the form
x ≥ CY , and the source location of such an edge has an invariant x ≤ CY
for some constant CY > 0, i.e.,

∃CY ∈ N>0 ∀A ∈ N ∀ (`, α, ϕ, ~r, `′) ∈ E(A) ∀x ∈ clocks(~r) •
(clocks(~r) ∩ Y 6= ∅)

=⇒ (ϕ = (x ≥ CY ) ∧ I(`) = (x ≤ CY ) ∧ ` 6= `ini(A) ∧ ` 6= `′).



6 Herrera, Westphal, Feo-Arenis, Muñiz, Podelski

(R2) A location having an outgoing edge resetting a clock x ∈ Y , does not have
other outgoing edges, and such an edge only resets a single clock, i.e.,

∀ e1 = (`1, α1, ϕ1, ~r1, `
′
1), e2 = (`2, α2, ϕ2, ~r2, `

′
2) ∈ E(N ) •

(`1 = `2 ∧ (clocks(~r1) ∪ clocks(~r2)) ∩ Y 6= ∅)
=⇒ e1 = e2 ∧ |clocks(~r1)| = 1 ∧ ∃x ∈ Y • ~r1 = (x := 0).

(R3) An edge resetting a clock x ∈ Y is unique per automaton, i.e.,

∀A ∈ N ∀ (`1, α1, ϕ1, ~r1, `
′
1), (`2, α2, ϕ2, ~r2, `

′
2) ∈ E(A) •

((clocks(~r1) ∪ clocks(~r2)) ∩ Y 6= ∅) =⇒ e1 = e2.

(R4) A location having an outgoing edge resetting a clock x ∈ Y has at least
one incoming, non-looped edge, i.e.,

∀A ∈ N ∀ (`2, α2, ϕ2, ~r2, `
′
2) ∈ E(A) •

(clocks(~r2) ∩ Y ) 6= ∅ =⇒ ∃ (`1, α1, ϕ1, ~r1, `
′
1) ∈ E(A) • `′1 = `2 ∧ `1 6= `2.

(R5) The action of an edge resetting a clock x ∈ Y is τ , i.e.,

∀ (`, α, ϕ, ~r, `′) ∈ E(N ) • (clocks(~r) ∩ Y 6= ∅) =⇒ α = τ.

(R6) At most one clock from Y occurs in the constraint of any edge, i.e.,

∀ (`, α, ϕ, ~r, `′) ∈ E(N ) • |clocks(ϕ) ∩ Y | ≤ 1.

By rules R1, R2, and R3 there is a unique reset edge per equivalence class
and automaton, and a constant describing the reset times of quasi-equal clocks
from the same equivalence class. By R4 guarantees the existence of an edge that
can be used to encode blocking multicast synchronisation. Rules R2, R5, and R6
guarantee that the behaviour of a well-formed network is independent from the
order of resets of quasi-equal clocks.

These rules should be relaxed to cover a broader class of networks of timed
automata. For example, R3 could be weakened to allow quasi-equal clocks with
more than one reset point to be reduced. This would make, however, the trans-
formation algorithm and its prove of correctness more involved.

Our transformation mainly operates on the source and destination locations
of the edges resetting quasi-equal clocks, so-called reset locations.

Definition 3 (Reset Location). Let N be a well-formed network. Let Y ∈
ECN be a set of clocks of N . Let (`, α, ϕ, ~r, `′) ∈ E(N ) be an edge that resets
a clock from Y , i.e. clocks(~r) ∩ Y 6= ∅. Then ` (`′) is called reset (successor)
location wrt. Y . We use RLY (RL+

Y ) to denote the set of reset (successor)
locations wrt. Y in N and we set RLN :=

⋃
Y ∈ECN RLY and similarly RL+

N .

In the following we describe the transformation function K. It works with two
given inputs: a well-formed network N and the set of equivalence classes ECN
of quasi-equal clocks in N . K outputs a transformed network N ′ = K(N , ECN )
by performing in N the following steps for each equivalence class Y ∈ ECN :
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wait fill

x ≤ 60x ≤ 60

A′1:
x ≥ 50

rstY + +

resetY ?
wait fill

x ≤ 60x ≤ 60

A′2:
x ≥ 40

rstY + +

resetY ?

RR:

rstY = 2 ∧ x ≥ 60, resetY !

rstY := 0, x := 0

Fig. 2. The model of the chemical plant controller after applying K.

