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Abstract

We present a methodology for the specification and verification of functional

specifications of programs written in Assembler. We have evaluated the method-

ology in an industrial setting, the verification of the Microsoft Hypervisor.

Many industrial software projects are written in a high-level language like

C. For performance reasons or for direct hardware access, some of the routines

are implemented in Assembler. Our goal is the automatic modular verification

of functional specifications for C programs with subroutines in Assembler. This

goal entails the need for checking an Assembler procedure against its functional

specification. The specification of the Assembler program is used also in the

specification of the C code that calls the Assembler program as a subroutine.

Therefore, we need to translate back and forth between specifications for C code

and specifications for Assembler code.

The particular context of our work is the verification of the Microsoft Hyper-

visor where the static checker VCC is used to verify the part of the code written

in C. VCC uses modular reasoning and comes with its own annotation language

for functional specifications for C programs. The functional specifications for

the Assembler routines in the Microsoft Hypervisor are given in the form of

specifications for the C routines that call them.

In this thesis, we introduce the tool Vx86 and the corresponding method-

ology to verify Assembler code against functional specifications of the form

described above. In our approach, we use Vx86 to translate the Assembler code

into C code. We give the translation of each Assembler instruction into a short

piece of C code. Some instructions of x86 are complex in that their behavior

depends on the internal processor state such as flag or control registers. The

high-level semantics of C does not, however, foresee such low-level featuers. In

order to account for the processor state in the high-level semantics, we introduce

a C structure that contains the complete processor state. The modification of

this C structure during the execution of the C code simulates the modification

of the internal processor state during the execution of the Assembler instruc-

tions. Since we can refer to this C structure in the annotation language, we can

specify the functional correctness of Assembler routines also if the functional

correctness refers to the hardware directly.

Our tool Vx86, integrated with VCC, leads to a methodology for the verifica-

tion of functional specifications of programs written in Assembler and, thus, the

pervasive verification of mixed programs such as the Microsoft Hypervisor which

are written in C and Assembler. In this methodology, the program has to be



annotated manually with modular specifications, e.g., pre- and postconditions

and loop invariants. The verification of the code against these specifications

is then fully automatic. We have used the methodology and the tool Vx86 in

order to verify all subroutines of the Microsoft Hypervisor which are written in

Assembler.



Zusammenfassung

Wir stellen eine neue Methode zur Spezifikation und Verifikation von funk-

tionalen Spezifikationen von Assembler-Programmen vor. Wir haben diese Me-

thode in einem industriellen Kontext evaluiert, nämlich der Verifikation des

Microsoft Hypervisor.

Viele industrielle Softwareprojekte sind in Hochsprachen wie C geschrieben.

Aus Geschwindigkeitsgründen oder für direkten Hardwarezugriff werden einige

Routinen in Assembler implementiert. Unser Ziel ist eine automatische, modula-

re Verifikation funktionaler Spezifikationen für C-Programme mit Unterroutinen

in Assembler. Dies erfordert das Überprüfen einer Assembler-Prozedur gegen

ihre funktionale Spezifikation. Die Spezifikation der Assembler-Prozedur wird

auch benutzt für der Spezifikation des C-Codes, der die Assembler-Prozedur als

Unterroutine aufruft. Dazu müssen C-Code Spezifikationen und Assembler-Code

Spezifikationen in beiden Richtungen ineinander übersetzt werden.

Der besondere Kontext unserer Arbeit ist die Verifikation des Microsoft Hy-

pervisor, wobei der Static Checker VCC für die Verifikation der Code Teile

benutzt wird, die in C geschrieben sind. VCC ermöglicht modulare Beweise

und führt eine eigene Annotationssprache für die funktionale Spezifikation von

C-Programmen ein. Die funktionale Spezifikation von Assembler-Routinen im

Microsoft Hypervisor werden in Form von Spezifikationen für deren Aufrufe im

C-Programm bereit gestellt.

