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Abstract—Describing a system in a requirements specification
demands correctness and conciseness. Requirements are redundant
if they are stated multiple times throughout a specification
(explicitly or implicitly). In contrast to vacuity, redundancies
do not inherently indicate specification defects, and are sometimes
even inevitable to adequately follow safety practices. However,
intended redundancies have to be managed to avoid subsequent
errors. Unintended redundancies often hint to defects in the
requirements specification.

We present an analysis for redundancies in formal real-time
requirements specifications based on automata theoretical model
checking. To enable this analysis, we introduce a determinism
preserving totalization and complement procedure for the timed
automaton model of Phase Event Automata. We state the
redundancy check for a set of real-time requirements as a program
analysis task.

Benchmarks show the viability of our approach to analyse
requirements sets of industrial size and complexity: the analysis
scales well on industrial sets, interesting redundancies both from
requirements and as a formalisation artefact were found.

Index Terms—Formal Requirements Analysis, Real-time Re-
quirements, Redundancy, Vacuity, Phase Event Automata

I. INTRODUCTION

A requirements specification should describe a system that is
to be built correctly, completely, and concisely. Requirements
that are stated multiple times within a system specification
are redundant. This may be because the requirement is stated
multiple times identically, or because the conjunction of a set of
requirements is already implied by the redundant requirement.
While redundancy in itself is not necessarily bad, to some extent
it may even increase readability of a requirements document,
redundancies have to be managed in order to prevent defects
during changes [1], [2]. Nonetheless, redundant requirements
often hint to defects in the requirements. Redundancy in a
requirements set may be caused by several defects:

A redundancy can be caused by a requirements precondition
never being satisfied, caused by the sheer size of the system
that is specified. This kind of defect, often called vacuity, can
be detected by several requirements analysis tools [3], [4] and
has been shown to be found in industry requirements [3]. This
kind of redundancy is generally seen as a defect as vacuous
requirements serve no function.

A redundancy can also be caused by a requirement being
less restrictive than the composition of the remainder of the
specification. This kind of redundancy may be intentional, e.g.,

for regulatory reasons, or due to including requirements from
different stakeholders who want to know their specification to
be covered. It might also stem from the intentional inclusion of
requirements that prioritise over nuances of desirable system
properties. The redundancy may also be non-intentional, i.e.,
hint to an oversight in the design or simple human error
during documentation or even formalisation. Nonetheless, the
redundancy has to be known, either to be managed during
changes or for the requirements to be repaired. Analysis of
requirements defects in industry projects has shown that the
introduction of redundancies can be as simple as copy-and-
paste errors and confusion of system variables can lead to a
requirement specification being incomplete but redundant [5].

Formal requirements analysis tools analysing different proper-
ties such as consistency and vacuity have shown their usefulness
in practical applications [6]–[9]. To our knowledge, none
of these tools are able to detect arbitrary redundancy (i.e.,
more than vacuity, semantic equivalence or per-requirement
equivalence) for formal temporal requirements.

In this paper, we present our scalable redundancy analysis
for formal requirements in HANFORPL. To enable this anal-
ysis, we introduce a determinism preserving totalization and
complement procedure for the timed automaton model of Phase
Event Automata. Further, we state the redundancy check for a
set of real-time requirements as a program analysis task.

A. Motivating example

In the following, we give a motivational example of two
requirements where one is subsumed by the other requirement.
The following set of requirements is given in the SPL-like [3]
requirements language HANFORPL [10], [11]:

r0: If y holds, then x ≥ 5 holds after at most 3 time units.
r1: If y holds, then x ≥ 5 holds after at most 5 time units.

One can clearly see that requirement r0 is a stronger
restriction on the state space of the system than requirement r1.
This is, the requirements are equivalent except for a weaker
time bound in r1. It will therefore never have any influence on
the state space of the system. Note that, although our example
only regards subsumption because of time bounds, our approach
is not limited to timing and detects any subsumption, e.g., due
to constraints on observables or triviality of a requirement.
Also, our approach is not limited to a pair of requirements, but
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Fig. 1: PEA Ar0 equivalent to requirement r0 (similarly for r1
with all time bounds showing five instead of three). Location
invariants are coloured purple, clock invariants orange, and
guards blue. Guards evaluating to true are omitted.

checks subsumption of any requirement in a set of requirements
against the remaining set.

The automatic detection of subsumption that we present
in this paper is based on an automaton representation of
the requirements. Each requirement in HANFORPL has an
equivalent, so-called Phase Event Automaton (PEA). A PEA is
a timed automaton over system variables (here a numeric x and
a Boolean y) and clocks to measure time (c in Fig. 1). A PEA
equivalent to a requirement accepts exactly the executions, i.e.,
sequences of valuations of system variables and their duration,
that are permitted by the requirement. An example PEA of r0
is shown in Fig. 1.

A run of a PEA is a sequence of configurations. Each
configuration is a tuple of a location in the PEA, a valuation
of system variables, a valuation of clocks to track time, and
the duration spent in the current configuration. For example,
a concrete (initial) configuration (q0, β0, γ0, t0) of Ar0 starts
in the initial location q0 (signified by the inbound arrow), has
a valuation of system variables β0 that fulfils the location
invariant x ≥ 5 ∨ ¬y, e.g., β0 = {x 7→ 1, y 7→ false}, has a
valuation of clocks γ0 that fulfils the clock invariant true, e.g.,
γ0 = {c 7→ 0}, and a duration t0 that does not extend any
clock to violate a clock invariant, e.g., t0 = 4.0. As the clock
invariant is true, t0 does not have an upper bound in q0.

To choose a successor configuration, we can either stay in q0
by the self-loop, by choosing a similar valuation for variables
and clocks, or we transition to location q1, for example by
choosing β1 = {x 7→ 1, y 7→ true}. In this example, we do
the latter. Although time advancing by 4, the clock valuation
is γ1 = {c 7→ 0} as the edge between q0 and q1 resets the
clock (c := 0). Location q1 has the clock invariant c ≤ 3, the
duration t1 has to be smaller than or equal to 3 as any higher
number causes the clock to exceed the clock invariant. We
choose t1 = 3.

