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Abstract. [Context and motivation] Formal pattern languages with
a restricted English grammar, such as the pattern language of Konrad and
Cheng, give us the possibility to combine human intuition and the rigour of
a machine. [Question / problem] The question arises to what extent the
intuitive understanding of such a pattern language is in agreement with its
formal semantics. [Principal ideas / results] We present an empirical
study to address this question. The existence of a formal semantics allows
us to use the machine as an objective judge to decide if the intuitive
understanding is correct. The study confirms empirically the practical
usefulness of HanforPL in that the intuitive understanding matches the
formal semantics in most practically relevant cases. The study reveals that
a number of phrases of interest represent critical edge cases where even a
prior exposure to formal logic is not a guarantee for the correct intuitive
understanding. [Contribution] We show how the alignment of formal and
intuitive semantics can be investigated, and that this alignment can not
simply be assumed. Nonetheless, results regarding the understandability
of HanforPL are favourable with high understandability in commonly
used patterns. The results of the study will be the basis of improvements
in HanforPL.

Keywords: Pattern Languages · Formal Requirements · Intuitive Un-
derstanding · Empirical Study.

1 Introduction

The formal representation of requirements is supposed to overcome some of the
deficiencies of natural language requirements, especially lack of precision and
non-machine readability [16,2,15,5]. However, if requirements are formulated in a
formal logic such as temporal logic, they are accessible to only a restricted group
of requirement engineers. To overcome the lack of general accessibility, Konrad
and Cheng introduced a pattern language to formulate formal requirements as
sentences in a restricted English grammar [8]. The intuitive understanding of
these sentences is based on the intuitive understanding of natural language, while
the formal semantics is derived through corresponding temporal logic formulas.
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Fig. 1: Example behaviour over the ob-
servables R and S .

For example, we can use its formal
semantics to uniquely determine that
the requirement below is satisfied by
the behaviour depicted in Figure 1:

Globally, it is always the case
that if R holds, then S holds
after 1 time unit.

It would thus seem that with pattern languages, we are in the ideal situation
where we can have both, the precision of formal requirements and the accessibility
of natural language. However, while the interface to the computer is fixed by
the formal semantics, the interface to the human still relies on the intuitive
interpretation of natural language. The question is to what extent we still have
the issues of natural language requirements if restricted to the subset of sentences
defined in a pattern language. In particular, the question arises to what extent
the intuitive understanding of each requirement in the pattern language will be
correct.

The existence of a formal semantics for the requirements gives us the unique
opportunity to phrase the above question in a mathematically precise sense.
We can give a mathematically precise definition of what is the correct intuitive
understanding of a requirement in the pattern language, namely, through its
formal meaning. In contrast, for an informal requirement, it would seem impossible
to distinguish one possible intuitive understanding over another one.

For a requirement in the pattern language, the formal meaning is defined as
the set of system behaviours that satisfy the corresponding temporal logic formula.
Thus, we can base the test of the intuitive understanding of a requirement on a
set of example behaviours, some of which satisfy the requirement and some of
which do not. The existence of a formal semantics allows us to define an objective
judge who decides whether the intuitive understanding is correct: the machine.
Both, the requirement and the behaviour have a machine representation, and an
algorithm exists to decide whether the behaviour satisfies the requirement. Thus,
we only compare the intuitive understanding to the algorithmic decision.

In this paper, we report on an empirical study to investigate the difference
between the formal semantics and the intuitive understanding of requirements in a
particular example of a pattern language called HanforPL. The pattern language
comes with a framework to specify requirements and behaviours, and to check
whether a behaviour satisfies a requirement [1,5]. The study confirms empirically
the practical usefulness of HanforPL in that the intuitive understanding matches
the formal semantics in many cases. The study reveals that a number of phrases
of interest represent critical edge cases where even a prior exposure to formal
logic is not a guarantee for the correct intuitive understanding.
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Table 1: The table shows all patterns of HanforPL, with their membership to a
group describing overall behaviour (the Order, the Occurrence, or the Real-Time),
the names of each pattern, and the pattern text. Due to the available space, we
use "..." to omit the shared phrase it is always the case that. Names of patterns
not already part of the SPS [13] are shown in blue colour.