In dieser Arbeit führen wir das Werkzeug Vx86 und eine darauf beruhende

Methode ein, um Assembler-Code gegen funktionale Spezifikationen der oben

beschrieben Form zu verifizieren. In unserer Methode benutzen wir Vx86 um

Assembler-Code in C-Code zu übersetzen. Wir präsentieren die Übersetzung

jeder einzelnen Assembler-Instruktion in ein kurzes C-Code Fragment. Einige

Instruktionen des x86 sind komplex in dem Sinne, dass ihr Verhalten von dem

internen Prozessorzustand abhängt, wie den Flag- oder Kontrollregistern. Die

Hochsprachen-Semantik von C sieht allerdings keine solchen systemnahen Fea-

tures vor. Um in der Hochsprachen-Semantik auf den Prozessorzustand Bezug

nehmen zu können, führen wir eine C-Struktur ein, die den kompletten Pro-

zessorzustand abbildet. Die Veränderungen an dieser C-Struktur während der

Ausführung des C-Codes simuliert die Veränderungen des internen Prozessor-

zustandes bei der Ausführung der Assembler-Befehle. Da wir in der Annota-

tionssprache Bezug auf diese C-Struktur nehmen können, können wir auch die

funktionale Korrektheit von Assembler-Routinen spezifizieren, wenn sich die

funktionale Korrektheit direkt auf die Hardware bezieht.



Unser Werkzeug Vx86 führt, zusammen mit VCC, zu einer Methode der

Verifikation von funktionalen Spezifikationen von Prozeduren, die in Assemb-

ler geschrieben sind, und führt damit zur durchgängigen Verifikation von ge-

mischten Programmen wie dem Microsoft Hypervisor, die in C und Assembler

geschrieben sind. Für diese Methode muss das Programm manuell mit modula-

ren Spezifikationen annotiert werden, z.B. mit Vor- und Nachbedingungen oder

Schleifeninvarianten. Die Verifikation des Codes gegen diese Spezifikationen er-

folgt dann vollautomatisch. Wir haben die Methode und das Werkzeug Vx86

benutzt, um alle Unterroutinen des Microsoft Hypervisor, die in Assembler ge-

schrieben sind, zu verifizieren.
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Chapter 1

Introduction

In the normal software development cycle, testing is an integral part. Although

people are trying to write correct programs, introducing errors in complex soft-

ware is unavoidable. Finding these errors by testing is not always easy. More-

over, when errors are found and the program is changed, the testing cycle has

to be performed again. Obviously, testing can only show the presence of errors,

never their absence, unless all input variations are tested. The latter is only pos-

sible for very small input domains. For some projects testing is not enough, e.g.,

for security reasons, or it is difficult to perform, e.g., in embedded systems that

have no diagnostic hardware. One possibility to prove the absence of errors is

formal software verification, which involves a formal specification of the system

and a mathematical proof that the implementation meets this specification.

Software projects are usually written in high-level languages like C++, Java,

or C. One of the goals of these languages is the abstraction from the processor

or other hardware. However, some program parts are written in Assembler to

increase the performance or to directly access the hardware. The Assembler

language provides only a minimal abstraction from the hardware. In our special

case, we are looking at the source code of Microsoft Hypervisor, called Hyper-V,

which is part of the Microsoft Server 2008. It contains about 50k lines of code,

where 5k lines are Assembler code. The ultimate goal is to verify the complete

system. Therefore, we require a method to describe and verify both the C

code and the Assembler parts. Additionally, we need to verify the “language

crossing”. While a verification tool for C existed at the beginning of the project,

no attention was paid to the Assembler part or “language crossing”.

5



6 CHAPTER 1. INTRODUCTION

1 result = foo(a,b,c,d)

Figure 1.1: Example C code for a call to a function

push rax
push rcx
push rdx

4 push r8
push r9
push r10
push r11
mov rcx, a

9 mov rdx, b
mov r8, c
mov r9, d
call foo
mov result , rax

14 pop r11
pop r10
pop r9
pop r8
pop rdx

19 pop rcx
pop rax

Figure 1.2: Example Assembler implementation

1.1 Assembler

Programs are normally written in high-level languages like C. To execute these

programs on a computer, they have to be compiled to Assembler for the spe-

cific platform to get an executable binary. This compilation process is complex:

it has to translate the high-level statements to a number of low-level instruc-

tions; the functions need a stack; a heap has to be located somewhere in the

memory, etc. The executable has much more instructions than its source code

because all implicit knowledge has to be made explicit. All the abstraction of

the programming language is gone at the end.

