
On Formal Verification of ACT-R Architectures and Models
Vincent Langenfeld (langenfv@tf.uni-freiburg.de)

Department of Computer Science, Albert-Ludwigs-Universität Freiburg

Bernd Westphal (westphal@tf.uni-freiburg.de)
Department of Computer Science, Albert-Ludwigs-Universität Freiburg

Andreas Podelski (podelski@tf.uni-freiburg.de)
Department of Computer Science, Albert-Ludwigs-Universität Freiburg

Abstract

Subject of this article is the question whether the potential
for automatic defect analysis for symbolic timed ACT-R mod-
els as demonstrated in earlier work can be developed into a
scalable and comprehensible technique. We present a formal,
operational model of an ACT-R architecture and a translation
scheme of ACT-R models into timed automata. We have ap-
plied this translation to ACT-R models and report on scalability
experiments with automatic defect analysis.

Keywords: ACT-R; Cognitive Architecture; Formal Methods;
Timed Automata; Modelling

Introduction
ACT-R (Anderson, 1983, 2009) is a cognitive architecture
(an implementation of a unified theory of cognition) that is
widely used in cognitive modelling to validate psychologi-
cal theories. A psychological theory is a hypothesis on how a
given task is solved by humans. Psychological theories can be
validated by constructing an ACT-R model that implements
the psychological theory and comparing the model’s predic-
tions to experimental data.

The work (Langenfeld, Westphal, Albrecht, & Podelski,
2018) points out that it is critical for this approach that an
ACT-R model correctly implements the psychological theory
because an incorrect ACT-R model (wrt. the psychological
theory) may lead to a false rejection or false acceptance of
an invalid theory as follows. An incorrect ACT-R model may
give predictions that do not match experimental data although
the theory’s predictions would (thus false rejection), or the
model may give predictions that do match the experimental
data although the theory’s predictions would not (thus false
acceptance).

(Langenfeld et al., 2018) introduce the notion of model de-
fect in general, i.e., any kind of programming error in pro-
duction rules like simple typing errors, forgotten conditions
or requests, etc. They formally study the following three
model properties that can indicate the presence of errors. The
first considered model property is called deadlock, a situation
where model execution cannot continue although the model
is not in a final state. The second property is correctness of
the mental model, that is, the questions whether it is possible
to observe expected chunks (as defined by the psychological
theory) during model executions and whether it is impossible
to observe unexpected chunks. The third property is timing
feasibility, that is, whether an ACT-R model is principally

able to reproduce timing aspects that are observed in exper-
imental data (e.g. given a model, is it possible to complete
the necessary computation steps of the ACT-R model within
the time frame observed with human participants). Using an
abstract, formal semantics of ACT-R (Albrecht & Westphal,
2014b), it is principally possible, effective, and useful from
a modeller’s point of view to automatically and exhaustively
analyse ACT-R models for the absence of defects (Langenfeld
et al., 2018). Spotting such errors by simulation alone is, in
contrast, tedious and time consuming in general.

Subject of this article is the question whether the potential
for automatic defect analysis for symbolic timed ACT-R mod-
els as mentioned above can be developed into a scalable and
comprehensible technique. To this end, we present a formal,
operational model of an ACT-R architecture and a translation
scheme of ACT-R models into the same formalism of timed
automata (Alur & Dill, 1994), that allows us to easily model
the discrete, timing, and concurrency aspects of ACT-R and
that is well supported by existing analysis tools (Behrmann,
David, & Larsen, 2004). We have applied this translation to
artificial ACT-R models as well as an ACT-R model from the
research literature and we have found the analysis of the re-
sulting network of timed automata (using existing tools) to
scale well, both in number of chunks and number of produc-
tion rules. By using the formalism of timed automata, we
obtain a comprehensible model including all architecture as-
pects, hence the potential to analyse theories regarding archi-
tectures in addition to psychological theories.
Related Work. Formalisations of the ACT-R semantics ap-
pear in (Albrecht & Westphal, 2014b) and later in (Gall &
Frühwirth, 2014; Gall & Frühwirth, 2018), and are used to-
wards comparing cognitive architectures (Ragni et al., 2018).

