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Abstract. The paper presents a combination of interactive and auto-
matic tools in the area of software verification. We have integrated a
newly developed software model checker into an interactive verification
environment for imperative programming languages. Although the prob-
lems in software verification are mostly too hard for full automation, we
could increase the level of automated assistance by discharging less in-
teresting side conditions. That allows the verification engineer to focus
on the abstract algorithm, safely assuming unbounded arithmetic and
unlimited buffers.

1 Introduction

Our work is part of the Verisoft project.1 This large, coordinated project aims
at the pervasive formal verification of entire computer systems consisting of
hardware, compiler, operating system, communication system, and applications.
To the best of our knowledge, the last attempt to deal with such an ambitious
topic has been the famous CLI stack [5] back in 1989—even though the principal
researcher of the famous CLI stack project, J. S. Moore [8], declared that the
formal verification of a system ‘from transistor to software level’ is a grand-
challenge problem. However, basic research in the area of formal verification has
greatly evolved during the last 15 years. A major goal of the Verisoft project is
to solve that challenge by integrating and improving the existing technology.

Like in the CLI-stack project, we have several layers of abstraction. However,
for the vast majority of our software, we employ a single verification environment.
It was implemented on top of the general-purpose theorem prover Isabelle as an
instance of the well-known Hoare calculus. Within this environment, we plan to
verify the different software layers, starting from considerable parts of the micro
kernel, via the operating system, up to the application level.

An interesting observation is that, by far, most of the problems of today’s soft-
ware are not caused by a malicious algorithm but by overlooked corner cases in
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the specific implementation: Bounded arithmetic and limited buffers lead to un-
intended over- or underflows. Hence we conclude that programmers—and quite
likely verification engineers—focus primarily on the abstract algorithm when
implementing, respectively verifying, software and tend to neglect the machine
dependent limitations.

Of course, the verification engineer has to address these issues at some point.
Our experience in the Verisoft project is, however, that the corner cases are
usually perceived as distraction from the “real”—the functional—verification
goal and addressed at last.

Furthermore, a maximum degree of automation is crucial for such an ambi-
tious project as Verisoft. However, our verification environment yet provided an
interactive-only user interface. Hence we have integrated a model checker for
the automatic pre-verification of side conditions as they arise due to the finite-
ness of the underlying machine. This integration allows verification engineers to
concentrate on the abstract problem with virtually unbounded arithmetic and
unlimited buffers.

The rest of the paper is organized as follows: Section 2 presents related work
in this area. Section 3 introduces Isabelle and the Hoare Logic module. Fur-
thermore, it gives an idea of the checked side conditions and illustrates our
verification environment by a small example. In Section 4, we present our newly
developed software model checker for reachability analysis in C programs. Sec-
tion 5 reports on the integration of this model checker into our verification en-
vironment. We describe certain aspects of the novel swmc-guards tactic, which
implements the user interface to our model checker. Moreover, we discuss some
enhancements of the model checker to simultaneously test the reachability of
multiple locations. In Section 6, we give an estimation of the speed-up to expect
from the use of our tool. Finally, Section 7 concludes the paper.

2 Related Work

Several works for combining verification techniques have been proposed in the
literature, including different ways of integrating automatic approaches into in-
teractive theorem proving. Pisini et al [4] integrated the MDG tool, which sup-
ports model checking and equivalence checking, into the HOL system, a theorem
prover for higher order logic, for the verification of hardware. They introduced
two tactics, MDG COMB TAC and MDG SEQ TAC, to generate the adequate
input files so that the MDG system can complete the proof.

Similarly in the context of hardware verification, Joyce and Seger [7] pro-
posed a link between symbolic trajectory evaluation and interactive theorem
proving. Their technique consists in introducing a new proof procedure, called
VOSS TAC, through which the Voss system is invoked for checking the validity
of assertions, and returning the result to the theorem prover.