As an example, consider a simple function call. In high-level languages, sub-

routines are moved into functions to improve their readability and reusability.

Those subroutines can then be called by a chosen name and a number of pa-

rameters, as shown in Figure 1.1. Results of such subroutines can be changes

on a global state or returned values.

In Assembler, calling a function is much more complex. The Assembler

developer has to

• save some registers on the stack
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• put all parameter values in registers

• call the function

• read out the return value from a register

• restore registers from the stack

The complexity of the function call depends on the complexity of the parameters

used. Creating subfunctions doubtlessly helps preventing to rewrite the same

code over and over again, but it does not improve readability as the calls are

so complicated (as shown in Figure 1.2 on the preceding page for a call to a

function with 4 simple parameters). In high-level languages, those facts are

abstracted away, the compiler automatically introduces additional allocations

in heap or stack (this is implicit use of heap or stack), the complete stack

handling, function calls, etc. High-level languages were introduced to get rid of

that low-level burden.

Despite these disadvantages, there are reasons to use Assembler. The pre-

sented work is part of a verification project by Microsoft. Microsoft wishes

for the verification of the Microsoft Hypervisor that is part of Windows Server

2008. This software has to use low-level instructions that are not available in

C. For example the virtualization instructions of the x86 architecture are not

included in C compilers, because they should never be accessed from a normal

program. Besides such special instructions, the C compiler may also produce

sub-optimal executable code. In Assembler, the programmer has direct influence

on the instructions used and can make optimizations for cache lines, pipelining

of the processor, etc. Some high performance optimizations are only possible

thanks to special background knowledge. For example a copy routine could be

more optimized if it is known that the amount of bytes is always 4096 and it

is always page aligned. An arbitrary copy routine (for example by a library)

has to care about unaligned access, arbitrary size and so on. Therefore, the

Assembler versions can be a lot faster. This is useful for code sitting in a criti-

cal path. The usual way to combine Assembler with high-level languages, is to

implement functions in Assembler code and call those Assembler functions from

ordinary C code. To execute the program, everything is translated to machine

code separetly.

For the verification it may seem benificial to use the compiler to translate

the high-level code in Assembler and do the verification on the Assembler code

only. However, most of the existing verification tools are written for high-level

languages, at least C language, see [32, 46, 55]. These high-level languages

abstract from the hardware, e.g., the memory layout, which is also useful for

verification tools. In Assembler there are only processor registers and memory.
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The programmer or the compiler has to explicitly allocate memory on the stack

and compute the address. This can introduce bugs that are not possible in high-

level languages, e.g., stack frame corruption. A verification tool for Assembler

needs to check that the accessed memory is writeable and that the stack pointer

is restored after the execution of the method. Moreover, verifiers for high-level

languages can make assumptions like type safety. These assumptions are no

longer valid for programs in Assembler code, since Assembler does not support

data types and accesses pointers and integers in a polymorphic way. Verification

tools usually assume that this compilation process is correct and only verify the

high-level program code against the programming language semantics. With

the translation approach the verifier would have to check these assumptions

explicitly.

1.2 Microsoft Hypervisor

The Microsoft Hypervisor is a thin layer of software written in C and Assem-

bler that sits directly on x64 hardware, turning a real multi-processor (MP) x64

machine into a number of MP x64 virtual machines (VMs). These VMs provide

additional machine instructions (hypercalls) to create and manage VMs, hard-

ware resources, and inter-VM communication. VMs are viewed as a key enabling

technology for a variety of services, such as server consolidation, sandboxing of

device drivers, testing, running multiple OSs on a hardware machine, live VM

migration, snapshotting/recovery, and high availability. Moreover, it provides

such functionality in an OS-neutral way, with a trusted computing base 2-3 or-

ders of magnitude smaller than that of a typical commercial operating system.

Intel and AMD have developed hardware support for hypervisor systems.

For example, they can switch to the hypervisor if hardware interrupts occur

and provide multi-stage page tables. Operating systems (OS) usually run on

highest privilege level and can use direct access to the hardware. Additional

hardware support allows to run the OS on the original privilege level by run-

ning a hypervisor in an even higher level. For example, they can switch to the

hypervisor if hardware interrupts occur and provide multi-stage page tables so

that the operating systems do not see that they are working in translated mode.