Name Pattern

O
rd

er

ConstrainedChain ... if R holds, then S eventually holds and is succeeded by T,
where U does not hold between S and T.

Initialization ... initially R holds
Persistence ... if R holds, then it holds persistently
PrecedenceChain21 ... if R holds, then S previously held and was preceded by T
PrecedenceChain12 ... if R holds and is succeeded by S, then T previously held
Response ... if R holds, then S eventually holds.
ResponseChain12 ... if R holds, then S eventually holds and is succeeded by T.
Precedence ... if R holds, then S previously held.

O
cc

u
r. Absence it is never the case that R holds

ExistenceBoundU transitions to states in which R holds occur at most twice
Invariance ... if R holds, then S holds as well
Universality ... R holds

R
ea

l-
ti

m
e

DurationBoundL ... once R becomes satisfied, it holds for at least S time units
DurationBoundU ... once R becomes satisfied, it holds for less than S time units
EdgeResponseBoundU1 ... once R becomes satisfied and holds for at most S time units,

then T holds afterwards
EdgeResponseBoundL2 ... once R becomes satisfied, S holds for at least T time units
EdgeResponseDelay ... once R becomes satisfied, S holds after at most T time units
EdgeResponseDelayBoundL2 ... once R becomes satisfied, S holds after at most T time units

for at least U time units
InvarianceBoundL2 ... if R holds, then S holds for at least T time units
ReccurrenceBoundL ... R holds at least every S time units
ResponseBoundL1 ... if R holds for at least S time units, then T holds afterwards
ResponseBoundL12 ... if R holds for at least S time units, then T holds afterwards

for at least U time units
ResponseDelay ... if R holds, then S holds after at most T time units
ResponseDelayBoundL2 ... if R holds, then S holds after at most T time units for at

least U time units
TriggerResponseBoundL1 ... after R holds for at least S time units and T holds, then U

holds
TriggerResponseDelayBoundL1 ... after R holds for at least S time units and T holds, then U

holds after at most V time units
UniversalityDelay ... R holds after at most S time units

2 Hanfor Pattern Language

The Hanfor pattern language (HanforPL) is based on the patterns of Konrad
and Cheng [8] and uses the Duration Calculus semantics of Post [13]. In fact,
HanforPL shares a large portion of patterns with the Specification Pattern
System (SPS) from [13].

Each instantiation of a requirement in HanforPL is a combination of a scope
defining the general applicability of a pattern, followed by the pattern itself. The
scopes can be chosen from the following options Globally, After P, After P until
Q, Before P, and Between P and Q. The resulting patterns are listed in Table 1.
During instantiation placeholders (usually P, Q, R, S, T) have to be replaced
by Boolean expressions over observables (using ¬,∧ for Boolean and <,= for
numeric observables).
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The semantics of each scope and pattern combination is defined by a logical
formula containing the same placeholders. For a more depth introduction to the
formal foundations and the pattern semantics in detail, we kindly refer the reader
to the cited work.

3 Empirical Study

In this section, we describe the overall goal of our empirical study, our research
questions, and the study design.

3.1 Goal and Research Questions

As requirements pattern are used to communicate expected system behaviour,
e.g., between customers or different departments, it is necessary that requirements
are as understandable as possible to as many stakeholders as possible. That is, the
semantics of the pattern defined by formal logics should align with the intuitive
understanding of usual stakeholders.

The goal of this study is thus to investigate to what extent the intuitive
understanding of formal requirements in HanforPL is correct in the sense that
it matches the formal semantics. This is closely related to the question of the
practical usefulness of HanforPL.

Further, we aim to identify possible reasons for misinterpretation in order to
improve HanforPL in the long term.

Based on previous experience (e.g. [11,9]), we are confident that formally
trained people with some training in HanforPL perform well using the pat-
tern language. With Research Question R1, we want to investigate how well
participants without any training in HanforPL understand the patterns.