Rajan et al [10] described an approach where a BDD-based model checker
for the propositional mu-calculus was used as a decision procedure within the
framework of the PVS proof checker.
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Our integration approach is quite similar to the one proposed by Pisini et
al [4]. However, while all systems mentioned above aim at hardware verification,
our integration approach concerns software verification. Software is more com-
plex than hardware in the sense that it includes more language constructs and
a larger variety of data types.

3 Verification Environment

Isabelle is a generic proof assistant. It provides a framework to declare deduc-
tive systems, rather than to implement them from scratch. Currently the best
developed object logic is HOL [9], higher order logic, including an extensive
library of (concrete) mathematics, as well as various packages for advanced def-
initional concepts like (co-)inductive sets and types, primitive and well-founded
recursion etc. To define an object logic, the user has to declare the syntax and
the inference rules of the object logic. By employing the built-in mechanisms
of Isabelle/Pure, higher-order unification and resolution in particular, one al-
ready gets a decent deductive system. Moreover, Isabelle follows the well-known
LCF system approach, which allows us to write arbitrary proof procedures in
ML without breaking system soundness since all those procedures are expanded
into primitive inferences of the logical kernel. To integrate trusted external pro-
grams, the mechanism of oracles can be employed. An oracle produces a the-
orem without breaking its proof down to primitive inferences. The software
model checker is integrated as such an oracle into a Hoare Logic module of
Isabelle/HOL.

The Hoare Logic module [11] is built on top of Isabelle/HOL. An imperative
programming language is defined as HOL data-type together with an operational
semantics and a Hoare calculus for partial and total correctness. Programs are
specified as Hoare triples and verified using a verification condition generator. A
Hoare triple has the format Γ� P c Q where Γ is the procedure environment that
maps procedure names to their bodies, c is a code fragment and P and Q are
assertions. Intuitively, the formula states that if P holds before the execution of
c then Q will hold afterwards. In this paper we only focus on partial correctness.
For total correctness, we are about to integrate a termination checker in a similar
fashion.

Runtime faults are modeled as explicit guards within the program c. Such a
guard formulates constraints on the current program state. The semantics of the
Hoare Logic ensures that every such guard must hold under the precondition
P. Formally assertions and guards are sets of program states. The states are
represented as records in HOL. As example, the assertion {| í ≤ N |} abbreviates
the set comprehension {s. i s ≤ N}, where i is a record selector. The abstraction
on state s is hidden in assertions, and the application to s is abbreviated by the
prefixed acute symbol (´).

Many runtime errors can occur during the execution of a program due to the
violation of some constraints imposed by the definition of the data types used in
the program. Examples of errors are overflow and underflow exceptions and array
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out-of-bound access. The programming language used in the Verisoft project is
called C0. It is a type-safe subset of C with an exact specified semantics, which
is also formalized in Isabelle/HOL. Numeric expressions in C0 are evaluated
using bounded modulo arithmetic with silent over- and underflows. However
for specifying and reasoning about programs, we want to “think unbounded”.
Therefore we regard over- and underflows as runtime errors on the level of the
Hoare Logic and use ordinary unbounded arithmetic.

To prove the absence of such runtime errors, we have to identify which expres-
sions can potentially cause which errors. We have formalized the error conditions.
Table 1 shows a non-exhaustive list of expressions that might cause runtime er-
rors. For each of these expressions, the table lists a set of guards. The evaluation
of an expression causes a runtime error if and only if the conjunction of its guards
evaluates to false. The guards are automatically generated by Isabelle through
the parsing process of the program code.