Any further extension of the current run has to set the
variable x such that x ≥ 5. This is because all edges leaving q1
either are guarded by c < 3 guaranteeing that in any successor
configuration there remains sufficient (i.e., non-zero) time to
fulfil the requirement, which is already exceeded (as γ(c)1 +
t1 = 3), or requires x ≥ 5 as the only remaining edge is
guarded by x′ ≥ 5 (here x′ refers to the value of x in the
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Fig. 2: Complement Ac
r1 of the PEA equivalent to r1. Locations

with a single border are considered to be non-accepting.

successor configuration).
To check redundancy of a requirement within a set of

requirements, we have to prove that the requirements set with
the requirement in question being removed is still a model
for the requirement in question. Or, in other words, to show
that it is not possible to fulfil the negation of the requirement
in the remainder of the requirements set. To analyse a set of
requirements for redundancy of any requirement, we use the
classical approach to automata-based model checking [12]. In
this approach, the model is intersected with the negation of the
property that is to be checked. If the intersection is empty, there
exists no execution fulfilling the model and the property. If
not, any word in the intersection is a counter example proving
violation of the given property.

In contrast to the classical approach, we cannot use the
negation of a requirement, but have to calculate the complement
of the PEA as shown in Section III. An example of a
complement PEA of requirement r1 is shown in Fig. 2. While,
in a classical PEA, all locations can be seen as accepting
locations, an explicit acceptance condition has to be introduced
when complementing PEAs: a run is only accepted if it ends
in a location that is accepting (locations with a double border)
and is not accepted otherwise. Intuitively, the introduction of an
acceptance condition allows the complement PEA to wait until
something bad (i.e. a violation of the requirement equivalent
to the PEA) happens, accepting any continuation of this bad
prefix. For example, a run reaching location p1 or p2 (Fig. 2)
that will exceed the clock invariant in the next configuration
is not required to fulfil x ≥ 5. It is able to transition to p⊥,
violating the requirement, and is therefore accepted in the
complement automaton. As the accepting location only has
a self loop without guard, and both the location and clock
invariant are true, any continuation from here on will also be
accepted.

To demonstrate the redundancy check, we now observe the in-
tersection of the automata Ar0 and Ac

r1 (Fig. 1 and Fig. 2). We
continue using the run ((q0, p0), β0, γ0, t0), ((q1, p1), β1, γ1, t1)
from the initial example. In the intersection, each location is



a tuple of the respective automata. The valuations of clocks
and automata are checked against the location invariants, clock
invariants and guards of the respective locations and transitions
of each automaton. In the intersection, location (q1, p1) is
reachable. If requirement r1 is not redundant with r0, a run
has to exist, that reaches p⊥, as it would be a violation of r1
that is not already prohibited by r0. All transitions to p⊥ are
guarded by x′ < 5 ∧ c ≥ 5. Contrary, a continuation of the
above run in Ar0 is only possible if x ≥ 5 as long as c ≤ 3,
i.e., there does not exist any extension of the run, that enters
p⊥. As p⊥ is not reachable, there is no run in the intersection,
and therefore r1 does not have any influence on the described
behaviour of the requirements set {r1, r0}.

The above search for an accepted word in the intersection
can be reduced to a program analysis task where in a program,
encoding the intersected automata, reachability of a statement is
shown (Section IV). Scalability of this approach is demonstrated
in the benchmarks in Section V.

II. PRELIMINARIES

As shown in Fig. 1 and 2, locations and transitions of PEAs
are labelled with formulas. Before formally introducing PEAs,
we define some notational shortcuts that are useful in this
context:

By L(V ), we denote the language of Boolean expressions
with free variables in V .

A clock constraint δc is a formula of the form c < t or c ≤ t.
By L(C), we denote the language of Boolean expressions with
clock constraints on clocks in C. A clock invariant I is the
conjunction of clock constraints, i.e., I =

∧
δc. By I<(p) and

I≤(p), we denote the two functions that transform the clock
invariant I of a location p into its strict and non-strict version,
respectively. For example, for I(p) = c0 < t0 ∧ c1 ≤ t1, we
get I<(p) = c0 < t0 ∧ c1 < t1 and I≤(p) = c0 ≤ t0 ∧ c1 ≤ t1.
With a slight abuse of notation, we write δc ∈ I(p) to denote
that clock constraint δc appears as a conjunct in the clock
invariant of location p.

We write F = {s 7→ B(s) | s ∈ S} to denote a function that
maps each element in a set S to the Boolean predicate B(s).
By ¬F , we then abbreviate the function mapping each element
in S to the negation of B(s), i.e., ¬F = {s 7→ ¬B(s) | s ∈ S}

To denote the set of all outgoing transitions of location p,
we write E(p).

A Phase Event Automaton (PEA) is defined as a tuple
A = (P, V,C,E, s, I, E0) with the following components1:

• P being a finite set of locations,
• V being a finite set of typed variables,
• C being a finite set of clock variables,
• E ⊆ P ×L(V ∪C ∪ V ′)× 2C × P being a set of edges.

An edge is a tuple (p, g,X, p′), where p and p′ represent
source and target location, guard g is a Boolean expression
over primed variables in V and unprimed clock variables
in C, and X ⊆ C is a set of clocks to be reset,

1We slightly modify the definition of PEAs from [13] to use a set of initial
edges instead of a set of initial locations, as we do not assume initial guards
to be trivially true.

• s : P → L(V ) is a function labelling each location with a
Boolean expression over variables in V , called the location
invariant,

• I : P → L(C) is a function labelling each location with
a Boolean expression over clock constraints, called the
clock invariant,

• E0 being a set of initial edges of the form (g, p′) with
guard g and target location p′.

We call a location p0 ∈ P an initial location if there is at least
one initial edge e ∈ E0 such that p0 is the target location.

A configuration of a PEA is a tuple (p, β, γ, t) with location
p ∈ P , variable valuation β for all variables v ∈ V , clock
valuation γ for all clock variables c ∈ C, and a non-zero
duration t.

A run of a PEA is a finite sequence of configurations
σ = (p0, β0, γ0, t0), ..., (pn, βn, γn, tn). A run σ is accepting
if there is an initial edge (g, p0) ∈ E0 such that

• the initial guard g is satisfied by the initial valuation β′
0 for

primed variables and the initial clock valuation γ0(c) = 0,
i. e., β′

0, γ0 |= g,
and for each configuration

• the valuation satisfies the location invariant, i.e., βi |=
s(pi),

• the clock valuation increased by the duration satisfies the
location’s clock invariant, i. e., γi + ti |= I(pi),

and for every consecutive pair of configurations, there is an
edge (pi, g,X, pi+1) ∈ E such that

• the guard g is satisfied by the valuation βi for unprimed
variables, β′

i+1 for primed variables, and the valuation
γi + ti for clock variables, i. e., βi, β

′
i+1, γi + ti |= g,

• the later clock valuation resets all clocks in X and
increments all others by duration ti, i. e., γi+1(c) := 0 if
c ∈ X and γi+1(c) := γi(c) + ti otherwise.