– Delete each reset of a clock from Y .
– For each edge resetting a clock from Y , replace the guard by true.
– In each invariant and each guard, replace each clock x ∈ Y by rep(x).
– Add to N a broadcast channel resetY and add the input action resetY ? to

each edge resetting a clock from Y .
– Add a counter variable rstY to N and add the increment rstY := rstY + 1

to the reset sequence of each incoming edge of a reset location ` ∈ RLY .

As a final step, add a new automaton R with a single location `ini,R if ECN 6= ∅.
For each Y ∈ ECN , add an edge (`ini,R, α, ϕ, ~r, `ini,R) to R with action resetY !,
guard ϕ = (rstY = nY ∧rep(Y ) ≥ CY ), and reset vector ~r = rstY := 0, rep(Y ) :=
0. In the guard ϕ, nY is the number of automata that reset the clocks of Y , i.e.
nY = |RESY (N )|, and CY is the time at which the clocks in Y are reset, i.e.,
the constant CY as described in R1. The result of applying the transformation
to the example from Figure 1 is shown in Figure 2.

Note that well-formedness together with the counter variables rstY enforce
blocking multicast synchronisation, that is, always all automata from RESY (N )
participate in the reset. Furthermore, N ′ is equal to N if there are no quasi-equal
clocks in N .

3.3 A Semantical Characterisation of N ′

Following our discussion, we can distinguish two kinds of configurations in the
transition system of a well-formed network N . A configuration is unstable if
there are quasi-equal clocks with different values, and stable otherwise.

In the following, we observe that our algorithm yields a network whose con-
figurations directly correspond to the stable configurations of N . In addition,
we observe that transition sequences in N ′ correspond to transition sequences
in N where reset phases of different equivalence classes do not overlap. To this
end, we formally define stability of configurations and different notions of reset
sequences, in particular full pure reset sequences, i.e., those where reset phases
do not overlap.

Definition 4 (Stable Configuration). Let N be a well-formed network and
let Y ∈ ECN be a set of quasi-equal clocks.
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A configuration s ∈ Conf (N ) is called stable wrt. Y if and only if all clocks
in Y have the same value in s, i.e., if ∀x ∈ Y • νs(x) = νs(rep(x)).

We use SCY to denote the set of all configurations that are stable wrt. Y and
SCN to denote the set

⋂
Y ∈ECN SCY of globally stable configurations.

Definition 5 (Reset Sequence). Let N be a well-formed network and let Y ∈
ECN be a set of quasi-equal clocks. Let σ = s0

λ1−→ . . .
λn−−→ sn be a transition

sequence of N such that s0 and sn are stable wrt. Y , s1, . . . , sn−1 are unstable
wrt. Y , and the valuation of every clock in Y at sn is 0. Then σ is called Y -reset
sequence. We use RSY to denote the set of Y -reset sequences of N .

A suffix of σ starting at si, 1 ≤ i ≤ n, is called a pure Y -reset sequence if
and only if the valuation for some clock of Y changes with every transition, i.e.
if ∀ i < j ≤ n•νsj−1 |Y 6= νsj |Y . We use RSpureY to denote the set of pure Y -reset
sequences of N .

If σ is in RSpureY and starts in a globally stable configuration, i.e., s0 ∈ SCN ,

then σ is called a full pure Y -reset sequence. We use RSfullY to denote the set
of full pure Y -reset sequences of N . The smallest suffix of σ which is not in
RSpureY is called an impure Y -reset sequence. We use RSimpure

Y to denote the
set of impure Y -reset sequences of N .

Let σ = s0
λ1−→ . . .

λn−−→ sn
λn+1−−−→ sn+1 be a transition sequence of N such that

the prefix of σ up to and including sn is in RSpureY and sn and sn+1 coincide on
Y , i.e. νsn |Y = νsn+1

|Y . Then σ is called pure Y -reset sequence-δ.

Proposition 1. For all well-formed networks N , if s0
λ1−→ . . .

λn−−→ sn is a full
pure Y -reset sequence of N , then sn is globally stable, i.e., sn ∈ SCN , and the
valuation at sn of each clock x ∈ Y is 0, i.e., νsn |Y = 0.