Preliminary results on the formal analysis of ACT-R mod-
els for defects have been presented in (Albrecht & Westphal,
2014a) and elaborated in (Langenfeld et al., 2018). The feasi-
bility of such analyses is investigated by encoding simplified
fragments of ACT-R architecture and model aspects and se-
lected rules into logical formulae that can effectively be anal-
ysed for satisfiability. This work, in contrast, supports a wider
range of analysis goals and aims at a comprehensible model
of an architecture and a complete ACT-R model.

An analysis procedure for confluence of ACT-R models
can be obtained by encoding an ACT-R architecture and mod-



els in constraint handling rules and solving the confluence
problems in this domain (Gall & Frühwirth, 2017).

Preliminaries
F-ACT-R. The formal description of ACT-R (Albrecht,
2013; Albrecht & Westphal, 2014a) differentiates between a
syntactical description of the ACT-R model and description
of the semantics assigned to the constructs of the model by a
cognitive architecture.

The abstract syntax of ACT-R defines a model over a set of
module signatures. A module signature consists of a finite set
of buffers B, a finite set of module queries Q, and a finite set
of action symbols A. A production rule r is a pair of a pre-
condition and an action. A precondition is a proposition over
buffer slots and module queries. An action is a set of similar
propositions together with a buffer and an action symbol. An
ACT-R model is a finite set of production rules R = {r1, ...rn}
and a finite set of chunks {c0, ...,cn}.

An ACT-R architecture consists of a interpretation func-
tion for the action symbols of modules and a production rule
selection mechanism. A cognitive state is a function γ from
buffers to pairs (c,d) where c is a chunk and d is a time delay.
A pair in γ thus describes buffer contents (if d = 0) and buffer
assignments in the future (if d > 0). The ACT-R architecture
works in cycles of production rule selection and execution.

Cognitive states γ,γ′ are in a successor relation (γ
(r,t)−−→γ′), if

the selection mechanism chooses production rule r (consum-
ing time t) whose precondition is fulfilled by the current cog-
nitive state γ and γ′ is the result of applying the interpretation
of every action symbol of r to γ.

Running Example. The addition model from the ACT-R
tutorial (Bothell, 2017b), Unit 1.7.1, models the addition of
two numbers by counting up from the first number in as many
steps as given by the second number. To implement counting,
the model uses rules whose preconditions match the current
number and retrieve the corresponding count fact, i.e. a pair
of a number and its direct successor, from declarative mem-
ory. In our examples we use the production rule initialize-
addition, which is only applicable at the beginning of the
computation. Its precondition requires an empty goal buffer
slot sum. To start the addition, its action assigns the first num-
ber of the addition to goal buffer slot sum, and 0 to the count
slot that tracks counting of the second number. Then a re-
trieval for the successor of sum is started.

Timed Automata. Timed automata (Alur & Dill, 1994) are
a formal, operational model of real-time systems, i.e., sys-
tems that have to compute outputs within certain time inter-
vals. In the simplest case, a timed automaton A is a tuple
(L,B,X, I,E, `ini) comprising a finite set of locations L (in-
cluding the initial location `ini), a set of channels B, and a
set of clocks X. Function I labels each location with a clock
constraint (called location invariant), and E is a finite set of
edges. An edge (`,α,ϕ,ρ, `′) comprises source and destina-
tion location ` and `′, action α (which can be the internal ac-

tion τ, or an output b! or input b? on a channel b ∈ B), clock
constraint ϕ as guard, and the update ρ ⊆ X that denotes the
set of clocks to be reset.

The operational semantics of a network of timed automata
N = A1‖· · ·‖An (‘‖’ denoting parallel composition) is a la-
belled transition system over configurations 〈~̀,ν〉 where ~̀i
is the current location of automaton Ai and ν : X→ R+

0 is
a valuation of the clocks. Two configurations are in transi-
tion relation 〈~̀,ν〉 λ−→〈~̀′,ν′〉 if and only if λ ∈ R+

0 , ~̀ = ~̀′, and
ν′ = ν + λ satisfies the invariants of all locations in ~̀ (de-
lay transition), or there is an edge (`,τ,ϕ,ρ, `′) ∈ Ei such that
~̀i = `, ~̀′i = `′, ϕ is satisfied in ν, and ν′ is obtained from ν by
resetting the clocks in ρ to zero (internal transition), or there
are two edges enabled in two different automata in N with
complementary input and output actions (rendezvous transi-
tion). A computation path of a network of timed automata is
a sequence of configurations starting with 〈~̀0,ν0〉 where ~̀0
comprises the initial locations, and ν0 assigns value 0 to all
clocks (and satisfies all location invariants), and subsequent
configurations are in transition relation.