Table 1. The table shows some expressions causing runtime errors together with their
respective guards (top) and the ranges for the basic integer types (bottom)

expression e guards runtime error
e1 + e2

e1 − e2 e ≤ (max type(e)) overflow
− e1 e ≥ (mintype(e)) underflow
e1 ∗ e2

e1 / e2 e2 �= 0 division by zero
e ≤ (max type(e)) overflow
e ≥ (mintype(e)) underflow

e1 [ e2 ] e2 < size(e1) above bounds of e1

e2 ≥ 0 below bounds of e1

type T minT maxT

int − 231 231 − 1
unsigned 0 232 − 1
char − 27 27 − 1

Figure 1 on the next page illustrates the program representation in our ver-
ification environment. It shows the proof goal for the correctness theorem of a
bubble-sort implementation. The code fragment sorts the first árray-size values
contained in an array variable named árray.

4 The Model Checker ACSAR

ACSAR (Automatic Checker of Safety properties based on Abstraction Refine-
ment) is a software model checker for C programs that we developed in the spirit
of Magic [1] and Blast [2, 3]. Most data types of the C language are handled by
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�
σ. Γ� {|σ. 0 < árray-size ∧ árray-size ≤ length árray |}

{|1 ≤ árray-size|}�→ í := árray-size − 1 ;
WHILE 0 < í
DO j́ := 0 ;

WHILE j́ < í
DO {| j́ + 1 ≤ max-nat ∧

j́ + 1 < length árray ∧ j́ < length árray |}
�→ IF árray [ j́ + 1 ] < árray [ j́ ]

THEN {| j́ < length árray |}�→ t́emp := árray [ j́ ];
{| j́ < length árray ∧

j́ + 1 ≤ max-nat ∧ j́ + 1 < length árray |}
�→ árray [ j́ ] := árray [ j́ + 1 ];
{| j́ + 1 ≤ max-nat ∧ j́ + 1 < length árray |}
�→ árray [ j́ + 1 ] := t́emp

FI ;
{| j́ + 1 ≤ max-nat|}�→ j́ := j́ + 1

OD ;
{|1 ≤ í |}�→ í := í − 1

OD ;
ŕes := 0
{|∀ j < σarray-size. ∀ i < j . árray [i ] ≤ árray [j ]|}

Fig. 1. An external representation of code with guarded commands within our verifi-
cation environment. A guarded command consists of a list of guard conditions and the
affected command. The conditions are enclosed in braces: {| |}. The guard conditions
are separated from the command by �→. The term σarray-size refers to the old value of
array-size before the execution of the program fragment.

ACSAR, including integer types, arrays and structs. Furthermore, ACSAR sup-
ports all control structures of the C language. Function calls are handled by
inlining the body of each function into the corresponding call site. Local vari-
ables are renamed to avoid name conflicts. Thus, after inlining all the functions,
we obtain a unique global control-flow graph. The obtained control flow graph
contains only two types of nodes: branches and updates. In the following, we
explain the basic verification algorithm of ACSAR.

4.1 Translating Programs to Transition Constraints

A transition constraint tc is a tuple (l, g, u, d) where l and d are the values of the
program counter before and after performing the transition, g is the transition
condition and u is the variable update. Consecutive assignments are considered
as one simultaneous update. We illustrate the translation procedure considering
the function three times as example:
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Example 1.

1 void three times(int n)
2 {
3 int s = 0, i=0, result ;
4 while (i != n) {
5 s = s + 3;
6 i = i + 1;
7 }
8 result = s;
9 }

Function three times can be represented by the following system of transition
constraints:

(1, True, [s ← 0, i ← 0], 4) (1)
(4, i �= n, [i ← i + 1, s ← s + 3], 4) (2)
(4, i = n, [result ← s], 10) (3)

Upon translation, lines 1-3 are merged into transition constraint (1). Transition
constraint (2) models the case where the control enters the loop (lines 4-8) and
transition (3) represents the case where the control proceeds with the instruction
after the loop (line 9) because the loop condition does not hold.