Formally, the relation between a stable configuration s ∈ Conf (N ) of a well-
formed network N and a configuration r ∈ Conf (N ′) of the network N ′ =
K(N , ECN ) is characterised by the function reverseQE . It removes the following
from r: the unique location of the automaton R; each counter variable rstY ,
Y ∈ ECN ; and it assigns to each clock x ∈ Y the value of the clock rep(x) ∈ Y .

Definition 6 (reverseQE and Consistency). Let N (A1, . . . ,An) be a well-
formed network and let N ′ = K(N , ECN ). The function reverseQE : Conf (N ′)→
Conf (N ) is defined point-wise as follows. Let r = 〈(`1, . . . , `n, `ini,R), ν〉 ∈
Conf (N ′). Then reverseQE (r) = 〈(`1, . . . , `n), ν̃〉 where

ν̃ =
(
ν ∪

⋃
Y ∈ECN {x 7→ ν(rep(x)) | x ∈ Y }

)
\ {rstY 7→ ν(rstY ) | Y ∈ ECN }.

The configuration r is called Y -consistent if and only if νr(rstY ) is the num-
ber of reset locations wrt. Y assumed in r, i.e., if νr(rstY ) = |{`1, . . . , `n, `ini,R}∩
RLY |. We use CONSY to denote the set of Y -consistent configurations of N ′
and CONSN ′ to denote the set

⋂
Y ∈ECN CONSY of consistent configurations.

Proposition 2. Let N be a well-formed network. Then reverseQE is a bijection
between CONSK(N ,ECN ) and SCN .
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In the following we define a special transition relation for well-formed net-
works, which relates stable configurations by collapsing full pure reset sequences.
A special transition in N corresponds to a single transition in N ′ = K(N , ECN ).

Definition 7 (
λ
=⇒). Let N be a well-formed network and let s, s′ ∈ SCN be two

globally stable configurations of N . There is a transition s
λ
=⇒ s′ if and only if

there is either a delay or τ -transition, or a full pure Y -reset sequence for some
Y ∈ ECN from s to s′ in T (N ), i.e., if

s
λ−→ s′ ∧ λ ∈ Time ∪ {τ}

∨
(
λ = τ ∧ ∃ s0

λ1−→ . . .
λn−−→ sn ∈ RSfullY • s = s0 ∧ sn = s′

)
.

Configuration s is called ⇒-reachable if and only if there are configurations
s0, . . . , sn ∈ Conf (N ) such that s0 ∈ Cini , sn = s, and s0

λ1=⇒ s1 . . . sn−1
λn=⇒ sn

for some λ1, . . . , λn ∈ Time ∪ {τ}.
Definition 8 (Weak Bisimulation). Let N1 be a well-formed network and
N2 a network with the same set of locations, i.e., L(N1) = L(N2). Let T (Ni) =
(Conf (Ni), Λ, {

λ−→i| λ ∈ Λ}, Cini,i), i = 1, 2, be the corresponding transition
systems restricted to Λ = Time ∪ {τ}.

A weak bisimulation is a relation S ⊆ Conf (N1)× Conf (N2) such that

1. ∀ s ∈ Cini,1 ∃ r ∈ Cini,2 • (s, r) ∈ S and ∀ r ∈ Cini,2 ∃ s ∈ Cini,1 • (s, r) ∈ S,
2. for all (s, r) ∈ S,

(a) for all configuration formulae CF over Ni, s |= CF iff r |= Γ (CF ),
(b) if s

λ−→1 s
′, there exists r′ ∈ Conf (N2) such that r

λ−→2 r
′ and (s′, r′) ∈ S,

(c) if r
λ−→2 r

′, there exists s′ ∈ Conf (N1) such that s
λ−→1 s

′ and (s′, r′) ∈ S.

The networks N1,N2 are called weakly bisimilar, if and only if there exists
a weak bisimulation S for T (N1) and T (N2).

Proposition 3. Let N be a well-formed network. Let K(N , ECN ) be the network
output by K. Let r ∈ Conf(K(N , ECN )) and s ∈ Conf(N ) be two configurations,
such that s = reverseQE(r). Then, for every ` ∈ L(N ), ` is the i-th location of
`s if and only if ` is the i-th location of `r, i.e., if

∀ ` ∈ L(N ) • ` = `s,i ⇔ `r,i = `.