The modelling, simulation, and model-checking tool Up-
paal (Behrmann et al., 2004) extends the simple case by fea-
tures such as data variables, broadcast channels, and commit-
ted locations where no delay is possible. In the remaining
article, we use a graphical representation of timed automata
(see, e.g., Figure 1) where the double outline location is ini-
tial, locations marked by a ‘C’ are committed locations, and
invariants (if any) are shown in purple. Edges are annotated
with action (in cyan), guard (in green), and updates (in blue).

TA-ACT-R
In this section, we describe how we represent ACT-R models
by networks of timed automata that can then be analysed for
ACT-R model defects. Recall that an ACT-R model R is a fi-
nite set {r1, . . . ,rn} of production rules that has computations
on an architecture A.

Given an ACT-R model R and an architecture A, we con-
struct networks N R and N A of timed automata such that we
can conclude from analysis results of the network N R‖N A

to the presence or absence of model defects in the ACT-R
model on architecture A. Constructing the network N A can
be considered a one-time effort: In the case described be-
low, we consider timed automata that follow the production
rule selection mechanism and the behaviour of models in the
ACT-R tool. Network N A can be composed with any N R,
i.e., with any network of a specific ACT-R model, as long as
model R is compatible with the modules offered by A.

In the following paragraphs, we first describe the construc-
tion of the timed automata in N A that model module be-
haviour, here on the example of the declarative module. Then
we describe the construction of production rule automata to
obtain N R, and conclude with the production rule selection
mechanism in N A. Figure 5 visualises the overall structure
and potential communication between the timed automata in
N R‖N A over shared channels.



Figure 1: TA-ACT-R chunk automaton Ach.

Chunks and the Declarative Module. The declarative
module is responsible for memory management, i.e. to main-
tain and recall chunks of previously learned information. Ac-
tions of production rules can initiate a recall of information,
e.g., the successor of a number in the addition model, and the
declarative module delivers one (of possibly many) match-
ing chunks or none at all. Recalling information takes time:
In ACT-R, the declarative module takes a certain amount of
time to recall information (retrieval delay) or considers a re-
call failed after a time limit (retrieval threshold).

Our TA-ACT-R model of the declarative module is a set of
timed automata that realise the behaviour described above. It
comprises one timed automaton AD, and one timed automa-
ton Ach for each chunk in memory. The idea of this struc-
ture is that, for each recall action, AD stimulates all chunk
automata at once, and each chunk automaton with a chunk
matching the current recall action offers its chunk to AD. Se-
lection between matching chunks is non-deterministic (and
exhaustively considered in analysis).

Figure 1 shows the TA-ACT-R chunk automaton Ach.
From the initial location idle there are two possible ways
of handling a recall action: Either the chunk managed by
Ach matches the request (continue to the right) or not (con-
tinue to the left). The distinction between the two cases is
made by function check retr cond(), which hides the de-
tails of comparing the request (as specified by shared vari-
ables). Both edges (to the right and to the left of idle) reset
clock t to 0. By the invariants of the bottom right (or left) lo-
cations (shown in purple), either an amount of time units cor-
responding to retrieval delay or retrieval threshold pass. In
case of a match (bottom right location), automaton Ach can
send or receive on the broadcast channel retrieved chunk.
If multiple chunks match, exactly one chunk automaton non-
deterministically acts as sender and all others receive simul-
taneously. In any case (including no matching chunk), the
synchronisation moves the automaton back to location idle
and the recall action is completed from the perspective of the
chunk automaton. Only the chunk automaton acting as sender
writes its chunk into the shared variable retrieval buffer
that models the retrieval buffer of the declarative module and
sets the buffer flag bst to indicate that there is a chunk in
the retrieval buffer. This update corresponds to placing the
retrieved chunk in the declarative module’s retrieval buffer.