A sequence of configurations is stutter-free if it cannot be
reduced by merging consecutive configurations. Two consec-
utive configurations (pi, βi, γi, ti) and (pi+1, βi+1, γi+1, ti+1)
can be merged to (pi, βi, γi, ti + ti+1) if their location and
variable valuations coincide, i.e., if pi = pi+1 and βi = βi+1.

The language L(A) of a PEA A is defined as the
set of all sequences of valuations and durations π =
(β0, t0), . . . , (βn, tn) corresponding to an accepting run
(p0, β0, γ0, t0), ..., (pn, βn, γn, tn) in A.

We call a PEA deterministic if and only if it satisfies the
following two conditions:

1) for each valuation β′, there is at most one initial edge
(g, p) ∈ E0 such that β′ |= g and β′ |= s′(p);

2) for each location p ∈ P and pair of valuations β′ and
γ, there is at most one edge (p, g,X, p′) ∈ E such that
β′, γ |= g and β′ |= s′(p′) and γ[X := 0] |= I<(p

′)

The parallel composition [14] of two PEAs A1||A2 is
defined as the tuple (P1×P2, V1∪V2, C1∪̇C2, E, s1∧s2, I1∧
I2, E0) with ((p1, p2), g1 ∧ g2, X1 ∪ X2, (p

′
1, p

′
2)) ∈ E and

(g1 ∧ g2, (p1, p2)) ∈ E0 for every pair of edges in E1 and
E2, and E0,1 and E0,2, respectively. Similarly, we build the
parallel composition for more than two PEAs.



We define our notion of redundancy in the style of [15]: A
requirement r ∈ R is redundant in a set of requirements R,
if ∧

(R \ r) |= r

i.e., the requirements set R \ r is a model for r without
containing r itself. In other words, r does not impose any
additional restriction on the models fulfilling than R\r already
does.

For the remainder of this paper, we assume formal require-
ments to be written in the formal requirements pattern language
HANFORPL. For brevity, we refer the reader to [3], [10] for
further detail. Also, we will refer to the requirements only
by their equivalent PEA i.e., the PEA accepting the same
valuations of system variables over the same durations as the
requirement.

III. REDUNDANCY CHECKING

In the following, a set of requirements is represented by a
set of PEAs R = {A1, ...,Am}. Thus, to restate the definition
of redundancy in relation to automata: A requirement Ai is
redundant in R \ {Ai}, if it can be omitted, i.e., the system
behaviour expressed by the PEAs in the set R is equivalent
to the system behaviour expressed by the PEAs in the set
R \ {Ai}. This means that there exist PEAs Aj with j ̸= i in
R such that ⋂

{Aj∈R|j ̸=i}

L(Aj) ⊆ L(Ai).

In order to check a set of requirements for redundancy, we
restate redundancy as a classical automata theoretical model
checking problem [12]:

L(Ai) ∩
⋂

{Aj∈R|j ̸=i}

L(Aj) = ∅.

If this intersection is empty, Ai is redundant since all executions
that would be prohibited by Ai are already prohibited by the
rest of the set R (cf. example in Section I-A). If this intersection
is non-empty, there are executions exclusively prohibited by
Ai. In that case, Ai is non-redundant.

In order to perform the above emptiness check, a complement
procedure for PEAs is required. The classical approach of
negation of the underlying logical formula and transformation
of the negated formula into an automaton is not feasible here, as
the underlying fragment of Duration Calculus [16] is not closed
under negation [14]. In the following, we present procedures to
totalize and then complement PEAs. Both procedures preserve
determinism of the input automaton.

A. Canonical Approach to PEA Totalization

The PEAs used to represent requirements reject any se-
quences of valuations and durations that would violate the
requirement, so that any run of the automaton is an accepting
run. For the complementation of a PEA, we need to capture both
the accepted and unaccepted behaviour. We hence introduce
the notion of a total PEA.

Definition 1 (Total PEA). A PEA A = (P, V,C,E, s, I, E0)
is called total if and only if it satisfies the following two
conditions:

1) for each valuation β′, there is exactly one initial edge
(g, p) ∈ E0 such that β′ |= g and β′ |= s′(p);

2) for each location p ∈ P and pair of valuations β′ and
γ, there is exactly one edge (p, g,X, p′) ∈ E such that
β′, γ |= g and β′ |= s′(p′) and γ[X := 0] |= I<(p

′).

In other words, a PEA A is total if for every sequence
of valuations and durations (β0, t0), . . . , (βn, tn) there ex-
ists a unique, minimal sequence of configurations σ =
(p0, β0, γ0, t0), ..., (pn, βn, γn, tn) such that σ is a run of A.
Note that, by definition, a total PEA is also deterministic.

To build a total PEA, we introduce a sink location p⊥
with the property that incoming transitions are only enabled,
if the requirement is violated. That is, from each location
p ̸= p⊥, there is a transition to the sink location of the form
(p, g⊥, ∅, p⊥). As I(p⊥) = true, there is no need for any further
clock reset, i.e., X = ∅. The guard g⊥ for a transition from p
to p⊥ is defined as:

g⊥(p) :=

¬
∨

(p,g,X,p′)∈E

g ∧ s′(p′) ∧
∧

{δc|δc∈I<(p) or
δc∈I<(p′)∧c̸∈X}

δc

 .

This guard ensures that p⊥ is only reachable when none of
the original outgoing edges can be taken.

The set of all non-initial sink transitions is then given as⋃
p∈P (p, g⊥(p), ∅, p⊥). Similarly, we define the guard gin⊥ for

the initial transition to the sink location as

gin⊥ := ¬
∨

(g,p)∈E0

(g ∧ s′(p)) .

This guard ensures that the sink location can only be entered
initially, if none of the original initial locations can be entered.