However, a basic understanding of formal logics and/or requirements engi-
neering in general may serve as a predictor for the performance dealing with edge
cases and uncommon concepts (Research Question R2).

As the requirements pattern are based on natural language sentences, there
may be phrases that allow for several sensible interpretations for complex concepts,
e.g., formulations referring to timing constraints and quantification. These phrases
of interest are investigated in detail in Research Question R3.

R1 How understandable is HanforPL without former training in the pattern
language itself?

R2 Does training in the fields of requirements engineering or formal logics have
a positive effect on the understanding of HanforPL patterns?
a) Requirements engineering
b) Formal logics

R3 How is the understanding of HanforPL impacted by complex concepts, i.e.,
formulations referring to timing constraints and quantification?
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With regard to the last Research Question (R3), we identified several phrases used
within HanforPL to describe concepts like timing constraints and quantification.
In the following, we present a list of these phrases of interest (highlighted within
the according pattern) together with a description of possible interpretations.
Additionally, we state which of the possible interpretations matches the intended
meaning, i.e., the semantic fixed by the corresponding Duration Calculus formula.

(prev) [...] if R holds, then S previously held : For this phrasing, we see two
possible points for ambiguity. First, the phrase does not specify whether
S has to hold persistently or only for a non-zero time interval before any
occurrence of R. And second, it is not specified whether S has to hold at an
arbitrary point in time before the occurrence of R or directly before R holds.
The intended meaning is the following: Every occurrence of R must at some
point be preceded by a non-zero time interval in which S held.

(afterw)/(afterw*) [...] if [...], then S holds afterwards : Analogous to
(prev), we identified two possible ambiguities. The phrase does not spec-
ify, whether S has to hold persistently or only for a non-zero time interval
(afterw). Additionally, it is not specified, whether S has to hold directly after
the trigger event (the [...]-part) or only at an arbitrary point in time after
the triggered event (afterw*). The intended meaning is the following: S must
hold directly after the trigger event for some non-zero time interval.

(aam) [...] R holds after at most d seconds : The phrase does not specify
whether R has to hold persistently after the d seconds have passed (which is
the intended meaning), or only has to hold for a non-zero time interval.

(aam-cond) [...] if [...], then S holds after at most d seconds : This wording
is the conditioned version of (aam), i. e., it is dependent on the context of
a preceding trigger. Analogous, it is not specified whether S has to hold
persistently or only for a non-zero time interval after d seconds have passed.
The intended meaning is the following: S has to hold for a non-zero time
interval. However, due to an oversight while extending the pattern language,
this interpretation is clearly inconsistent with the intended meaning provided
in (aam).

(obs)/(obs+) [...] once R becomes satisfied [...]: We identified two pos-
sible ambiguities in this pattern. The first is regarding the meaning of the
phrase becomes satisfied. It might be unclear, whether a rising edge of R
is strictly required in all cases, or whether this phrase also includes system
behaviour where R initially holds (obs). The second ambiguity concerns the
keyword once. It might be unclear, whether this means that every occurrence
of R becoming satisfied should be considered or only the first occurrence
(obs+). The intended meaning is the following: all occurrences of rising edges
of R should be considered.

(rec) [...] R holds at least every 2 seconds : The intended meaning of this
phrase is that the length of intervals in which R does not hold is at most 2
seconds. However, this wording might be misinterpreted so to mean, that R
holds at fixed points in time t0 = 0, t1 = 2, t2 = 4, . . . , tn = 2n.
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Remark. Even though some inconsistencies, e.g., the intended meaning of holds
in (aam) and (aam-cond), were identified while preparing the study, we decided
to make no premature changes for two reasons: First, we are interested to
know whether such an inconsistency is noticeable in the results. Second, if it is
noticeable, which of the different interpretations is the one that most participants
agree with.

3.2 Subject Selection

Participants for the empirical study were selected via convenience sampling of
contacts of the authors and second-degree contacts in an original equipment
manufacturer (OEM) in the automotive field. Subjects are mostly computer
scientists and requirements engineers from the field of software engineering,
automotive engineering and formal methods. The empirical study was conducted
in the form of an online survey with anonymous participants out of the described
group. Participants were asked to complete the survey without any help, but
there is no control mechanism against actual cheating. At the beginning of the
survey, we asked the participants for demographic information including their
age group, their experience in requirements engineering, HanforPL, and formal
logics.