Proposition 4. Let N (A1, . . . ,An) be a well-formed network. Let s ∈ Conf (N )
and r ∈ Conf (K(N , ECN )) be two configurations such that s = reverseQE (r).
Let CFN be the set of configuration formulae over N . Then

∀CF ∈ CFN • s |= CF ⇐⇒ r |= Γ (CF ).

Theorem 1. Any well-formed network N is weakly bisimilar to K(N , ECN ).

Proof. {(reverseQE (r), r) | r ∈ CONSK(N ,ECN )} is a weak bisimulation by Def-
inition 8, and Propositions 2, 3 and 4. ut
Corollary 1 (Reachability of Stable Configurations). Let s ∈ SCN be a
stable configuration of the well-formed network N . s is ⇒-reachable in T (N ) if
and only if reverseQE−1(s) is reachable in T (K(N , ECN )).

Proof. Theorem 1 and Proposition 2. ut
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3.4 Handling Impurities and Unstable Configurations

While Corollary 1 allows us to conclude from reachability of a configuration in
N ′ to the reachability of a corresponding configuration in N , we cannot con-
clude in the opposite direction. The reason is that N ′ misses two things: firstly,
computation paths of N that contain overlapping reset phases are not simulated
by any computation path of N ′, i.e., N ′ would not reach a stable configuration
if it were only reachable by computation paths with overlapping reset phases.
Secondly, reachability of unstable configurations of N is not reflected in N ′.

In the following we approach the two issues as follows. We argue that, under
the additional assumption that the reset edges inN are pre/post delayed, impure
computation paths without timelock can always be reordered into pure ones. Re-
garding unstable configurations, we firstly observe that – not surprisingly – N ′
reflects reachability queries which explicitly ask for stable configurations. In ad-
dition, we syntactically characterise the class of local queries, which are reflected
by N ′ because they cannot distinguish stable and unstable configurations.

Definition 9 (Delayed Edge). An edge e of a timed automaton A in network
N is called delayed if and only if time must pass before e can be taken, i.e., if

∀ s0
λ1−→E1 s1 . . . sn−1

λn−−→En sn ∈ Π(N ) • e ∈ En
=⇒ ∃ 0 ≤ j < n • λj ∈ Time \ {0} ∧ ∀ j ≤ i < n • E(A) ∩ Ei = ∅

where we write si
λi−→Ei si+1, i ∈ N>0, to denote that the transition si

λi−→ si+1 is
justified by the set of edges Ei; Ei is empty for delay transitions, i.e. if λi ∈ Time.

Definition 10 (Reset Pre/Post Delay). Let N be a well-formed network.
We say ECN -reset edges are pre/post delayed in N if and only if all edges
originating in reset or reset successor locations are delayed, i.e. if

∀ e = (`, α, ϕ, ~r, `′) ∈ E(N ) • ` ∈ RLN ∪RL+
N =⇒ e is delayed.

There are sufficient syntactic criteria for an edge e = (`1, α1, ϕ1, ~r1, `2) being
delayed. For instance, if (`0, α0, ϕ0, ~r0, `1) is the only incoming edge to `1 and
if ϕ0 = (x ≥ C ∧ x ≤ C) and ϕ1 = (x ≥ D ∧ x ≤ D) and C < D, then e is
delayed. It is also delayed if (`0, α0, ϕ0, ~r0, `1) is the only incoming edge to `1,
~r0 is resetting x, and ϕ1 = (x > 0).

Both patterns occur, e.g., in the FSN case-study (cf. Section 4). There, the
reset location is entered via an edge following the former pattern, and the edges
originating at the reset successor location follow the latter pattern. Thus ECN -
reset edges are pre/post delayed in FSN.

Proposition 5. Let N (A1, . . . ,An) be a well-formed network where ECN -resets
are pre/post delayed and let Y ∈ ECN be a set of quasi-equal clocks.

Let s ∈ Conf (N ) be a reachable configuration of N which is not timelocked
and not stable wrt. Y . Then all automata in RESY (N ) are either in a reset or
in a reset successor location in s, i.e.

∀Y ∈ ECN ∀ s ∈ Conf (N ) \ SCY ∀ 1 ≤ i ≤ n •
Ai ∈ RESY (N ) =⇒ `s,i ∈ RLY ∪RL+

Y .
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In order to precisely define the concept of reordering of configurations in
computation paths, we introduce the following notion of congruence of config-
urations. Reordering then means that for each impure computation path there
exists a pure computation path over congruent configurations.