4.2 Abstraction

ACSAR uses the predicate abstraction technique [6] to automatically abstract an
infinite system by a finite one. The idea of predicate abstraction is to represent
a set of states by a logical formula built from a set of predicates. This logical
formula represents an abstract state. ACSAR uses a backward search to explore
the set of abstract states. Formally, we introduce:

– The set of program states S, the set of error states Serr, the set of predicates
P (initially empty) and the set of transition constraints Tc. A state s is
provided as a logical formula s = (x1 = v1 ∧ x2 = v2 ∧ · · · ∧ xn = vn), where
xi are program variables and vi their values (i ∈ [1, n]).

– the abstraction function α : L → L with α(s) =
∧

p such that (p ∈ P ∧ s ⇒
p), where L is the set of quantifier-free first-order logic formulas restricted
to program variables.

– the operator Pre# that returns the previous abstract state: Pre#(a, tc) =
α(wp(a, tc)), where a is an abstract state provided as a logical formula,
tc ∈ Tc is some transition constraint, and wp(a, tc) is the exact weakest
precondition of a with respect to tc. Intuitively, the Pre# operator provides
the abstract state that reaches the state a after performing the transition tc.

Now, we can build the abstract system. We start with the abstract error
state α(Serr) and try to compute the least fixpoint of Pre#. Either we find the
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least fixpoint or a counter example. If we find a counter example, we have to
test its validity using a SAT solver. In case of a spurious counter example, our
abstraction has been too coarse, and we have to refine it.

4.3 Refinement

When an abstraction is too coarse, i. e. we have found a spurious counter exam-
ple, ACSAR rebuilds a more precise abstraction by inferring new predicates. It
increases only the relevant part of the abstract system. This concept of laziness
is inspired by the work of Henzinger et al [2]. If the backward search reaches the
initial state SI , the path leading from Serr to SI is analyzed by using the exact
weakest precondition wp to check the validity of transitions that constitute the
path. If the analysis indicates that this path is a real counter example, the path
is returned as witness to the user. Otherwise, we obtain a formula showing the
invalidity of the path. Predicates appearing in this formula are used to refine the
system.

5 Integrating ACSAR into the Verification Environment

As shown in Table 1 on page 384, the guards are expressed as assertions in
quantifier-free first-order logic. Software model checkers deal efficiently with such
properties. In order to take advantage of the efficiency and automation of model
checking, we integrated our tool ACSAR into Isabelle.

In Figure 1 on page 385, we have already seen the external representation
of a bubble-sort implementation. At that point, we would like to discharge the
guards automatically with ACSAR. We have integrated the model checker via a
new tactic, called swmc-guards. To deal with multiple guards, we have extended
the verification procedure of ACSAR.

When the verification engineer applies swmc-guards, the current proof goal
is converted into a reachability problem and presented to ACSAR. The model
checker generates a reachability check report. The tactic evaluates this report
and forms a new proof goal from the old one and the new results from the model
checker. In the next sections, we describe this process in detail.

5.1 Conversion of the Original Proof Goal

In Isabelle, the proof goal is basically a Hoare triple with a code fragment that
contains guards. The model checker, however, expects a C program with labelled
error locations. Hence we have to convert the original problem. For the check
against runtime faults, only the precondition and the actual code fragment with
the guard conditions are of interest. Quantifier-free conditions can easily be
formulated as C expressions, and the conversion of the basic commands like
WHILE or IF is straightforward.

The conversion of the code fragment is primarily a syntax transformation.
However, the internal representation in Isabelle is quite opulent. Hence we de-
cided to introduce an intermediate language and implemented the transformation
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in two stages. This intermediate language is much more compact and was tai-
lormade to represent usual imperative programming languages. We expect that
this approach will simplify the integration of similar tools.

The conceptual core of the conversion is the representation of precondition
and guards. The precondition is an assumption, hence the guard conditions have
only to be checked if the precondition holds. We represent this fact by enclosing
the whole code fragment in an if command that has the precondition as branch
condition. For each guard condition g, we introduce a distinct error location
r and generate a conditional jump to this error location for the case that the
condition does not hold. Consequently, r is reachable if and only if g is satisfiable.