3.3 Object Selection

This first step into the investigation of the understanding of a pattern language
is focused on pattern understanding from reading, as it is the basis for further
inquiries, e.g., into the generative task of pattern instantiation for formalisation.
Therefore, the study (apart from demographic questions) consists of a single
repeated task: to decide if pattern instantiations are fulfilled by timing diagrams
of system behaviour. Simply checking phrases in isolation (e.g., What is your
understanding of the phrase "holds after at most 2 seconds"?) was no option,
as their interpretation may differ when embedded into the context of a pattern.
This can, for example, be seen when comparing the intended meaning of the two
phrases of interest (aam) and (aam-cond) within the patterns R holds after at
most T seconds and If R holds, then S holds after at most T seconds.

Within the survey, we test the participants’ understanding of patterns from
the HanforPL. To select a suitable set of patterns, the following criteria are
considered: 1) The survey should focus on patterns that are relevant in industrial
practice, 2) the survey should include the patterns using phrases of interest, and
3) the survey should be short enough to be filled in without too much interruption
to a work day of participants in the industry, i.e., the survey should be completed
in about 30 to 40 minutes.

We considered patterns that were shown to be used frequently for the formal-
isation of requirements in the automotive context (criterion 1). We then added
patterns containing phrases of interest (criterion 2) if not yet included by the
first selection criterion. For patterns whose meaning is inverse to an already
added pattern (e. g. it is always the case that R holds and it is never the case
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Question 11-A: Is the requirement "It is always the case that if R holds, then S holds
after at most 1 second." fulfilled in the following example?

0 1 2 3 4 5 t[s]

S

R

false

true
false

true

Fig. 2: The first of the four questions to investigate the understanding of the
ResponseDelay pattern; correct answer: yes.

that R holds), we only included the positive formulated pattern in the survey.
We do not assume that negative and positive formulations do behave similar,
but that using the usually less legible negative formulation is not adding any
new insights. Three patterns adding no unique phrases were dropped due to
the timing constraint (criterion 3). The selection process resulted in a list of 17
patterns from the HanforPL (see Table 2).

3.4 Survey Design

The questions should be formulated in a style that avoids errors based on the
incomprehensibility of the survey rather than the pattern under investigation. We
therefore decided to work with only one type of question, i. e., we asked whether or
not a given instantiated requirement in HanforPL is fulfilled by a given example
system behaviour. For each question, the requirement was given as written text,
while the example behaviour was depicted as timing diagram. Skipping a question
was not permitted. Figure 2 exemplarily shows the first question that was asked
to investigate the understanding of the ResponseDelay pattern. Consecutively,
we asked the same question for three more timing diagrams (Figure 3). That is,
for each of the selected patterns, participants of the study had to match four
example system behaviours against an instantiated requirement in HanforPL,
yielding a total of 68 questions.

The order of questions in the survey and therefore the order of the requirements
presented to the participants was static. Participants should be eased into the
language by a controlled encounter with the different features of the language,
from one observable, over several observables, timed quantification and so on.
Thereby preventing noise within the answers resulting from being overwhelmed
by a first occurrence of too many new concepts at once. Apart from the gradual
exposure to the language features, we assume that no relevant training effect is
present, as no feedback on the correctness of the answers was given.

To make the survey feasible within a time frame of about 30 to 40 minutes,
the survey includes a high number of example behaviours directly targeting the
phrases of interest (see Table 3). Correct answers to these questions thus mean,
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(b) Correct answer: yes.
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(c) Correct answer: yes.

Fig. 3: Timing diagrams used to investigate the understanding of the ResponseDe-
lay pattern (Questions 11 B - D).

that the general behaviour of the pattern has been understood and the phrase of
interest was interpreted correctly (with respect to the formal semantics).

The survey does not investigate the understanding of different scopes. This
would introduce another level of complexity and hence require more questions to
be asked to infer reasons for possible incorrect answers. We therefore implicitly
instantiated all requirements with the scope globally.