That is, the timing behaviour of the declarative module

Figure 2: TA-ACT-R automaton AD (declarative).

is modelled in the chunk automata. Note that our model
can support any number of chunks in memory, yet an up-
per bound on the number of Ach automata needs to be fixed
before analysing the model. This constraint corresponds to
the observation that the majority of ACT-R models considers
cognitive tasks that are solved in bounded time, and there is
the assumption that only finitely many chunks can be used
in bounded time. Yet an analysis of a TA-ACT-R model can
detect if a given upper bound is sufficient to support a given
ACT-R cognitive model. If not, the upper bound on the num-
ber of chunks can be increased and the analysis restarted,
which in particular allows us to analyse the maximum num-
ber of chunks actually considered in a given ACT-R model.
Note, that the specified number of chunks only restricts mem-
ory size but not memory content. Chunk content may be set
in advance modelling pre-existing declarative knowledge (as
in the addition model) and content may be acquired by chunk
automata during run time (modelling learning of declarative
knowledge).

Checking for matching chunks, retrieving one matching
chunk (if any), and reporting the result of the recall action
is organised by the timed automaton AD shown in Figure 2.

In the TA-ACT-R model, the recall action is started by a
synchronisation on channel start retrieval with a rule
automaton (see below) and taking the edge from location
idle downwards. Without intermediate delay, the module
flags are updated to indicate that the declarative module is
busy and then the chunk automata are triggered by sending
on channel ch start retrieval (cf. Figures 2 and 1) and
changing to location wait. From location wait, there are
two cases: either at least one chunk matched or none. The
first case is handled by the sequence of edges to the right
of wait (by synchronising with the chunk automata as ex-
plained above) and updating some more shared variables of
the network, so that other automata in the complete network
can access the recalled chunk. The second case (no chunk
matched) is handled by the mostly symmetric sequence of
edges to the left of wait, which sets the module’s flags ac-
cordingly. In both cases, before returning to location idle
and being ready for the next recall action, the procedural
automaton is notified of completion by synchronisation on
channel set buffer chunk.

Note that Figure 1 shows a simplified chunk automaton for



Figure 3: TA-ACT-A automaton Ar of the production rule
initialize-addition of the addition model.

brevity of this presentation. In general, the declarative mod-
ule is able to learn new chunks. Further note that TA-ACT-
R models the purely symbolic variant of ACT-R declarative
memory, that is, fulfilling a request is a sufficient condition
for a chunk being retrieved from memory. In general, re-
trieval through the declarative module is affected by an ac-
tivation value that models the effect of frequent usage of a
chunk and prevents chunks with an activation value below a
given threshold from being retrieved from memory. The anal-
ysis of the TA-ACT-R model presented here hence detects
model errors like deadlock or (in)correctness of the mental
model under the assumption of perfect memory. These errors
do not disappear when considering activation hence such er-
rors should be removed before considering more expensive
analysis with activation (which is future work).

Production Rules. Given an ACT-R model R consisting of
the rules r1, . . . ,rn, the network N R is the parallel composi-
tion of n rule automata, i.e. N R = Ar1‖· · ·‖Arn .

Figure 3 shows a concrete rule automaton to illustrate the
principal construction of rule automata. Each rule automaton
has two cycles (or phases) starting in the initial location idle.
To the left is a single edge that synchronises with the procedu-
ral module automaton (see below) to determine the currently
enabled production rules. The principle is similar to the se-
lection of a matching chunk from the chunk automata by the
declarative module automaton AD in that it uses a broadcast
channel (here conflict resolution).

If the procedural module automaton sends on con-
flict resolution, all rule automata simultaneously take
the left edge from idle to idle if the guard is satisfied. Au-
tomaton Ar writing a value 1 into their position of the shared
array variable enabled indicates that it is possible to fire rule
r under the current module configuration.

If rule r is selected by the procedural module, the latter
sends on the rendezvous channel production fired[r] such
that the rule automaton takes the sequence of edges to the
right of idle (cf. Figure 3). The first edge in the sequence
has updates according to the actions of the rule, followed by
a sequence of edges that trigger activities of modules (in this
example, of the declarative module discussed above).