Unfortunately, both Intel and AMD have their own virtualization instructions.

Since the AMD instruction set is older and the implementation in the hypervisor

thus (hopefully) has less errors in it, we decided to first support AMD. In future

work, there could also be an implementation of the Intel virtualization hard-

ware. Both hardware types can be supported at the same time because they

have different instruction names and different processor states. Compared to

standard Assembler instructions, the virtualization instructions are very com-
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plex. They are used for context switches between the hypervisor (host system)

and the operating systems (guest systems). A typical scenario for a context

switch consists of the following sequence of operations:

1. save the host state

2. load the guest state

3. run the guest

4. save the guest state

5. load the host state.

Properties about those virtualization instructions include facts like “the state

of the host after the restoring process is the same as it was at the point of the

saving”. Such a property does not only include the values of all registers (visible

and invisible), but also the stack that is administrated by the processor. If the

stack has changed (either the place or the content) then the host will have a

completely different state. Properties involving virtualization typically range

over many registers and memory locations. Additionally, the processor state is

usually available twice: once for the host system and once for the guest system.

The verification tool then has to scale well to handle such complex functions

and specifications, and we have seen verification times for virtualization function

degrade (see below).

On the other hand, several functions in the Microsoft Hypervisor are only

used for optimization reasons. The specifications for those functions are not too

complicated. However, looking at an optimized implementation is often scary;

algorithms are optimized for filling the pipeline most efficiently, to exploit branch

prediction and caching. Verifiers however are good at keeping track of detail

and so these algorithms are a great target for modern verification technology.

1.3 VCC and Boogie

VCC[16, 20, 18, 15, 17] (the verifying C compiler from Microsoft) is one from a

series of verification tools. The first in the row was Spec#[9, 8, 47, 48, 50, 1].

Spec# was an extension of C# to enable specification and verification. It is

integrated into Visual Studio, so that the verification can be made from the

integrated development environment (IDE). This makes the specification process

a lot easier, because the verification can be made on the fly.

Spec# consists of three parts (see also Figure 1.3 on the following page):

1. compiler, which compiles C# with specification to BoogiePL
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Z3

Boogie

BPL

VCC Spec#

C C#

Figure 1.3: Workflow of the Spec# verification process

2. Boogie, which tries to verify the BoogiePL code by generating a verifica-

tion condition and calling an SMT solver

3. Z3, which is used as automatic first-order SMT solver to handle requests

from Boogie

VCC is developed to replace the C# translation to Boogie to enable a similar

verification for C programs. It translates C programs augmented with specifi-

cation into a BoogiePL program.

The C annotations are mostly similar to ESC/Java[33, 60, 65, 13] and Spec#.

Modular reasoning is used for verification, which means a function by function

verification. Function calls are exchanged by using their specification. Thus,

only a small part of the code base has to be verified at a time. In contrast

to ESC/Java and Spec#, VCC uses sound verification methods of low-level

concurrent C code.

Annotations are implemented as Macros. This means that the annotations

can be placed directly into the C code. For compiling of the program with a

normal compiler, there exists a header file that allows the preprocessor to throw

the annotations away, while the verification tool can make use of them.

It is very important that there is no data flow from the annotations into the

normal code. In the annotations, only special variables can be written, they

are placed in so called ghost memory. This memory is disjoint with normal C

memory, thus normal C instructions cannot access it and read values out of it.

VCC introduces also additional proof obligations to the manually inserted ones

from the source file. Those will be checked for correctness, for example if writes

clauses were given correctly.

BoogiePL is an intermediate language with just 10 statements, and it can

be extended by a rich type system. The 10 statements are:
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• assert, which means a proof obligation to the verifier

• assume, representing an assumption the verifier can make

• havoc, which means a non-deterministic choice for sets of variables

• assignment, which assigns a value to a variable

• call, which represents a function call to another Boogie function.