4 Results

The study was completed by 37 participants with an average experience in
requirements engineering of 3.3, in HanforPL of 1.8, and in formal logics of 3.9
on a self assessment scale of 1 (not experienced at all) to 5 (very experienced).
The median age group was 41 to 50. One participant indicated that they clearly
misunderstood the given task as part of a feedback email. The described answer
set (all false) was clearly identifiable, and the participant was removed as an
outlier. Table 2 shows the detailed performance of all participants over all patterns
and questions.

Participants had to rate their familiarity with HanforPL in the beginning of
the survey (see Figure 4). To investigate Research Question R1, we separate the
participants into two groups: The 26 participants being untrained in HanforPL
(answering 1 in the related self assessment question) answered with 75% accuracy
(on average 51.1 of 68 questions answered correctly). The 10 participants that
received former training in HanforPL (answering > 1 in the related self assess-
ment question) answered with 79% accuracy (on average 53.7 of 68 questions
answered correctly).
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Table 2: Survey results per pattern (listed in the order they occur in the survey)
and question (columns A,B,C,D).

Average of correct answers (%)

Pattern Name A B C D Total

Universality 94 100 100 100 99
Invariance 67 97 64 89 79
Initialization 94 100 100 83 94
Persistence 75 100 86 100 90
Precedence 97 53 78 89 79
DurationBoundL 14 100 92 81 72
DurationBoundU 89 14 92 97 73
ReccurrenceBoundL 97 83 86 92 90
UniversalityDelay 53 92 53 86 71
InvarianceBoundL2 64 58 92 61 69
ResponseDelay 47 89 81 89 76
ResponseDelayBoundL1 58 75 92 53 69
ResponseBoundL1 39 94 53 53 60
ResponseBoundL12 50 100 92 83 81
EdgeResponseBoundL2 97 56 17 86 64
EdgeResponseBoundU1 42 72 86 11 53
EdgeResponseDelayBoundL2 100 78 75 56 77

There is a slight, non-significant trend of training in HanforPL leading to
more correct answers (Pearson correlation of r(34) = 0.292 with p = 0.083). The
difference between both groups is statistically not significant (Mann-Whitney-U
U = 103 with p = 0.348). As both groups performed similar, we do not discern
between them in the following.

In the beginning of the study, participants had to give a self assessment of
their experience in formal logics as well as requirements engineering (relating to
R2). We assume that both disciplines give a solid foundation (be it in vocabulary
or concepts) for a better understanding of requirements pattern languages.

It turned out, that training in requirements engineering does at best show a
weak and statistically not significant trend (Pearson correlation of r(34) = 0.231
with p = 0.175). Astonishingly, the best and worst participants claimed to have
a high understanding for requirements engineering (see Figure 5).

In contrast, experience in formal logic turned out to have a strong correlation
(Pearson correlation of r(34) = 0.647 with p < 0.0001) with the number of right
answers (see Figure 6).

As the final research question (R3), we investigate the phrases of interest.
Detailed results from the relevant questions can be seen in Table 3. For each
phrase of interest, its related patterns and questions, the table shows the overall
result, as well as the results of participants with prior training in formal logic
(answering > 2 in the related self assessment question; n = 30) and with little to
no training in formal logic (answering ≤ 2; n = 6).
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Table 3: Correctness results for the phrases of interest. Each row shows the
according phrase id, the pattern containing the phrase and which question in
the survey prompted that exact behaviour followed by the percentage of correct
answers. Column N shows participants with little to no, column L with training
in formal logics.