Figure 3 actually shows the rule automaton of the produc-
tion rule initialize-addition (cf. Preliminaries). The precon-

Figure 4: TA-ACT-R automaton AP (procedural).

dition of this rule, ria for short, is satisfied if the goal buffer
does not yet hold an intermediate or final result. This precon-
dition has a direct translation to the guard (shown in green)
of the left edge in Figure 3. The action of ria updates the goal
buffer and prepares the buffer of the declarative module for a
chunk retrieval. This action directly translates to the update
(shown in blue) of the right edge in Figure 3.

The general translation of a rule from an ACT-R model
uses the structure shown in Figure 3. A translation of the
rule’s precondition becomes the guard of the left edge and a
translation of the rule’s action becomes the update of the right
edge, followed by a sequence of synchronisations to initiate
behaviour of the modules referred to in the rule.

Procedural Module. Figure 4 shows the automaton that re-
alises the behaviour of the procedural module which selects
enabled rules for execution. As explained with the rule au-
tomaton above, there are two phases. A rule execution cycle
starts in location wait delay by sending on channel con-
flict resolution on the downward edge. Rules whose
preconditions are fulfilled receive, and update the shared ar-
ray enabled accordingly. If at least one rule is enabled,
the lower location is exited to the right. One enabled rule
is selected non-deterministically and sending on the corre-
sponding production fired channel triggers the execution
of the action of the selected rule. The shared array enabled is
also reset on the right edge back to wait delay. In location
wait delay, the invariant and the guard of the outgoing edge
ensure that the next rule is executed at least FIRING DELAY
time units later. In case that no rule is enabled, the procedu-
ral module automaton waits for any module to change state,
since only a change in the cognitive state makes it necessary
to check again for an enabled rule (Anderson, 2009; Bothell,
2017a). The self loop on the location wait delay ensures
that the firing delay is observed if the cognitive state changes
during the procedural module waiting for the next rule execu-
tion cycle to start.

The Rule Execution Cycle. Figure 5 shows everything
put together. The network N A modelling the (ACT-R
model independent) architecture is the parallel composition
AP‖AD‖· · · of all module automata (as discussed above).
The network N R representing the behaviour of the consid-
ered ACT-R model R = {r1, . . . ,rn} is the parallel composi-
tion Ar1‖· · ·‖Arn‖Ach

1 ‖· · ·‖Ach
m of the rule automata for R

with m chunk automata (memory size).



Procedural Module

AP (Procedural)

Ar0 (rule 0) Arn (rule n)... ...

conflict resolution

production fired[0] ... [n]

Declarative Module

AD (Declarative)

Ach0 (chunk 0) Achn (chunk n)... ...

ch start retrieval

retrieved chunk

Imaginal Module

A I (Imaginal)

Visual Module Motor Module

Environment

AE (Environment)

set buffer chunk

imaginal new/modify

start retrieval

Figure 5: Structure of TA-ACT-R. Each white rectangle represents one timed automaton in the TA-ACT-R model. Arrows show
potential synchronisation and are directed from senders to receivers and labelled with the channel name. The grey boxes group
together those timed automata that together model an architecture module. Note that the environment does not directly interact
with the imaginal module in ACT-R, but through, e.g., the visual module. For our experiments, we have abstracted from this
indirection, a timed automaton model of, e.g., the visual module would be placed in the structure as shown by the dashed boxes.

The cognitive architecture of ACT-R interprets ACT-R
models by repetitive application of the following, 3-step rule
execution cycle: 1.) wait a fixed time, 2.) check rules’ pre-
conditions on the current cognitive state to determine the set
of enabled rules, and 3.) executing the action of an enabled
rule (if any; otherwise wait for a change of the cognitive
state). Modules may work during the waiting time in Step 1.
The same execution cycle is directly visible in our TA-ACT-
R model where Steps 1 to 3 are driven by automaton AP and
the steps are conducted in cooperation with the rule automata.
The basic rule execution cycle is controlled by AP (acting
as sender on different channels), yet during its waiting time
module automata may work concurrently.