5.2 Checking Reachability of Multiple Error Locations

Initially, ACSAR was designed to check the reachability of only one error location
at a time. To deal with multiple error locations, one has the choice between
two options. The first option is to invoke ACSAR several times from Isabelle.
This approach is simple in the sense that no major changes are needed. Its
drawback is the time consumed by communications between the theorem prover
and the model checker. The second option, that we adopted, is to extend the
checking algorithm of ACSAR to deal with multiple error locations. All guards
are transmitted at once to the model checker rather than transmitting one guard
at a time.

Therefore we have to extend the translation algorithm above. We assume
a finite set G of guards and a finite set L of control locations. Furthermore
there should be a control location li ∈ L associated to each guard gi ∈ G.
Now we introduce a new error location ri for each guard such that the set of
error locations R will be distinct from the control locations and from each other,
i. e.

L ∩ R = ∅ ∧ ∀gi, gj. ri = rj −→ gi = gj

Finally, we have to introduce a transition constraint tci = (li, ¬gi, −, ri) for each
guard gi ∈ G, and can state:

∀g ∈ G. ∃!r ∈ R such that (r is reachable) ←→ (¬g can hold)

Figure 2 on the facing page illustrates the resulting C code of the previous
bubble-sort example after its translation into a reachability problem and adding
the necessary error locations.

Verification Approach. In the verification phase, we check the validity of each
guard in isolation. With this approach, the verification engineer might be able
to find several bugs at a time. In order to avoid the influence between guards,
we have to disable all but the currently processed guard. Consider the following
example:
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int array [10];
unsigned int i, j , array size ;
int temp, res;

5 int main () {
if (((0 < array size ) && (array size <= 10))) {

if (!(1 <= array size )) goto ERROR 1;
i = (array size − 1);
while (0 < i) {

10 j = 0;
while (j < i) {

if (!(( j + 1) <= max nat)) goto ERROR 2;
if (!(( j + 1) < 10)) goto ERROR 3;
if (!( j < 10)) goto ERROR 4;

15 if ((array[( j + 1)] < array[ j ])) {
if (!( j < 10)) goto ERROR 5;
temp = array[j];
if (!( j < 10)) goto ERROR 6;
if (!(( j + 1) <= max nat)) goto ERROR 7;

20 if (!(( j + 1) < 10)) goto ERROR 8;
array[ j ] = array[( j + 1)];
if (!(( j + 1) <= max nat)) goto ERROR 9;
if (!(( j + 1) < 10)) goto ERROR 10;
array[( j + 1)] = temp;

25 }
if (!(( j + 1) <= max nat)) goto ERROR 11;
j = (j + 1);

}
if (!(1 <= i )) goto ERROR 12;

30 i = (i − 1);
}
res = 0;

}
goto end;

35
ERROR 12: goto end;
ERROR 11: goto end;
ERROR 10: goto end;

/∗ ... ∗/
40 ERROR 1: goto end;

end: ;
}

Fig. 2. Result of the translation (input to ACSAR). Note: For better readability, we
have replaced the numerical upper limit of unsigneds with max nat.



390 M. Daum et al.

Example 2.

int a [6], b [4], i , j ,k;
i = 5;
j = i − 1;

4 if ( j+2 > 5) goto ERROR 1;
a[ j+2] = 3;
k = j + 1;
if (k > 4) goto ERROR 2;

8 b[k] = 1;
goto end;
ERROR 1: goto end;
ERROR 2: goto end;

12 end: ;

If the guard leading to label ERROR 1 is not disabled when checking the next
guard, we can not find out whether label ERROR 2 is reachable because the
expression ( j+2 > 5) at line 4 is always true.