Definition 11 (Congruent Modulo Y ).
Let N (A1, . . . ,An) be a well-formed network with variables V. Two configura-
tions s1, s2 ∈ Conf (N ) are called congruent modulo Y ∈ ECN , denoted by
s1 ≡Y s2, if and only if they coincide on values of all variables and if, for each
A ∈ N , either s1, s2 coincide on the location of A and on the values of clocks
from X (A), or A is in a reset location in s1 and in the corresponding reset
successor location in s2, and s2 has the effect of taking a reset edge, i.e. if

νs1 |V = νs2 |V ∧
(
∀ 1 ≤ i ≤ n •

(
`1,i = `2,i ∧ νs1 |X (Ai) = νs2 |X (Ai)

)
∨
∨
j=1,2(`sj ,i ∈ RLY ∧ `s3−j ,i ∈ RL

+
Y

∧ ∃ (`sj ,i, α, ϕ, ~r, `s3−j ,i) ∈ E(Ai) • νsj |X (Ai)[~r] = νs3−j |X (Ai))
)
.

We write s1 ≡Y1,...,Yn s2 if and only if s1 ≡Y1∪···∪Yn s2 for Y1, . . . , Yn ∈ ECN .

Lemma 2. Let N (A1, . . . ,An) be a well-formed network where ECN -resets are
pre/post delayed and let Y ∈ ECN be a set of quasi-equal clocks.

Each impure reset sequence which starts in a reachable and ends in a not
timelocked configuration can be “reordered” into a reset sequence-δ of Y , i.e.,

∀Y ∈ ECN ∀ s0
λ1−→ · · · λn−−→ sn ∈ RSimpure

Y ∃ r0, . . . , rn ∈ Conf (N ) • r0 = s0 ∧

rn = sn ∧ (∀ 0 ≤ i < n • ri ≡Y s0) ∧ r0
λ2−→ . . .

λn−−→ rn−1 ∈ RSpureY ∧ rn−1
λ1−→ rn.

Proof. Proposition 5 and, by Definition 2 (well-formedness), the reset edges wrt.
Y are independent from the edges justifying the transition from s0 to s1. ut

In Figure 3 we provide an illustration of the reordering of reset sequences
from Lemma 2. Subfigure a) represents a Y -reset sequence from s0 to s4, where
filled circles represent stable configurations and stars unstable configurations.
The transition marked with (!) represents an impurity. The suffix from s1 to s4
is an impure Y -reset sequence. Subfigure b) shows the result after reordering.
The sequence from r0 to r4 is a pure Y -reset sequence-δ.

Lemma 3. Let N (A1, . . . ,An) be a well-formed network where ECN -resets are
pre/post delayed and let Y ∈ ECN be a set of quasi-equal clocks.

Each reset sequence s0
λ1−→ . . .

λn−−→ sn ∈ RSY of Y where s0 is reachable and
sn is not timelocked can be “reordered” into a computation path

r0
λk1−−→ r1 . . . rn−1

λkn−−→ rn

where k1, . . . , kn is a reordering of 1, . . . , n, r0 = s0, and where there exists an
index 0 ≤ j ≤ n such that s0 ≡Y ri for all 0 ≤ i ≤ j, si ≡Y rki for all j < i ≤ n,

and r0
λk1−−→ . . .

λkj−−→ rj ∈ RSpureY .
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a)

b)

...

...

s0 s1 (!) s2 s3 s4

r0 r1 (!)r2 r3 r4

−−−−−−−−−−−−−−−−−−−︸ ︷︷ ︸
impure Y−reset sequence

−−−−−−−−−−−−−−−−−−−−−−−−−︸ ︷︷ ︸
pure Y−reset sequence-δ

...

...

Fig. 3. Reordering of reset sequences.

Proof. Apply Lemma 2 inductively from right to left. That is, if the reset se-
quence of Y has m impure reset sequences of Y , we start the reordering with the
m-th impure reset sequence (the shortest one), and finalize with the first (and
longest) impure reset sequence of Y . ut

Definition 12 (Stability Query). A configuration formula CF over the well-
formed network N is called stability query iff CF is exactly satisfied in stable
configurations of N , i.e., if ∀ s ∈ Conf (N ) • s |= CF ⇐⇒ s ∈ SCN .

Proposition 6. Let N be a well-formed network.
Then CF =

∧
Y ∈ECN

∧
x∈Y (x− rep(x) = 0) is a stability query over N .