Execution of the TA-ACT-R addition model would start by
AP waiting for the fixed time in location wait delay (Step 1;
cf. Figure 4) and then triggering each rule automaton to up-
date their enabled flag (Step 2; cf. Figure 4 and 3). In our TA-
ACT-R addition model, the shared variables are initialised
such that the initialisation production rule (as shown in Fig. 3)
is enabled. Hence AP would then trigger this rule automaton
(Step 3; cf. Figure 4 and 3). The rule automaton executes

the actions of its rule (possibly in cooperation with module
automata) while AP is already back in location wait delay,
that models Step 1. The retrieval action started by the rule
automaton is processed (including the retrieval delay) by the
declarative module and chunk automata (cf. Figure 2 and 1).
After completion of this retrieval, AP is notified about the
changed cognitive state and commences the next rule execu-
tion cycle (Step 1).

Formally, we observe sequences of timed automata con-
figurations that are related by delay or synchronisation tran-
sitions. In these transition sequences of the TA-ACT-R net-
work, we can clearly identify those configurations that cor-
respond to situations right before starting a new rule exe-
cution cycle. In the more abstract F-ACT-R semantics, a
rule execution cycle basically corresponds to one transition

between two cognitive states, namely γ0
(r1,50)−−−−→ γ1 where

γ0 = {goal 7→ (c0,0), retrieval 7→ (⊥,0)} is the initial cog-
nitive state and γ1 = {goal 7→ (c0,0), retrieval 7→ (c2,50)} is
the cognitive state at the end of the rule execution cycle yet
waiting for the retrieval action to complete.



The abstract, F-ACT-R computation paths of a given ACT-
R model are hence refined by TA-ACT-R computation paths
(one transition in the F-ACT-R model is related to a sequence
of transitions in the TA-ACT-R model), which in turn is re-
fined by computations of the ACT-R tool. In all three cases,
we can clearly pinpoint the configuration right before the next
rule execution and thus conclude from, e.g., an analysis of
a TA-ACT-R model to the reachable cognitive states in the
more abstract F-ACT-R view.

Discussion. Figures 1 to 4 show an abstract, comprehensi-
ble, readable and simulatable model of an ACT-R architec-
ture. Using this architecture model, it becomes remarkably
easy to evaluate ACT-R models under different architecture
assumptions of a much wider range than the parameters of
the ACT-R simulator allow. For example, other retrieval de-
lays are obtained by redefining constants in AD (cf. Fig.2);
counting presentations (to support activation values) can be
realised by increasing a counter in the successful case of a
chunk automaton; unsuccessful retrieval of chunks in mem-
ory (sporadic forgetting) can be realised by removing the left
edge from idle in the chunk automaton; etc.

By using a formal modelling language like timed automata,
we obtain a precisely defined semantics. In contrast to a tex-
tual description of ACT-R’s behaviour, it is unambiguously
determined which delays or edges are possible in each model
configuration. The Uppaal tool uses this fact to offer a con-
venient simulation environment that shows, in each configu-
ration, the enabled edges and allows a user to choose the next
one. If a model analysis finds a defect, the simulator can be
used to inspect one computation path that exhibits the defect.

From these two aspects, we also envision a use of our TA-
ACT-R models in teaching ACT-R: We see our model to fill
a gap between a slide presentation of the concepts and prin-
ciples of ACT-R and the ACT-R tool. Instructors could use
the timed automata simulator in order to present the dynamic
behaviour of the ACT-R architecture from rule selection to
module activities before referring students to the ACT-R tool.

Evaluation

A highly relevant question on model analysis techniques and
tools is about scalability. To be practically useful, a tool needs
to be able to analyse ACT-R models that are used in cognitive
science research.

Our investigation of the scalability of our TA-ACT-R-based
approach to model analysis considers the following three re-
search questions: (1) How does the number of chunks in the
declarative memory affect the consumption of computational
resources? (2) How does the length of the cognitive computa-
tion path affect the consumption of computational resources?
(3) How does the number of rules in the ACT-R model affect
the consumption of computational resources?