Let us now consider a program in terms of a set of transition constraints Tc.
We introduce the subset Tcerr containing the transition constraints tci that lead
to error locations. For each transition constraint tci = (li, ¬gi, −, ri) ∈ Tcerr,
there exists a transition constraint tc′i = (li, gi, ui, ki) ∈ Tc corresponding to the
case that guard gi holds.

We disable all currently not concerned guards gj in the following way: We
build a transition constraint tc′′j from tc′j by removing the guard condition gj

and keeping all other fields unchanged: tc′′j = (lj ,True, uj, kj). Now, we remove
the transition constraints tcj and tc′j from the set of transition constraints Tc,
and add tc′′j to Tc.

Introducing Assumptions. In the previously described approach, each guard
is checked in isolation from the other guards. This is equivalent to having each
time a program Pi containing only the guard gi that we want to prove. This
approach can be improved by exploiting results for previous guards in the ver-
ification of the actual guard. When a guard is proven to hold, we use it as an
assumption for the verification of other guards. Formally, we remove tc′i for each
proven guard gi and keep tci as we know that the error location ri is never
reachable. This approach is described in Figure 3 on the next page.

Table 2 on the facing page presents a performance comparison between the
approach when we use valid guards as assumptions and the approach without as-
sumptions. We have measured the execution times of the software model checker
for the already presented bubble-sort example and an implementation of the more
naive selection-sort algorithm. In both cases, the execution time is substancially
shorter if we keep proven guards as assumptions.

5.3 Returning the Results to Isabelle

Our interface is implemented as a so called oracle. In this way, we can introduce
a theorem into the verification process without giving a proof for it. In our case,
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Input:

– the set Tc of all transition constraints
– the set Tcerr of transition constraints leading to error locations
– the set G of guards

Output:

– a report rep specifying for each guard whether it is valid, invalid or unknown.

begin
Tc′

err =
�

{tc′
i such that tci ∈ Tcerr};

Tc′′
err =

�
{tc′′

i such that tci ∈ Tcerr};
Tc = (Tc − (Tcerr ∪ Tc′

err)) ∪ Tc′′
err;

for each guard gi such that gi ∈ G do
Tc = (Tc − {tc′′

i }) ∪ {tci, tc
′
i};

res = check reach(err loc(gi),Tc);
switch (res)

case unreachable:
store in report(rep, gi, valid); Tc = Tc − tc′

i;
case reachable:

store in report(rep, gi, invalid); Tc = (Tc − {tci, tc
′
i}) ∪ tc′′

i ;
otherwise:

store in report(rep, gi, unknown); Tc = (Tc − {tci, tc
′
i}) ∪ tc′′

i ;
init();

return(rep);
end

Legend:

– The function err loc takes a guard as argument and returns the corresponding
error location.

– The function check reach returns either (a) unreachable if the guard is valid,
(b) reachable if the guard is invalid, or (c) unknown if no definite decision on
the validity of the guard can be made.

– The function init reinitializes the system by erasing states generated so far.
– The function store in report stores the result of the verification concerning the

guard in a report file. The report is returned to the theorem prover.

Fig. 3. Multiple error verification by exploiting assumptions

Table 2. Model checking time of programs with and without using assumptions

Program number of verification time (in seconds)
guards without assumptions with assumptions

selection-sort 14 5.918 2.729
bubble-sort 12 140.189 29.622
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a Hoare triple with annotated guard conditions is returned as theorem. The
annotation expresses whether guards will not fail. This Hoare triple is used as
premise of an Hoare rule that allows us to regard the proven guards as granted
for the remaining verification.

In this section we discuss how this rule is formally justified within the Hoare
calculus. Within our verification environment, validated guards are decorated
with

√
as shown in Figure 4.