• if, which allows a conditional execution, depending on a boolean express-

sion or non-deterministic choice

• while, which represents a loop where the execution is either depending on

a boolean expression or non-deterministic choice

• break, which stops the execution of the closest enclosing loop

• return, which terminates any execution reaching this statement

• goto, which is a non-deterministic jump to one of the given labels

Note that labels are no normal statements in BoogiePL. BoogiePL programs

are divided in so called basic blocks. Basic blocks start always with a label,

followed by statements and are ending either with return or goto. For a complete

description see also [7, 45, 49].

BoogiePL is not intended as a new programming language for execution,

but only for verification purposes. This intermediate step has the advantage

that the verification tool Boogie can be used for different languages. Otherwise,

the functionality of this tool would have to be rebuilt for every verification tool

from scratch. The tool Boogie is a verification condition generator. It produces

one or more (SMT-) formulae. These formulae are then checked by a theorem

prover such as Simplify or Z3, see [26, 27, 28]. Z3 can handle more complicated

formulae than Simplify and is much faster.

1.3.1 Specification and Annotation with VCC

The source code needs to be annotated for the verification with VCC. There are

implicit verification tasks for VCC (such as arithmetic overflows). But most of

the verification tasks are given as explicit annotations.

Specification Variable The developer of the specification can introduce new

variables. They can, for example, hold knowledge that is implicit in the source

code. The specification variables are located in a different memory space in the

VCC memory model. Besides the 64-Bit address space for normal variables,
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there exists an extra 64-Bit address space for the specification variables. This

means the specification variables cannot alias with normal variables. VCC also

checks that there is no data flow from specification variables back to normal

variables, since this would change the semantics of the program when compiled

with an ordinary compiler. If VCC detects such data flow, it stops with an error

message.

Expression Expressions are used in the different annotations. Expressions

consist of boolean C expressions (first order logic). They can refer to source

code variables as well as specification variables. Besides normal C arithmetic

and logic, there exist some specification functions. They introduce, for example,

all quantifiers, shortcuts for memory regions and rights for memory regions.

Writes Clause Writes Clauses specify all memory regions a function can write

to. For every memory access, VCC checks whether the affected memory region

is writable, i.e. it was included in the Writes Clause. If it was not included,

VCC stops with an error message. All memory regions specified in the Writes

Clause are set non-deterministicaly to an arbitrary value. This makes sure that

underspecification can be used in a sound way.

Precondition A precondition limits the possible inputs for a function. If no

precondition is given, all input parameters of a function can be chosen non-

deterministically. To allow for example verification of arithmetic expressions,

the possible input has to be limited. When a function is called, VCC verifies

that the precondition is met by the calling function.

Postcondition A postcondition limits the possible outputs of a function.

They can refer to the return value of a function but also to memory included in

the Writes Clause. If no postcondition is given, the return value and all memory

included in the Writes Caluse are set to arbitrary values. When a function is

called, VCC uses the postcondition and the Writes Clause of the called function

to verify the calling function.

Assertion VCC checks that expressions given by Assertions evaluate to true

at the given point. If there is a possible valuation for the input paramters of

function that cause the assertion expression to be evaluated to false, VCC gives

an error message. Assertions can have different purposes. They can help the

developer to verify values of variables at a given point in the source code. They

can also help the verifier to link given information that is not given explicit but

is implicit knowledge of the developer. Assertions (although they evaluate to
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true if not given explicitly) can also speed up verification, because they can help

verification tools to find the important information of a verification task.

Assumption These clauses specify conditions that are assumed to hold at

a given point. The assumptions are added to the collection fo facts that the

verifier uses to analyze the code. They should be used with care because they

can easily destroy soundness of the verification. They can be used for debugging

purpose or to give information explicitly that can not be inferred by VCC.

Data Structure Invariant Data Structure Invariants limit the possible val-

ues of the fields of data structures. VCC augments data structures with special

fields. The fields are used for the ownership and virtual locking mechanisms.

The locking is virtual because it is not given in source code. The locking mech-

anism is described in Section 4.3.

Specification Function Specification functions can be used like normal C

functions. They are not given by a function body but by pre- and postcondition

pairs. This means they are given as annotation expressions. Annotations cannot

write into source code variables but only to specification variables. This means

specification functions can only change the specification status. Calling source

code functions out of specification annotations would lead to a change of the

program status that would make the semantics of the verified program and

the compiled program incoherent. This means that only calls to specification

functions are allowed in annotations.