As an example, consider again PEA Ar1 from our running
example. The respective total PEA is shown in Fig. 3, where
the parts coloured in black correspond to the original PEA, and
the extensions made for the totalization is coloured in red. It
contains the sink location p⊥ where both the location and clock
invariant are set to true, such that any continuation of a run
is accepted. The sink location p⊥ cannot be entered initially
since its initial guard gin⊥ = ¬(x′ ≥ 5 ∨ ¬y′ ∨ (y′ ∧ x′ < 5))
evaluates to false. Every location has a transition to the sink
location labelled by the corresponding guard. For p0, we have

g⊥(p0) = ¬((true ∧ (x′ ≥ 5 ∨ ¬y′) ∧ true)∨
(true ∧ y′ ∧ x′ < 5 ∧ true)) = false.

The guards g⊥(p1) and g⊥(p2) are computed analogously.
In the graphical representation of a PEA, we usually omit
transitions whose guard evaluates to false.

By definition, any location of a PEA is accepting. However,
if we simply assume that the sink location is not accepting,
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Fig. 3: Totalized version of PEA Ar1 representing r1.

then any run reaching the sink location is a non-accepting run.
Introduction of a simple sink location is possible as require-
ments expressed by PEAs may only be safety requirements,
i.e., requirements that prevent anything bad from happening
(in contrast to liveness which is only fulfilled by a good thing
eventually happening) [12]. Because of the safety limitation,
any extension of a run reaching the sink location is still a
non-accepting run, thus any further extension has to stay in
the sink location. It is hence not possible to leave the sink
location once entered; the only outgoing edge is a self-loop
whose guard evaluates to true. This edge is required for the
parallel composition, i.e., to allow a product automaton to take
a step although there exist component automata remaining in
the same location. Further, as the prefix is already violating
the property, the automaton may now just accept any valuation,
therefore, both the state and clock invariant of the sink location
are true.

Under the given assumption that the sink location is not
accepting, the language of the totalized PEA is equivalent
to the language of the original one, while not rejecting any
sequences of valuations and duration.

B. PEA Totalization

The totalization as described in the previous section is quite
canonical. However, for locations with strict clock invariants,
some runs are accepted erroneously. As an example, consider
the requirement
r2: Once y holds, it holds for less than 5 time units.

represented by the PEA in Fig. 4a. The PEA is called strict,
since location p1 contains the strict clock constraint c < 5 in
its clock invariant. This strict clock constraint ensures that the
duration of any interval in which y holds is strictly smaller
than 5 time units. The strict clock invariant c < 5 enforces
that location p1 is left before c = 5 holds. The totalized PEA,
following the procedure from Section III-A, is shown in Fig. 4b.
Here, the sink location p⊥ is never reachable. The guard of
its sink transition, c ≥ 5, is never satisfied as the strict clock
invariant c < 5 enforces that location p1 is left before c = 5
holds.

We prevent non-accepting runs of strict PEAs to get stuck
by replacing the strict clock constraint (after performing the
hitherto described totalization) by its non-strict version (Fig. 4c).
The sink location is now reachable; any run where y holds for
more than 5 time units is captured within the sink location.
However, even when assuming that the sink location is non-
accepting, the language of the modified PEA is a superset
of the language of the original one. Any run in which the
observable y holds for exactly 5 time units, e. g., the run
(p1, {y 7→ true}, {c 7→ 0}, 5), is erroneously accepted by the
total PEA with the modified clock constraint.

We prevent this by introducing the notion of a conditional
acceptance criterion for locations with strict clock invariants
and combine it with the previous modification (Fig. 4d). The
respective location is only accepting as long as the strict clock
invariant holds and then gets non-accepting once the clock
equals the exact clock limit, allowing to reach the sink location
afterwards. In Fig. 4d, the conditional acceptance criterion for
location p1 is indicated by splitting the clock invariant into
the strict clock invariant (c < 5) for which the location is
considered to be accepting, and the equality c = 5 for which
the location is considered to be non-accepting.

In a last step, we have to explicitly conjoin c < 5 to the
guard of all outgoing transitions of p1 that carry no constraint
for the clock of the modified constraint (Fig. 4e). Before the
modification, this constraint was implicitly given by the clock
invariant, since the location had to be left before the limit of
the clock constraint was reached.

With this extended totalization procedure and under the
assumption that the sink location is non-accepting, the language
of the totalized PEA At

r2 is equivalent to the language of the
original PEA Ar2 .

Since we need to distinguish accepting and non-accepting
locations, possibly in dependence of the clocks, we introduce
the notion of conditional PEAs (CPEAs).

Definition 2 (Conditional PEA). A conditional PEA A =
(P, V,C,E, s, I, E0, F ) is a PEA (P, V,C,E, s, I, E0) where
F : P → L(C) is a function labelling each location with a
Boolean expression over clock constraints over C.

We call the clock constraint introduced by F the acceptance
condition. The concept of totality for PEAs (Def. 1) can also
be applied to CPEAs. We refine the definition of an accepting
run for PEAs (cf. Section II) by adding the constraint that the
final location in a run must be accepting at the end of the
current configuration.

Definition 3 (Accepting CPEA run). Let A =
(P, V,C,E, s, I, E0, F ) be a deterministic CPEA and
let σ = (p0, β0, γ0, t0), ..., (pn, βn, γn, tn) be a stutter free
run of A. Run σ is accepting, if and only if it is an accepting
run of the PEA (P, V,C,E, s, I, E0) and if

γn + tn |= F (pn).

Note, that with F (p) = true for all p ∈ P , the language
of the CPEA A = (P, V,C,E, s, I, E0, F ) is equivalent to the
language of the PEA A′ = (P, V,C,E, s, I, E0).
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(a) Strict PEA Ar2 representing the requirement "Once y holds, it
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acceptance condition, and modified outgoing transition.

Fig. 4: Totalization steps of a strict PEA.

In the following, we show how CPEAs can be used to
construct totalized PEAs such that the language of the totalized
PEA and the language of its original version are equivalent. Our
totalization procedure involves the following steps to transform
a deterministic PEA into a totalized CPEA:

1) Introduction of a sink location.
2) Computation of initial sink transition gin⊥ .
3) Computation of sink transition g⊥(p) for p ∈ P .
4) Replacement of strict clock constraints by their non-strict

version.
5) Modification of outgoing transitions for locations with

modified clock constraint.
6) Computation of acceptance conditions.