�
σ. Γ�/{True} {|σ. 0 < árray-size ∧ árray-size ≤ length árray |}

{|1 ≤ árray-size|}√�→ í := árray-size − 1 ;
WHILE 0 < í
DO j́ := 0 ;

WHILE j́ < í
DO {| j́ + 1 ≤ max-nat |}√

, {| j́ + 1 < length árray |}√
,

{| j́ < length árray |}√

�→ IF árray [ j́ + 1 ] < árray [ j́ ]
THEN {| j́ < length árray |}√�→ t́emp := árray [ j́ ];

{| j́ < length árray |}√
, {| j́ + 1 ≤ max-nat |}√

,
{| j́ + 1 < length árray |}√

�→ árray [ j́ ] := árray [ j́ + 1 ];
{| j́ + 1 ≤ max-nat |}√

, {| j́ + 1 < length árray |}√

�→ árray [ j́ + 1 ] := t́emp
FI ;

{| j́ + 1 ≤ max-nat |}√�→ j́ := j́ + 1
OD ;
{|1 ≤ í |}√�→ í := í − 1

OD ;
ŕes := 0
{|∀ j < σarray-size. ∀ i < j . árray [i ] ≤ árray [j ]|}

Fig. 4. The bubble-sort example after calling the software model checker. All validated
guard conditions are decorated with

√
.

To integrate the notion of discharging a guard into the Hoare calculus, the
guarded command of the programming-language model described by Schirmer
[11] is augmented with a flag: Guard f g c, where f is the kind of fault that the
guarded command will raise if the guard condition g for command c fails. The
syntax in the examples g �→ c is an abbreviation for Guard False g c, and g

√ �→
c for Guard True g c. A comma-separated list of guard conditions before the �→
abbreviates nested guarded commands. The state of the programming language
is a polymorphic HOL data-type with two constructors:

datatype ( ′f, ′s) state = Normal ′s | Fault ′f ,

where ′s is a type variable for the raw state and ′f for the faults. The operational
big-step semantics has the format Γ� 〈c, s〉 ⇒ t, where Γ is the procedure
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environment that maps procedure names to their bodies. The meaning is that
execution of command c in the initial state s ends in final state t. The big-step
semantic rules for guarded commands are the following:

s ∈ g Γ� 〈c, Normal s〉 ⇒ t
Γ� 〈Guard f g c, Normal s〉 ⇒ t

s /∈ g

Γ� 〈Guard f g c, Normal s〉 ⇒ Fault f

The guard condition g is modeled as a set of states. If it holds, execution is
continued otherwise the error is signaled. For the integration of the software
model checker, the flag f is Boolean. The flag True indicates that the guard is
proven. But as the semantic rules above indicate, the value of the flag is not
considered to decide whether the guard holds or not. It is only used in the Hoare
calculus. The Hoare triples are extended with a set of faults F that are regarded
as proven. Validity of a Hoare triple Γ |=/F P c Q is defined as partial correctness
modulo faults in F :

Γ |=/F P c Q ≡ Γ� 〈c, Normal s〉 ⇒ t −→ s ∈ P −→ t /∈ Fault ‘ F −→
t ∈ Normal ‘ Q

Here ‘ denotes the set image operation, e.g. f ‘ M can be rewritten as set com-
prehension: {f s. s ∈ M}. Given an execution of command c from an initial state
s satisfying the precondition P, provided that the final state t is not a fault in
set F, then the final state will satisfy postcondition Q. An empty set of faults F
can be omitted, since this is the ordinary case. It ensures that no runtime faults
will occur. The Hoare calculus is proven sound with respect to this notion of
validity [12].