Note that if reset locations are known for a specific network, a stability query
could also be stated in terms of those.

Theorem 2. Let N be a well-formed network where ECN -resets are pre/post
delayed, let CF be a configuration formula and ‘stable’ a stability query over N .
Then

K(N , ECN ) |= ∃♦Γ (CF ) ⇐⇒ N |= ∃♦(CF ) ∧ stable.

Proof. Use Lemma 3 to obtain a transition sequence which⇒-reaches the witness
configuration, then Corollary 1. ut

In the following, we bring together Lemmata 2 and 3 to handle computation
paths with arbitrary overlaps of reset phases. This allows us to conclude that
N ′ reflects queries which cannot distinguish stable and unstable configurations.

Lemma 4. Let N (A1, . . . ,An) be a well-formed network where ECN -edges are
pre/post delayed. Let

σ = s0
λ1,1−−→ s1,1 . . .

λ1,m1−−−−→ s1,m1

λ1−→ s1 . . . sn−1
λn,1−−−→ sn,1 . . .

λn,mn−−−−→ sn,mn

λn−−→ sn

be a transition sequence where s0 is reachable and sn is not timelocked, where
si is globally stable, i.e., si ∈ SCN , 0 ≤ i ≤ n, where for each sub-sequence

σi = si−1
λi,1−−→ si,1 . . . si,mi

λi−→ si, 0 < i ≤ n, either si has a globally stable
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successor, i.e. mi = 0, and λi = τ , or σi is a full pure reset sequence of some
Y ∈ ECN , and where at s0 starts a full pure reset sequence, i.e. m1 > 0.

Then σ can be “reordered” into the transition sequence

σ′ = r0
λ̂1−→ r1 . . . rK−1

λ̂K−−→ rK

λ̂K+1,1−−−−→ rK+1,1 . . . rK+1,mK+1

λ̂K+1−−−→ rK+1 . . . rn−1
λ̂n,1−−−→ rn,1 . . . rn,pn

λ̂n,pn−−−−→ rn

where 1 ≤ i1 < · · · < iK ≤ n are the indices of the configurations with globally
stable successors, where 0 ≤ j1, . . . , jN ≤ n are the indices such that there is a
full pure reset sequence of Yk ∈ ECN between sjk and sjk+1 in σ, and where the
actions not belonging to full pure reset sequences occur first, followed by the full
pure reset sequences of Y1, . . . , YN in this order, i.e. r0 = s0, rk ≡Y1,...,YN

sik for

1 ≤ k ≤ K, and rk
λ̂k+1,1−−−−→ rk+1,1 . . . rk+1,mjk

λ̂k+1,mjk−−−−−−→ rk+1 ∈ RSpureYjk
.

Proof. Similar to Lemma 2 using the independence of reset edges from other
edges implied by Definition 2, then induction similar to Lemma 3. ut

Definition 13 (Local Query). Let N be a well-formed network. A reachability
query ∃♦CF over N is called local query wrt. A ∈ N if and only if CF is in
disjunctive normal form, i.e. CF =

∨n
i=1

∧mi

j=1 BF i,j , and if each atom BF i,j is
of the form A.` with ` ∈ L(A), or a constraint ϕ with clocks(ϕ) ⊆ X (A).

Theorem 3. Let N be a well-formed network where ECN -reset edges are pre/post
delayed and let ∃♦CF be a reachability query which is local to A ∈ N .

If there is a configuration reachable in N which satisfies CF and which is not
timelocked, then there is a configuration reachable in K(N , ECN ) which satisfies
Γ (CF ), i.e. N |=¬timelock ∃♦CF =⇒ K(N , ECN ) |= ∃♦Γ (CF ).