Addition Model. We have investigated the scalability of
our approach using a parameterised ACT-R model of the ad-
dition task. Table 1a reports measurements of the classical

addition model with four rules that we apply to a given num-
ber of count order chunks in declarative memory. The goal,
that is, the number of count steps necessary to complete the
addition, is fixed and thereby we isolate the effect on compu-
tational resource consumption to the number of chunks. The
analysis checks that for each TA-ACT-R computation path,
we finally observe the correct result in the goal buffer. Ta-
ble 1a shows that the analysis of this parameterised addition
model easily scales to 1,000 chunks considered for retrieval,
while the length of the TA-ACT-R model computation path
remains constant as expected from the fixed goal. Time con-
sumption increases about linearly because each step of the
analysis algorithm needs to check each chunk automaton for
whether it offers a matching chunk; the reason for increased
memory consumption is that the number of automata in the
network uniformly increases the size of each TA-ACT-R con-
figuration.

Table 1b reports measurements from the same model dis-
cussed above but with increasing addition goal. The model is
supposed to apply the highest number of count steps possible
with the given chunks, i.e. the instance with 1,000 chunks is
supposed to conduct 999 count steps. The time needed for the
analysis in the table scales roughly linearly in both, number
of chunks and length of computation; the numbers of reach-
able TA-ACT-R configurations in the table grow linearly in
the length of the computation. Table 1b shows that an ex-
haustive analysis of the model with a few hundred chunks
takes not much more than a minute. With an analysis time
in this low order of magnitude, we anticipate that our TA-
ACT-R analysis can be effectively used during the process of
cognitive modelling, that is, to analyse an ACT-R model for
common errors, and, in case errors are found, to fix these er-
rors and re-run the analysis. For large chunk numbers and
computation lengths, the time needed to complete the analy-
sis becomes more noticeable. We suggest to value the com-
putation time wrt. the obtained outcome: After (in case of the
addition model) about 4 minutes, all possible computations
of the cognitive model have been considered.

Table 1c reports measurements from a different addition
model where each count fact is modelled as its own produc-
tion rule. That is, in order to, e.g., do 100 count steps, there
are 100 different rules. Table 1c shows that the analysis of this
parameterised addition model easily scales to 1,000 rules.

Preferred Mental Model Theory. To evaluate the per-
formance of our TA-ACT-R-based approach on a cognitive
model from the research literature, we have considered the
PMMT1 model that has been used in (Langenfeld et al., 2018)
to illustrate the usefulness of checking models for the absence
of deadlocks (a deadlock is a cognitive state where no pro-
duction rule is able to fire while the end of the modelled be-
haviour has not been reached).

1The preferred mental model theory (PMMT; Ragni, Knauff, &
Nebel, 2005; Ragni & Knauff, 2013) is the most recent refinement of
the established mental model theory (MMT; Johnson-Laird, 1980),
that aims to explain human spatial reasoning.



Decl. Time States Memory
25 0.09 s 165 8.1 MiB
50 0.17 s 165 8.9 MiB

100 0.29 s 165 10.7 MiB
500 1.20 s 165 24.5 MiB

1,000 2.70 s 165 40.8 MiB

(a) Computational resources used with in-
creasing number of chunks in the declarative
memory (Decl.) for fixed addend 9.

Decl. Time States Memory
25 0.1 s 681 8.4 MiB
50 0.7 s 1,431 10.6 MiB

100 2.5 s 2,931 17.8 MiB
500 65.2 s 14,931 177.6 MiB

1,000 254.8 s 29,931 653.9 MiB

(b) Resource consumption with increasing
number of chunks (Decl.), with highest pos-
sible addend (chunk number minus 1).

Proc. Time States Memory

100 0.8 s 11,806 9.0 MiB

1,000 11.9 s 17,230 58.1 MiB

(c) Resource consumption with increasing
number of production rules (Proc.), with
highest possible addend.

Table 1: Evaluation results for time and memory consumption of an exhaustive analysis of addition models with verifyta
4.1.19 (Behrmann et al., 2004). Column ‘States’ gives the number of reachable configurations of the network of timed automata
(cf. Preliminaries). The figures given above are averaged over ten runs (i7-6500/2.5 GHz, 8 GiB, Windows 10/64bit laptop).