Theorem 1. Γ�/F P c Q −→ Γ |=/F P c Q

To integrate the results of the software model checker, we derive a rule that
allows us to switch from an empty set F to the set {True}, which means that all
guards marked with True can be assumed as correct. Here are the Hoare Logic
rules for guards:

Γ�/F P c Q
Γ�/F (g ∩ P) (Guard f g c) Q

f ∈ F Γ�/F P c Q
Γ�/F {s. s ∈ g −→ s ∈ P} (Guard f g c) Q

The left rule is the ordinary rule for guarded commands. The guard g has to hold
in the precondition. On the right hand side, however, the guard can be taken
as assumption for the precondition P, since validity of Hoare triples assumes
that no fault in F can occur. For interactive verification this means that guards
marked with a fault in F can be taken as assumptions whereas the other ones
have to be proven. To illustrate the integration of the software model checker,
consider the following situation. The current proof goal is a Hoare triple of the
form Γ�/{} P c Q, where all guards in c are marked with False. The goal is to
reduce this to a new proof state Γ�/{True} P c ′′ Q, where c ′′ contains the same
guards as c, but some may be marked as True. The software model checker has
to prove that those guards that are marked with True actually hold. Formally
the oracle returns a Hoare triple of the form Γ�/{} P c ′ UNIV, where UNIV
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is the universal set that denotes the trivial postcondition, and c ′ only contains
the guards of c ′′ that are marked with True. The guards marked with False are
missing, since those are the guards that are not provable by the model checker.
Referring to the semantics of Hoare triples, the result of the oracle describes
that no guard in c ′ will fail. This is exactly what the model checker claims. The
following rule implements this strategy:

Γ�/{True} P c ′′ Q Γ�/{} P c ′ UNIV
c ′ = strip-guards {False} c ′′ c = mark-guards False c ′′

Γ�/{} P c Q

The conclusion is the current Hoare triple that is verified (e.g. Figure 1 on
page 385). The first premise is the subgoal that remains for verification after the
tactic swmc-guards is finished (e.g. Figure 4 on page 392). The second assump-
tion denotes the result of the software model checker and is the only part that
is provided as an oracle. The effect of the model checker is clearly integrated
into the Hoare Logic proof. The side-conditions on c, c ′ and c ′′ are solved by Is-
abelles simplifier. The auxiliary HOL functions mark-guards and strip-guards are
defined recursively on the HOL data-type of commands. The relevant equations
for Guard f g c are:

mark-guards f ′ (Guard f g c) = Guard f ′ g (mark-guards c)
strip-guards F (Guard f g c) = if f ∈ F then strip-guards F c

else Guard f g (strip-guards F c)

In the context of total correctness the tactic swmc-guards basically works
the same. The Hoare triple returned by the oracle is of course still an partial
correctness one. Hence the termination proof is left to the user.

6 Evaluation

It is hard to give a general measure of the speed-up that verification engineers
gain by the use of the integrated model checker because it depends on the con-
sidered problem. For the shown bubble-sort implementation, for example, our
verification condition generator could subsume all but two guard conditions. It
took just 5 tactics to verify these conditions by hand.

However, our example is very light-weight: The interesting part of the proof
consists of just about 40 tactics. Nevertheless, when employing the software
model checker, we could use a simpler invariant for the while loop. Finding a
suitable invariant is usually one of the most time consuming tasks during the
verification process. This does especially apply to nested while loops.

7 Conclusion and Future Work

We have developed the new software model checker ACSAR, which is—in our
application field—more powerful than competing tools. For example, if the code
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of our bubble-sort example is presented to the model checker Blast, it only
reports that the first and the last error location are not reachable. Presently we
are tackling aliasing problems in order to deal with pointer dereferencing. We
expect to essentially improve the treatment of pointers in the near future.

We have integrated the model checker into our verification environment. It
turned out to be very helpful that we have developed our own model checker
instead of integrating a standard tool. So we were able to adopt ACSAR to check
multiple error locations at a time.

The translation mechanism implemented by the swmc-guards tactic works in
two stages in order to facilitate the integration of similar automatic tools. One
such tool is a termination checker, which is already integrated; other tools might
follow.

Furthermore, we plan to translate properties with quantifiers. Though the
side conditions in guards are always quantifier-free, quantifiers might occur in
preconditions. Currently, these preconditions are not transferred to the model
checker. Moreover, we examine how the integration can be improved in order to
enable the model checker to reason about simple proof goals.
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