Correct

ID Related pattern Question N (6) L (30) Overall

prev Precedence C 50 83 78
prev Precedence D 67 93 89

afterw ResponseBoundL1 D 0 63 53
afterw EdgeResponseBoundU1 B 50 77 72

afterw* ResponseBoundL1 C 33 57 53
afterw* ResponseBoundL12 A 33 53 50
afterw* EdgeResponseBoundU1 A 50 40 42

aam UniversalityDelay A 33 57 53
aam UniversalityDelay C 33 57 53

aam-cond ResponseDelay D 83 90 89
aam-cond ResponseDelayBoundL1 C 83 93 92

obs DurationBoundL A 17 13 14
obs DurationBoundU B 0 17 14
obs EdgeResponseBoundL2 C 0 20 17
obs EdgeResponseBoundU1 D 0 13 11

obs+ DurationBoundL C 100 90 92
obs+ DurationBoundU D 100 97 97
obs+ EdgeResponseBoundL2 D 83 87 86
obs+ EdgeResponseDelayBoundL2 B 83 77 78

rec ReccurrenceBoundL B 83 83 83

Table 4: Remainder of questions with high error rates not already covered by
the phrases of interest. Column N shows participants with little to no, column L
with training in formal logics.

Correct

ID Related pattern Question N (6) L (30) Overall

antec Invariance C 17 73 64
antec InvarianceBoundL2 D 17 70 61

atonce Precedence B 50 53 53
atonce ResponseDelay A 33 50 47
atonce ResponseDelayBoundL1 A 33 63 58
atonce ResponseDelayBoundL1 D 50 53 53
atonce ResponseBoundL12 A 33 53 50
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Fig. 4: The influence of former training in HanforPL (x-Axis) on the number of
correct answers given (y-Axis).

Table 4 contains results of the remainder of questions with high error rates.
The errors from these questions can be attributed to two kinds of formulations
and underlying semantics used in the pattern language. For ease of reading, we
define these ad-hoc categories analogous to the phases of interest:

(antec) [...] if R holds, then S holds as well : This requirement’s semantic is
equal to the implication R → S, i.e., if R has to hold, then S has to hold as
well, but not vice versa.

(atonce) [...] if R holds, then S holds after at most T time units: In this
example, it is not clear if S is expected to be in real succession to R (as one
would expect for a causal relationship), or if both happening at the same
time is also valid behaviour. The latter is the case in HanforPL.

5 Discussion

The overall results regarding the understanding are positive, showing that most
patterns in HanforPL can be understood even without prior training in the
pattern language.

Results of 75% to 79% correct answers of participants untrained and trained
in the pattern language entail that generally more than every fifth answer to
questions of whether behaviour belongs to the system are erroneous. This inter-
pretation is heavily skewed as the survey is focused on phrases of interest, i.e.,
on edge cases which are prone to misinterpretation. Thus favouring participants
familiar with HanforPL as well as skewing the distribution of patterns heavily
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Fig. 5: The influence of experience in requirements engineering (x-Axis) on the
number of correct answers given (y-Axis).

towards more complex patterns within the survey, that are used with far lower
frequency in practice. Requirements sets usual for industrial practice, as reported
by [12], mainly contain patterns that got high success rates. This is especially
the case for the Universality pattern and common applications of Invariance-
BoundL2 and ResponseDelay, i.e., excluding the answers to question A of the
latter pattern, (see Table 2). Therefore, we conclude, that HanforPL turned
out to be understandable, even for untrained participants.

Results show, that training in formal logic serves as a good predictor for the
comprehension of the requirements pattern. The explanation of this effect could
be twofold: For one, formal logics, especially temporal logics (e.g. LTL, MTL
or Duration Calculus) have similar interpretation of concepts like referring to,
e.g., a future state just requires just a non-zero interval (or one state) except
denoted differently. Thus, the everyday understanding of these terms is already
aligned with the formal meaning. Second, training in formal logics (in contrast
to requirements engineering) may allow for more detachment from the actual
physical system, i.e., ignoring the question as to what might happen before or
after the timing diagram.

Analysis of individual phrases allows to pinpoint phrases and concepts that
are not aligned with their everyday understanding (Table 3).

The results show, that (rec) and (prev) are unproblematic, as questions
regarding those phrases of interest were answered correctly by most participants.

For the phrase of interest in (afterw), i.e., the text S holds afterwards, par-
ticipants leaned on the side of S only holding for a non-zero interval which
matches the intended meaning (with 53% resp. 72% correct answers). For the
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Fig. 6: The influence of experience in formal logics (x-Axis) on the number of
correct answers given (y-Axis).