Proof. Use Lemma 4 to obtain a stable configuration which satisfies CF , then
Theorem 2 applies. ut

4 Experimental Results

We applied our approach manually to three real world case studies, one of which
is an industrial case, and the other two were obtained from the scientific lit-
erature. Initially, the six restrictions of well-formedness were motivated by the
industrial case, and later generalised to increase the applicability of our ap-
proach.
CRS-N is the cascaded ride sharing protocol [13] with N sensors organized in
the form of a spanning tree. There exists a sink node that collects data from ev-
ery sensor. We verified the local query lessMaxFail, which states that if a sensor
has at least one working communication path, the data sent to the sink node is
correctly aggregated. In lessMaxFail we only use variables and locations of the
sink node.
CSMA-N is the model of the CSMA/CD protocol [14] with N slaves and one
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Network Clk. States M. (MB) t (s)

CRS-5 5 14.9k 17.3 0.2
CRS-5K 1 5.0k 16.2 0.1

CRS-6 6 264.5k 74.7 3.0
CRS-6K 1 64.9k 43.1 0.8

CRS-7 7 7,223.8k 1,986.3 142.1
CRS-7K 1 1,266.4k 693.5 19.2

CRS-8 8 - -
CRS-8K 1 2,530.2k 1,543,200 48.7 5 6 7 8

0

50

100

Number of Sensors

t
(s
)

CRS

CRS-K

Network Clk. States M. (MB) t (s)

CSMA-12 14 688.2k 230.1 8.5
CSMA-12K 1 49.3k 36.3 0.5

CSMA-14 16 3,670.1k 1,257.6 57.0
CSMA-14K 1 229.5k 135.6 3.1

CSMA-16 18 18,874.5k 7,051.7 374.3
CSMA-16K 1 1,048.7k 597.5 17.2

CSMA-20 22 - - -
CSMA-20K 1 20,971.7k 10,589.0 563.5 12 14 16 18 20

0

200

400

600

Number of Slaves

t
(s
)

CSMA

CSMA-K

Network Clk. States M. (MB) t (s)

FSN-6 12 2,149.9k 302.1 176.6
FSN-6K 5 0.9k 16.6 0.1

FSN-8 14 5,084.3k 643.1 729.9
FSN-8K 5 0.9k 17.0 0.1

FSN-10 16 17,474.7k 2,069.4 4057.1
FSN-10K 5 0.9k 17.4 0.1

FSN-60K 5 4,239.4k 454.4 318.4

FSN-80K 5 5,604.4k 611.3 543.9 0 10 20 30 40 50 60 70 80

0

2,000

4,000

Number of Sensors

t
(s
)

FSN

FSN-K

Table 1. Row ‘Clk.’ gives the number of clocks in the model, ‘States’ the number of
visited states, ‘M.’ the memory usage in MB, and ‘t (s)’ the runtime in seconds.
(Env.: Intel i3, 2.3GHz, 3GB, Ubuntu 11.04, verifyta 4.1.3.4577 with default options.)
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master. We verified the local query noCollision, which states that no collision
occurs when slaves send data to the master. We have represented the occurrence
of collisions by a location of the master.
FSN-N is a custom TDMA-based wireless fire alarm system with N sensors [15].
We verified the local query 300seconds, which states that a sensor malfunction is
detected by the central unit (main sensor) in at most 300 seconds. In this query
we use a clock and a location from the central unit.

Table 1 gives the figures for verification before and after applying the trans-
formation from Section 3.2, the latter figures are indicated by suffix K at the
network name.

5 Conclusion and Future Work

We have presented a transformation approach to mechanically remove verifica-
tion overhead from networks of timed automata where clocks in the real world
are intended to be synchronized. We formally introduced the notion of quasi-
equal clocks to characterise such clocks. We propose a transformation that goes
beyond simple syntactical replacement. We formally prove the correctness of our
approach and define a class of timed automata networks and reachability queries
for which it is applicable. Although well-formedness imposes a set of restrictions
over the networks where we can apply our approach, this is reasonable since
the semantics of well-formed networks are preserved after transformation, up to
configurations where quasi-equal clocks have different valuations.

Experiments with real-world case studies show the feasibility of reducing
clocks in networks of timed automata based on quasi-equal clocks. Significant
gains in the computational cost of model checking using Uppaal for transformed
models are achieved, once eliminated the unnecessary overhead caused when
well-formed networks generate intermediate configurations by resetting quasi-
equal clocks one by one. We enable an increase in decoupling between modelling
as a design and documentation activity, and model optimization for verification.
Thus, the approach effectively narrows the gap between readable, maintainable
models and model checking efficiency.

In the future, we would like to enlarge the spectrum of networks that can
be treated by our approach by investigating relaxations of the well-formedness
criteria presented. Additionally, we would like to extend the types of queries
supported by the transformation by providing a broader syntax for validable
queries beyond simple reachability. Finally, an automatic detection of quasi-
equal clocks would increase the mechanisation of our approach.
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