The resulting totalized CPEA is formally defined as:

Definition 4 (Totalized PEA). Given a deterministic PEA

A = (P, V,C,E, s, I, E0), its totalized CPEA is given as
At = (P t, V, C,Et, st, It, Et

0, F ) where
• P t := P ∪ {p⊥},

• Et := (
⋃

p∈P Et(p)) ∪ E⊥,

• st := s ∪̇ {p⊥ 7→ true},

• It := {p 7→ I≤(p) | p ∈ P} ∪̇ {p⊥ 7→ true},

• Et
0 := E0 ∪ {(gin⊥ , p⊥)}, and

• F := {p 7→
∧

(ci<ti)∈I(p)

ci < ti | p ∈ P} ∪̇ {p⊥ 7→ false}

where I≤(p) is the non-strict version of the clock invariant
I(p) and where the transitions of the CPEA are defined as

Et(p) :=


E(p) if I(p) = I≤(p),

{(p, gt, X, p′) | (p, g,X, p′) ∈ E otherwise,
∧ gt = g ∧

∧
(ci<ti)∈I(p)

ci < ti}

and guards on the sink transitions are defined as

g⊥(p) :=

¬
∨

(p,g,X,p′)∈E

g ∧ s′(p′) ∧
∧

{δc|δc∈I<(p) or
δc∈I<(p′)∧c ̸∈X}

δc

 .

and the transitions to the sink location are defined as

E⊥ :=
⋃
p∈P

(p, g⊥(p), ∅, p⊥) ∪ {(p⊥, true, ∅, p⊥)}

and with initial guards of the sink location defined as

gin⊥ := ¬
∨

(g,p)∈E0

(g ∧ s′(p)) .

For a totalized CPEA, we fix the acceptance condition F
such that it maps the original locations in P with strict clock
constraints to true, those with non-strict constraints to the
conjunction of all modified clock constraints, and the sink
location p⊥ to false .

If a location’s clock invariant contains a combination of
strict and non-strict clock constraints, the clock invariant of
the accepting part will be the original clock invariant, while
the clock invariant of the non-accepting part is the disjunction∨

ci = ti of all non-strict clock constraints ci < ti in the
original clock invariant. For example, for location p with clock
invariant I(p) = c1 < 3 ∧ c2 ≤ 4 ∧ c3 < 5, the accepting
part considers I<(p) while the non-accepting part considers
c1 = 3 ∨ c3 = 5.

Theorem 1. Given a deterministic PEA A =
(P, V,C,E, s, I, E0), the totalized PEA At (given in Def. 4)
is total, and language preserving (i.e., L(At) = L(A)).

Proof. Let A = (P, V,C,E, s, I, E0, F ) be a deterministic
PEA and At = (P t, V, C,Et, st, It, Et

0, F ) its totalized PEA.
We show totality of At by showing that there is exactly one



initial transition enabled for every valuation β′ and that in
each location p ∈ P t there is exactly one transition enabled
for every pair of valuations β′ and γ.

As A is deterministic, for each location p ∈ P (and initially),
there is at most one transition enabled for every pair of
valuations β′ and γ. By definition of gin⊥ , the initial sink
transition is enabled exactly if none of the original initial
transitions is enabled, i.e., gin⊥ ⇔ ¬

∨
(g,p)∈E0

(g ∧ s′(p)).
For outgoing transitions of location p, we make a case

distinction on the type of p. For p = p⊥, the only outgoing
transition (p⊥, true, ∅, p⊥) is enabled for all β′, γ.

For p ∈ P : By definition of g⊥(p), the guard of the sink
transition (p, g⊥(p), ∅, p⊥) is satisfied exactly if none of the
original outgoing transitions of p is enabled, i.e.,

g⊥(p) ⇔

¬
∨

(p,g,X,p′)∈E

g ∧ s′(p′) ∧
∧

{δc|δc∈I<(p) or
δc∈I<(p′)∧c̸∈X}

δc

 .

For non-strict locations, this coincides with the sink transition
being enabled. However, for a strict location, this is not the
case, as the strict clock invariant enforces that the location is
left before the sink transition can be taken. By changing the
strict clock invariant to its non-strict version, the sink transition
can be taken. Implicit strict constraints are explicitly conjoined
to the guards of all outgoing transitions that do not yet imply
these strict constraints. Thus, after the modifications, the sink
transition is enabled, exactly if none of the original outgoing
transitions of p is enabled. There is hence exactly one (initial)
transition enabled for all β′ and γ. Therefore, At is total.

We now show that the totalization is language preserving:
Let σ = (p0, β0, γ0, t0), ..., (pn, βn, γn, tn) be a stutter-free
accepting run in A. Then, γi+ti |= I(pi) for all i ∈ {0, . . . , n},
in particular, γn + tn |= I(pn). Since At is total, σ must be a
run in At. To show that σ is accepting in At, we make a case
distinction on the strictness of location pn. If pn is a non-strict
location, then F (p) = true, hence γn+tn |= F (pn). Thus σ is
accepting in At. Otherwise, if pn is a strict location, F (pn) =∧

(ci<ti)∈I(p) ci < ti. By definition of the acceptance condition,
I(p) → F (p) for all p ̸= p⊥. Thus, γn + tn |= F (pn), and
σ is accepting in At. Therefore, L(A) ⊆ L(At). For the
second inclusion, let σ = (p0, β0, γ0, t0), ..., (pn, βn, γn, tn)
be a stutter-free accepting run in At. Then σ is a stutter-free
accepting run in A, and hence L(At) ⊆ L(A). Therefore,
L(At) = L(A).

Note, that the CPEA resulting from the described totalization
procedure is still deterministic (as any total PEA is, by
definition, deterministic).

C. PEA Complement

A total PEA as constructed by the procedure given in
Section III-A contains both accepted and unaccepted behaviour.
To complement a PEA, we hence only need to switch accepting

p0¬y
true

p1
y

c<5 c=5

p⊥
true
true

c < 5
c := 0

c < 5

c ≥ 5

Fig. 5: Complement Ac
r2 of the PEA equivalent to r2.

and non-accepting locations. Fig. 5 shows the complement Ac
r2

of the PEA equivalent to r2.

Theorem 2 (CPEA complement). Given a deterministic,
totalized PEA A = (P, V,C,E, s, I, E0, F ), its complement
automaton

Ac = (P, V,C,E, s, I, E0,¬F )

represents the complement language of A, i.e., L(Ac) = L(A).

Proof. Let Ac = (P, V,C,E, s, I, E0,¬F ) be the complement
automaton of the totalized PEA A = (P, V,C,E, s, I, E0, F ).

By definition, the totalized PEA A does not reject any
sequence of valuations and durations, such that all these
sequences correspond to a run in A. Since the totalization
procedure preserves determinism, each sequence of valuations
and durations corresponds to a unique stutter-free run.