The considered ACT-R model of the PMMT is technically
non-trivial as it makes use of multiple modules (often in the
same rule) and depends on complex preconditions including
buffer requests and module queries. From its design parame-
ters (about 40 production rules, less than 10 learned chunks),
we would have expected an exhaustive analysis of the com-
putational space of the TA-ACT-R model to take at most one
second considering the figures in Table 1. In fact, the analysis
was much faster: The analysis tool verifyta (Behrmann et
al., 2004) reported the absence of deadlocks for every pos-
sible combination of two premises and a conclusion within
146ms (storing 701 TA-ACT-R states in 8.7 MiB of mem-
ory). Thus there are complex ACT-R research models that
can be very efficiently analysed for the absence of model de-
fects (Langenfeld et al., 2018).

Conclusion and Future Work
As future work we will automate the translation of the pro-
duction rules of an ACT-R model to the according automata to
enable the analysis of models without manual translation. We
will also extend TA-ACT-R by hybrid processes like chunk
activation and retrieval delays. We will also integrate hybrid
processes (e.g. calculation of chunk activation and retrieval
delays) into TA-ACT-R to replace the non-deterministic sub
symbolic layer for more precise analysis of ACT-R models.

In this article we investigated the potential for automatic
defect analysis of ACT-R models. We developed a formal
but easy to comprehend model of the ACT-R architecture and
a translation scheme for ACT-R models. Benchmark results
show, that the analysis of useful properties scales well for
high numbers of chunks and production rules so that it can be
applied during model development.

Acknowledgements
Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) PO 279/2-1.

References
Albrecht, R. (2013). Towards a Formal Description of the

ACT-R Unified Theory of Cognition. Unpublished master’s
thesis, Albert-Ludwigs-Universität Freiburg.

Albrecht, R., & Westphal, B. (2014a). Analysing Psychologi-
cal Theories with F-ACT-R. Cogn. Processing, 15, 77–79.

Albrecht, R., & Westphal, B. (2014b). F-ACT-R: Defining
the Architectural Space. Cogn. Processing, 15, 79-81.

Alur, R., & Dill, D. L. (1994). A theory of timed automata.
Theoretical Computer Science, 126(2), 183–235.

Anderson, J. R. (1983). The Architecture of Cognition. Psy-
chology Press.

Anderson, J. R. (2009). How can the human mind occur in
the physical universe? Oxford University Press.

Behrmann, G., David, A., & Larsen, K. G. (2004). A Tutorial
on Uppaal. In SFM (Vol. 3185, p. 200-236). Springer.

Bothell, D. (2017a). ACT-R 7 reference manual. Retrieved
from http://act-r.psy.cmu.edu/actr7

Bothell, D. (2017b). ACT-R Tutorial. Retrieved from
http://act-r.psy.cmu.edu/actr7/.

Gall, D., & Frühwirth, T. (2018). An operational semantics
for the cognitive architecture ACT-R and its translation to
constraint handling rules. ACM TCL, 19(3), 22:1–22:42.

Gall, D., & Frühwirth, T. W. (2014). A formal semantics for
the cognitive architecture ACT-R. In LOPSTR (Vol. 8981,
pp. 74–91). Springer.

Gall, D., & Frühwirth, T. W. (2017). A decidable confluence
test for cognitive models in ACT-R. In RuleML+RR (Vol.
10364, pp. 119–134). Springer.

Johnson-Laird, P. (1980). Mental models in cognitive sci-
ence. Cognitive Science, 4, 71–115.

Langenfeld, V., Westphal, B., Albrecht, R., & Podelski, A.
(2018). But does it really do that? Using formal analysis to
ensure desirable ACT-R model behaviour. In CogSci 2018
(pp. 659–664).

Ragni, M., & Knauff, M. (2013). A theory and a compu-
tational model of spatial reasoning with preferred mental
models. Psychological review(3), 561–588.

Ragni, M., Knauff, M., & Nebel, B. (2005). A Computational
Model for Spatial Reasoning with Mental Models. In Proc.
of the 27th annual Cog. Sci. Conf. (pp. 1064–1070).

Ragni, M., Sauerwald, K., Bock, T., Kern-Isberner, G., Frie-
mann, P., & Beierle, C. (2018). Towards a formal founda-
tion of cognitive architectures. In CogSci 2018 (pp. 2321–
2326).