ResponseBoundL1 D question, the divide between logically trained (63% correct)
versus untrained (0% correct) shows that there is a different understanding of
the phrases depending on training, i.e., all of the latter did assume that S has to
hold persistently. Again, disambiguation by including the word persistently in
pattern where this is the case should solve this case.

Regarding (afterw*), the question whether S has to hold immediately after
the trigger event (intended meaning), participants leaned to answer incorrectly
(with 53%, 50%, resp. 42% correct answers). This result shows, that the behaviour
has to be made explicit. The uncertainty if S has to hold immediately or at some
arbitrary point (afterw*) should be addressed by including the word immediately
as part of the patterns.

All participants performed well on the phrasing of (aam-cond) if [...], then S
holds after at most T seconds. In contrast, for (aam) only 53% answered correctly,
i.e., that the observable has to hold persistently. Thus, the interpretation in (aam-
cond) is in alignment with the common understanding, while the UnversalityDelay
pattern containing the (aam) phrase should be changed to include the phrase
persistently to be [...] S holds after at most T seconds persistently.

The most recent addition to the pattern language is concerned with reaction to
changes of observables. Questions related to the phrase once R becomes satisfied,
[...] (obs+) were consistently answered correctly, i.e., the requirement has to be
evaluated after each time R becomes satisfied.

The question if an explicit rising edge is required (obs) and how especially
initial behaviour is treated was highly problematic (below 17% correct answers).
Answers were systematically given so, that the state of the system before the
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timing diagram was the missing part to satisfy the change of the observable. As
we did not alter the observables, we did not include the negative case. Including
the negative case would have been beneficial in analysing if participants just
assumed that all observables are false in the beginning, or if any state was
possible that suited the interpretation.

0 1 2 3 4 5 t[s]

S

R

false

true
false

true

Fig. 7: Example of a denying the an-
tecedent error in the survey.

The detailed results in Table 2
show a number of questions that
turned out to have a high error rate.
We assigned additional ad-hoc phrases
of interest: Low rates of right answers
in (antec) (see Table 4) could be at-
tributed to a common error when deal-
ing with implications, the denying the
antecedent. For example, the pattern it
is always the case that if R holds, then
S holds as well is satisfied by the behaviour depicted in Figure 7. Nonetheless, S
being true without R being true in time interval [2, 3] was seen as a violation
by 36% of participants, especially those with little to no training in formal logic
(only 17% correct in both questions). For nine participants (25%) the error was
stable over both questions regarding (antec). This could point to a systematic
misunderstanding of implication, or at least a difference in the understanding to
the phrasing used for implication in this pattern. The existence of systematic
differences of understanding conditionals has been shown by Fischbach et al. [6].

0 1 2 3 4 5 t[s]

S
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true

Fig. 8: Problems with immediate satisfac-
tion of a property.

A large number of errors stem
from cases in which everything rele-
vant happens at the same point in time
(atonce). An example is the require-
ment if R holds, then S holds after at
most 1 second together with the be-
haviour depicted in Figure 8. One can
see that for time interval [0, 2] R as
well as S are true, i.e., the causal re-
lation, although it only needs to be
satisfied with a delay of at most one second, is satisfied immediately. This may
be again due to a notion of the requirements as more of a physical system, where
the trigger results in an action with a real causal delay.

Many of the problems detected in this study should be fixed by small changes
regarding the pattern language. As an immediate result of this study, several
improvements for the phrases of interest were suggested, as discussed above.
These modifications have to be verified carefully so, that the simplicity of the
sentences is not lost in an overly complex sequence of adjectives describing each
observable.

Similar to the argument in [3,14], a basic understanding of formal logic (better
formal methods in general) should be the best mitigation for misalignment in
the understanding of formal constructs such as the problems found with (antec).
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Additionally, we include clarifications targeted on the misunderstandings
found in this survey in our training material.