A stutter-free run σ = (p0, β0, γ0, t0), ..., (pn, βn, γn, tn) is
accepting in A if γn + tn |= F (pn), and non-accepting if
γn + tn ̸|= F (pn). Then, σ is accepting in the complement
automaton Ac if γn + tn |= ¬F (pn), i.e., if γn + tn ̸|= F (pn),
and is non–accepting if γn + tn ̸|= ¬F (pn), i.e., γn + tn |=
F (pn).

Thus, exactly the runs not-accepting in A are accepting in
Ac and vice versa. Therefore, L(Ac) = L(A).

IV. IMPLEMENTATION

In this section, we give an overview of the implementation
of our redundancy check.

Our approach is implemented in the program analysis
framework ULTIMATE [17], developed at the University of
Freiburg as part of the requirements analysis tool ULTIMATE
REQCHECK. The implementation builds on an existing tool
chain used for the analysis of consistency, vacuity [18] and
rt-consistency [19]. The tool chain comprises several modules:
A parser for the pattern language HANFORPL emitting PEAs.
A transformer (Pea2Boogie) translating the PEAs into a
program in the verification language Boogie [20]. The program
is equivalent to the parallel product (i.e. intersection of
languages) of the PEAs with added annotations relating to
each analysis [13]. Reachability analysis of these annotations
is performed by ULTIMATE AUTOMIZER [21]. The redundancy
check is integrated into this requirement analysis tool chain as
a fourth analysis option.



l0

lloop

State Invariants

lc

l 0

l 1

l 2

Edges

assume (pc0 = 0 || pc0 = 1) && ...

c0 := 0.0; c1 := 0.0,...

havoc delta

assume delta > 0.0

c0 := c0 + delta; ...

assume Rdc(Ar0 )

assume Rdc(Ar1 )

assume Rdc(Ar2 )

havoc y’, x’

y:=y’

x:=x’

Fig. 6: Overall structure of the program P(A) encoding the
parallel composition A = At

r0 ||A
t
r1 ||A

t
r2

A. Intersection as a Boogie program

For a detailed explanation on the encoding, we refer the
reader to [10], [13]. A schematic representation of the boogie
encoding is shown in Fig. 6: States refer to relevant locations in
the program, edges are labelled with the statement sequences
between the locations and yellow boxes are sub programs
abstracted for understandability. Error locations are marked by
a double border and can be ignored for now.

At the beginning (l0 to lloop), the encoding initialises all
variables: The clocks of all PEAs are set to zero, as no time has
passed. The integer variables representing the current location
of each PEA (e.g. pcr1) are set to an initial location. Note,
that at this stage, all state variables of the PEAs (e.g. x) are
non-deterministically assigned due to the boogie semantics, i.e.
they have any possible value at once.

The encoding continues inside a loop starting in lloop with
each iteration referring to one configuration accepted by the
current location of each PEA. The loop begins with choosing
a positive non-zero duration (delta) for the configuration
non-deterministically. This duration is then used to advance
the clock of each PEA by the same amount.

In the following (sub program State Invariants), the program
checks for each current location of each PEA, if the state
invariant and clock invariant are satisfied. Because of the

nondeterministic assignment, any run of the program reaching
program location lc is an initial configuration for the intersec-
tion of PEAs.

As transitions in a PEA may refer to the assignment of state
variables in the successor configuration, primed copies of the
state variables (e.g. x’) are non-deterministically assigned a
suitable value.

In the following (sub program Edges), the program checks
if transitions can be taken, i.e., if the source location is the
current location and if the guard is fulfilled. According to the
transitions, variables representing the current locations of the
PEAs are changed accordingly.

The loop ends by assigning the future values for all state
variables to the variables encoding the current state variables.

The loop then continues as for the initial configuration, with
any execution of the program reaching location lc for the n-th
time, encoding a run of length n of the PEA intersection.

B. Encoding Redundancy

To explain the encoding of the PEA intersection, we ignored
the double bordered locations. When input to a program
analysis tool, the tool will try to find a run of the program,
that ends in these so-called error locations. For example, the
error locations in Fig. 6 are guarded by assumptions over some
logical formulas. An error location can be reached exactly if
there is a program execution that reaches lc and fulfils the
logical formula assumed at the edge.

The program P(R) encoded for the redundancy check of
the requirements r ∈ R is the parallel product of each totalized
automaton

P(R) = At
r1 ||...||A

t
rn .

As totalized CPEAs do not reject on any input, the encoding
thus far does accept arbitrary runs. Recalling the definition
of redundancy detection by model checking (Section III), a
requirement is redundant if the intersection of its complement
and all other requirements is empty. This is encoded in one
annotation per requirement in a redundancy condition.

Definition 5 (Redundancy Condition). Let P(R) = At
1||...||At

n

be an encoding of totalized CPEAs with components A =
(P, V,C,E, s, I, E0, F ) and let pci be the program variable
representing the automaton location. The redundancy condition
for the k-th automaton is defined as

Rdc(Ak) :=

 ∨
pj∈Pk

pcj = pj ∧ ¬F (pj)

∧

∧
Pi∈{P1,...,Pn}\{Pk}

 ∨
pj∈Pi

pcj = pj ∧ F (pj)

 .

As Theorem 2 shows, the complement of a CPEA is only
dependent on the acceptance condition. Therefore, in the
encoding, any automaton can serve as both, its totalized and its
complement. In the redundancy condition, the first disjunction
requires the k-th automaton to be the complement automaton by



negation of the acceptance condition, while any other automaton
accepts normally.

To encode a redundancy analysis for each requirement, we
add an error location and edge with the according redundancy
condition to the monitor location lc.

It is worth noticing that our implementation requires each
automaton to be included only once in the encoding as a
totalized automaton. The semantics of each automaton can
simply be altered by changing the accepting locations in the
respective assertion (see Theorem 2). This allows us to encode
all redundancy analyses for a whole requirements set without
much overhead (apart from the unused sink locations).

Theorem 3. In a set of requirements R, a requirement r ∈ R is
not redundant, if in the encoding P(R) location l r is reachable.

The proof follows directly from model checking using
automata (Section III-A) and the complement construction
(Theorem 2). Existence of an execution of P(R) in which the
complement of ri as well as the remaining requirements accept
the run is a witness for the non-emptiness of the intersection.

To clarify our approach, we now give an example of the
encoding and redundancy condition for the running exam-
ple. Let {At

r0 ,A
t
r1 ,A

t
r2} be the set of totalized CPEAs for

the example requirements. In Fig. 6, the overall structure
of the program P(A) encoding the parallel composition
A = At

r0 ||A
t
r1 ||A

t
r2 is shown. As stated previously, it is not

necessary to explicitly construct the complement PEAs or to
include them in the parallel composition, since we can express
the intersection by just negating the acceptance condition of
any At

i. The assume statement on the transition to location
l i expresses the redundancy condition for requirement ri. For
that, we assume that each location p0, . . . , pn of a PEA At is
represented by the integers 0, . . . , n and the sink location p⊥
is represented by n + 1. We take a closer look at Rdc(Ar0)
on the edge to error location l 0 .

Rdc(Ar0) = (pcr0 = 3)∧ (1)
(pcr1 = 0 ∨ pcr1 = 1 ∨ pcr1 = 2)∧ (2)
(pcr2 = 0 ∨ pcr2 = 1 ∧ c2 < 5) (3)

Line (1) ensures that At
r0 is in location 3, i.e., the sink location

p⊥. In At
r0 , p⊥ is the only non-accepting location. For p0, p1,

and p2, ¬F (pi) evaluates to false and ¬F (p⊥) = true, so the
disjunction over the locations of At

r0 simplifies to (pcr0 = 3).
Line (2) ensures that At

r1 is in an accepting location. Since At
r1

is strict, F (p) = true holds for every location p in P \ {p⊥},
thus At

r1 is accepting if (pcr1 = 0∨pcr1 = 1∨pcr1 = 2). We
can express the same with (pcr1 ̸= 3), since the sink is the
only non-accepting location in At

r1 . Likewise, line (3) ensures
that At

r2 is in an accepting location. In At
r2 we have location

p0 with F (p0) = true and p1 with F (p1) = c < 5. Therefore,
At

r2 accepts if (pcr2 = 0∨ pcr2 = 1∧ c < 5) holds. Similarly,

TABLE I: Redundancy analysis results of the replication
package. Columns show an identifier (ID), requirements count
(R), real time requirements count (RT), number of variables
(V), non-redundant (NO), redundant (Yes), time out (TO) and
total analysis time (T).

Requirements Redundancy

ID R RT V No Yes TO T (min)

dev-01 26 21 27 26 0 0 0.7
dev-02 50 47 53 49 1 0 5.8
dev-03 52 11 34 51 0 1 15.9
dev-04 58 53 53 57 1 0 7.2
dev-05 68 64 89 64 2 2 39.7

abz 83 52 52 78 5 0 23.3
dev-06 100 95 101 99 0 1 21.6
dev-07 107 80 172 107 0 0 3.5
dev-08 263 234 239 235 7 21 375.5
dev-09 407 358 326 396 4 7 464.1
dev-10 699 543 1003 684 7 8 819.2

the redundancy conditions for At
r1 and At

r2 are computed as

Rdc(Ar1) = (pcr1 = 3) ∧ (pcr0 ̸= 3)∧
(pcr2 = 0 ∨ pcr2 = 1 ∧ c2 < 5) and

Rdc(Ar2) = (pcr2 = 1 ∧ c2 ≥ 5 ∨ pcr2 = 2)∧
(pcr0 ̸= 3) ∧ (pcr1 ̸= 3).

The error locations l i are reachable if the assume statements
are satisfied. Error location l 0 is reachable with the run
corresponding to the sequence of valuations and durations

π0 = ({y 7→ false, x 7→ 3}, 3),
({y 7→ true, x 7→ 3}, 4),
({y 7→ true, x 7→ 6}, 10).

It represents system behaviour that is prohibited by r0, since
x = 3 holds for 4 time units after y changes its value to true,
whereas r0 enforces that x ≥ 5 after at most 3 time units. The
sequence π0 is a word in L(Ar1)∩L(Ar2), but not in L(Ar0).

Similarly, error location l 2 is reachable with the run
corresponding to the sequence

π2 = ({y 7→ false, x 7→ 3}, 3),
({y 7→ true, x 7→ 6}, 6).

This sequence represents prohibited system behaviour with
respect to r2, but permissible system behaviour with respect
to r0 and r1. This means that requirements r0 and r2 are
non-redundant. Location l 1 is not reachable for any run, since
there is no sequence of valuations that is a word in L(Ar0) ∩
L(Ar2) but not in L(Ar1). This means R\ {r1} prohibits the
same unwanted behaviour that r1 prohibits. Therefore, r1 is
redundant and can be omitted from the set of requirements R
without changing the specified system behaviour.

V. BENCHMARKS

We analysed several sets of requirements for redundancies
to evaluate our implementation of the redundancy check.



TABLE II: Results of the analysis of industrial requirements
sets. Columns show an identifier (ID), requirements count
(R), real time requirements count (RT), non-redundant (NO),
redundant (Yes), time out (TO) and total analysis time (T).
Some Bechmarks reached the global timeout (24 h), makred
as TO followed by the number of remaining checks. Reruns
with a lower per-check time limit are marked with *.

Requirements Redundancy

ID R RT V No Yes TO T (min)

dev-a 45 37 68 44 1 0 3.9
dev-b 61 53 67 59 2 0 6.6
dev-c 62 30 76 62 0 0 2.8
dev-d 105 103 152 105 0 0 28.4
dev-e 115 112 156 115 0 0 35.6
dev-f 146 10 221 112 34 0 32.9
dev-g 185 151 180 256 4 2 45.2
dev-h 254 152 211 238 11 5 256.8
dev-i 368 328 383 78 37 68 TO (185)
dev-j 703 620 985 557 4 59 TO (63)
dev-k 763 394 561 437 55 29 TO (242)

dev-i* 368 328 383 141 35 192 1318.7
dev-j* 703 620 985 609 5 89 1034.7
dev-k* 763 394 561 612 34 117 1296.0

Requirements stem from industry co-operations, mostly in
the the automotive domain. Formalisations were obtained from
the industrial requirements as part of a formal analysis effort
leading to, or following, the process described in [22]. The
benchmarks were selected to cover requirements sets from
different projects, as well as the whole range of sizes of
requirements sets that were available to us. More precisely,
requirements sets dev-01 to dev-10 (Table I) were from
previous, publicly available benchmarks using requirements of
BOSCH [13]. The remaining set (abz in Table I) is a previously
formalised [10] set of pseudo realistic automotive requirements
published by Houdek et al. [23] 2. We also analysed more
recent sets of industrial requirements (Table II), also from the
automotive domain (not publicly available). We included these
requirements sets as they more accurately reflect the current
state of requirements pattern in HANFORPL and the experience
using the available patterns and scopes.