6 Threats to Validity

6.1 Internal Validity

The threat of Repeated Testing is concerned with participants learning over
the run of an experiment. As participants were not informed if their answers
were correct, they should not have been able to gain information on the correct
interpretation of the pattern. An acclimatisation to the pattern language was
intended though in order to prevent participants from being overwhelmed with
the more complex pattern. As the survey was performed in an industrial context,
Maturation, i.e., changes over the duration of the survey can influence the results.
We tried to keep the survey as short as possible in order to prevent tiring and
impatience (or loss of participants) due to more pressing concerns. The threat of
Instrumentation is concerned with the influence of the experimental material itself
on the results. We tried to make the examples of system behaviour as accessible
as possible for the use by not formally trained participants [4]. Nonetheless,
problems with phrases of interest starting in the beginning of the timing diagram
may have suffered from a notion of the system too commonly associated with
a real system, i.e., where there is always a previous state even if switched off.
To guarantee that the questions themselves do not contain errors, all timing
diagrams were automatically verified by the pattern simulator being part of
Hanfor.

6.2 Construct Validity

The threat of Interaction of setting and treatment is concerned with non-aligning
circumstances of experiment and reality. In fact, the experiment is presented in a
form focusing on the patterns itself, not on realistic requirements. In a real setting,
expressions over observables in pattern instantiations can add another layer of
complexity, that is abstracted away, to get data on the pattern themselves.
In reality, the correctness numbers can be much lower as requirements get
considerably more complex. Nonetheless, the expression language is not likely to
have interactions with the phrasing of the surrounding pattern.

6.3 External Validity

The threat of Interaction of selection and treatment is concerned with the selection
of non-representative participants. Our participants were selected by contacting
cooperation partners from different engineering divisions, and the chair mailing
list. This way, we tried to spread the risk of convenience sampling over different
businesses and person groups likely to be in a position or likely to be in the near
future of using a requirements pattern language.



16 E. Henkel et al.

7 Related Work

Winter et al. [15] conduct a survey on the understandability of quantifiers and
their negation (such as all, more than or at least) in natural language requirements.
Results show, that there are significant effects on reading speed and error rate
between the different quantifiers and their negated forms. Based on the results,
advice for writing requirements is given. This recent work shows the relevance of
investigations into the understanding of requirements in general. Phrasings are
chosen once and reproduced in each instantiation, i.e., any problem introduced
to a pattern is multiplied over a requirements specification. Therefore, ensuring
understanding by a broad audience is even more relevant.

Giannakopoulou et al. [7] address the problem of pattern understanding by
presenting several representations of the instantiated requirement, both graphical
and as formal logic, e.g. LTL. This is a necessary support for error recovery
by comparison to the intended result, while the pattern language should itself
prevent errors in the first place by being aligned with the intuitive understanding
of the patterns.

A different approach is taken by Moitra et al. [10], designing the requirements
language in the style of a programming language. This surely aligns the intuitive
understanding with stakeholders from a computer science background, but may
exclude other stakeholders entirely, because of the condensed syntax.

8 Conclusion

In this paper, we demonstrated how an inquiry on the alignment of the formal
semantics of the HanforPL and the intuitive understanding of requirements
engineers can help to understand and improve the pattern language. Almost half
of the patterns considered in the survey are contained in the SPS by [13]. Parts
of the results can therefore be generalized to SPS-like languages.

The analysis results are positive, and the pattern language performed very
well in hiding the formal complexity behind intuitively understandable sentences.
Nonetheless, the language contains several phrases that lead to near random
decisions, and misconceptions of logic can lead to misinterpretations that cannot
be mitigated entirely by phrasing. We suggested several improvements through
the analysis.

This study was a short, industry friendly foray into the comprehensibility of
HanforPL. In the short term, the pattern of HanforPL will be improved by
the suggested changes. Based on this study, future work will be to design a more
thorough investigation of the patterns, especially in conjunction with scopes.
The basis of this extended survey could be a mutation based scenario generator
to do the tedious work of generating different classes of scenarios. While the
examination of each pattern is of immediate use for requirements engineering,
the question remains if we can evaluate the meaning of single words (e.g. after
and once), or if their meaning is heavily influenced by the context in which they
occur.
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