Benchmarks were executed using Linux-5.15 with Java
OpenJDK 11.0.18 64bit on an AMD Ryzen 5 5600 6-Core CPU
with 3.5 GHz and 48 GB RAM. Benchmarks were performed
using the benchmarking tool benchexec 3.21. ULTIMATE
REQCHECK was run in version 0.2.3-4f54f8f5. Each analysis
was assigned 30 GB of RAM, four cores and a 15min timeout
per redundancy check as well as one day (24 h) overall timeout.

Tables I and II show the benchmark results. Each table has
an identifier for the requirements set (ID), and the number
of requirements (R). Additionally, the subset of real-time
requirements (RT) and the number of variables used in the
requirements (V) is given, as they might impact the analysis
time. Result columns show the number of redundancy analysis

2A replication package for benchmarks in Table I can be found at
doi.org/10.5281/zenodo.10999174

runs separated into redundancies found (Yes), proofs that a
requirement is not redundant (No), and timeouts of the model
checker (TO), as well as the total analysis time (T).

For our benchmarks, we assumed the analysis to be em-
bedded in some process governing the formalisation and
subsequent analysis of the requirements as described by
Dietsch et al. [22]. As this, the analysis should be able to
run within a nightly analysis cycle, and provide at least partial
results to be acted upon. Based on these assumptions, our
redundancy analysis performed well. All requirements sets
could be analysed successfully or at least with partial results,
leading to the detection of redundancies (and a high number
of non-redundancy proofs). While no analysis exceeded the
memory limitation, a number of timeouts could be observed.

Especially the analysis of set dev-i (Table II) was stopped
after analysing approx. half of the requirements set due to
the 24 h timeout. A closer inspection of the requirements set
showed, that it is close to an adversarial example with global
clocks forcing the analysis to deal with uncommonly long runs.
Additionally, the majority of requirements is using complex
patterns and scopes, resulting in complex behaviour for each
individual requirement. Nonetheless, even in this set, a number
of redundancies was found.

The ability to produce partial results even for a complex
input is a strength of our approach (as already shown in [13]).
Embedded in an analyse and fix cycle, the partial results
enable improvements in the requirements. In this context,
timeouts may vanish in later iterations due to changes in other
requirements, or higher analysis times may be allotted to further
increase requirements quality. To demonstrate the viability of
this approach, we re-run benchmarks dev-i to dev-k with a
per-check timeout of five minutes. This timeout seems to be a
practical default setting in the beginning of a project (see sets
marked with * in Table II).

Note, that we assume that all requirements are already
given as formal requirements in HANFORPL. Therefore, any
redundancy found is a real redundancy in the requirements
and any requirement proven to be non-redundant is necessary
for system behaviour (see Theorem 3). For a discussion of the
relation of defects found in a formal requirements analysis and
natural language requirements as a basis for this analysis, we
refer to the process discussion in Dietsch et al. [22].

VI. RELATED WORK

Redundancy in requirements is listed as a threat to the
modifiability by IEEE-830 [1] as well as Davis et al. [2]. Re-
dundancies are intentionally not listed as defects, but emphasize
the necessity for careful management of requirements that are
stated multiple times.

The notion of redundancy can also be found in the model
checking community. Kupferman [24] argues, that a successful
run of a model checker, i.e., the model checker proved that a
model does not violate the specification, can give false security.
The successful verification of the model may be due to an
ineffective specification rather than due to the model adhering
to the specification. More precisely, by a specification that

https://doi.org/10.5281/zenodo.10999174


itself is vacuous [25] or may look thorough but is really just
bloated by repetition.

In the requirements community, there is some work on the
detection of redundancies in natural language requirements:
Jürgens et al. [26] applied duplication detection methods taken
from source code analysis. Their experimentation on real world
documents lead them to conclude that one should assume
around ten percent of duplication if no precautions to eliminate
redundancy were taken. This number is much higher than we
could replicate in our benchmarks, but this may be due to
requirements in our analysis being taken from a safety domain,
as well as obvious redundancies already being eliminated during
the formalisation process [22]. In contrast to our approach, the
approach of Jürgens et al. is purely syntactical, i.e., unable to
detect requirements that are less restrictive than a combination
of other requirements.

There exists a number of tools for the analysis of formal
requirements, e.g. [6]–[9]. None of these have the capability
to detect arbitrary redundancies. While they are able to detect
different properties, such as consistency, reliability and more,
none of these tools have the ability to detect redundancies in
the requirements set.

Dokhanchi et al. [27] preset checks to assist the elicitation
of specifications in Metric Interval Temporal Logic (MITL),
including the detection of redundancy but only within one
formula, i.e., not detecting redundancy within a whole specifi-
cation.

The work of Post et al. [18] handles vacuity in real time
requirements, and is the basis for the current implementation of
our vacuity analysis [13]. The detection of vacuity in addition
to redundancy is useful although a vacuous requirement will
also always be detected as redundant. As a vacuity is almost
always a defect, redundancies caused by vacuity can directly
be reported as defects, whereas the root cause of a redundancy
has to be analysed carefully.

An approach to model checking PEAs was presented by
Meyer et al. [28]. They use so-called Test Automata that share
the concept of a sink location with CPAs. However, Test
Automata are only defined for non-strict clock constraints.
Also, their model checking approach is based on the direct
translation of special Duration Calculus formulas into Test
Automata.

VII. CONCLUSION

In this work, we presented a scalable approach to the
redundancy analysis of real time requirements. This analysis is
based on an automata theoretical approach that is enabled by
the totalization and complement of an extension of the PEA
timed automaton model that we introduce. We implemented the
approach as a program analysis task solvable by reachability
analysis. The benchmarks on industrial requirements sets
show, that our approach is fit for practical use. The analysis
successfully uncovered redundancies on large real world
requirements sets from industry projects.

In future research we will apply the redundancy analysis to
industrial projects to evaluate the reasons behind, as well as

the impact of, redundant requirements in large requirements
specifications.

Investigating redundancies reported by our analysis is still
time consuming as the analysis currently only indicates the
existence but not the cause. In the future, we will work on the
automatic extraction of reasons for the redundancies found.
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