1.4 Contribution of this thesis

Recently, the verification of systems C code made much progress, see [66, 51, 21,

58]. Industrial systems code often consists of C code combined with subroutines

implemented in Assembler. For existing verification tools, such a combination

of languages is not manageable. We present an approach that allows verification

of such so called mixed programs. For the presented verification task, we are

interested in correctness of function specifications.

We want to verify memory safety and functional properties for mixed pro-

grams from an industrial setting. Thus, we need a machine readable semantics

for Assembler. Existing Hoare logics for Assembler are complete, but they are

too unwieldy and thus not feasible for our purpose. The level of abstraction

must be precise enough to reason about the program correctness. On the other

hand, it must be abstract enough to allow reasoning in realistic time. Our so-

lution is a semantics for a low-level programming language (Assembler) in a
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high-level language (C) (presented in Section 3.4), together with a processor

model (presented in Section 3.3). Thus we can reuse verification tools for the

high-level programming language (described in Section 1.3).

Like in all mixed language problems, the different type and variable systems

prevent a common annotation language. Our approach uses two kinds of as-

sertions. The first one is for the call of Assembler functions from C programs.

These assertions are expressed in terms of C variables and serve as function

contracts. From C point of view, the function can be seen as {p}f(e){q}, where

p represents the precondition, q represents the postcondition and f(e) is the

call to the function implemented in Assembler. p and q can be used for mod-

ular reasoning in the high-level program. The second one is for Assembler

programs implementing the function. In fact, our assertions are expressions

that refer to C variables for a new program, {p′}simulated body{q′}, where p′

and q′ represent the corresponding pre- and postconditions of the C description

and simulated body simulates the original Assembler program. p′ and q′ are

evaluated in a C state (called abstract processor state), which corresponds to

the processor state in a simulation. The translation of the pre- and postcondi-

tions is completely automated (described in Chapter 4). The simulated body

is expressed with the help of the introduced semantics and is a translation of

the original Assembler implementation (shown in Chapter 2). With the same

method, we can also handle the call of C functions out of Assembler programs.

The assertion pairs are then translated in the other direction, where modular

reasoning is used in the Assembler program. The C code verification is used to

show that the C implementation meets the specification.

As case study we use the Microsoft Hypervisor that is already shipped. We

have developed specifications of the Assembler functions. Our approach was

used to verify that the specifications are met by the implementations and also

to verify C programs calling them. This shows the usability in a real scenario

with mixed programs, not only small examples. Because of copyrights, we only

present a function that does not fall under the non-disclosure agreement and a

simple example similar to a function in the Hypervisor in Chapter 5.

1.5 Limitations of the Approach

Our focus is on handwritten Assembler code. This means on one side more

special instructions that are not used in translated code resulting from compilers.

On the other side there are no optimizations that introduce difficult control

flow. Assembler code written by developers usually has a reducible control flow

because they are thinking in structures like loops. Assembler allows irreducible

control flow but this is only used by compilers for optimizations.
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Our approach considers Macro Assembler instead of pure Assembler. The

advantage is the presence of labels in the code. This means we do not have to

deal with addresses but Assembler jumps do use labels as goal. Dealing with

addresses is difficult because instruction size and other address related informa-

tion is introduced by the compiler. The addresses also depend on optimizations

made by the compiler.

For the instructions, we are able to deal with general purpose instructions

(like arithmetic operations and stack operations). We have also implemented

special instructions like cpuid or hlt. We have not implemented instructions

from the floating point or the multimedia extension units, because they are not

used in the Microsoft Hypervisor. This is not a restriction of the approach, they

can be added if needed.

We are not able to deal with instructions that access memory from another

thread. The reason is that we assume that the address translation works in the

same virtual memory area. This assumption would restrict the virtualization

in the hypervisor. For guest execution, there exists an extra instruction. Our

implementation of this instruction assumes that the guest is working in isolation

and can not change the memory of the hypervisor. This assumption has to

be discharged separated from our work. A complex proof including address

translation of the processor and multiple page tables is necessary as well as

arguing about the memory allocation for the guest systems. Context switches

of different threads are also not possible with our approach because the address

spaces of both threads would have to be used.

1.6 Related Work

In the following subsections, related work is presented for both: (1) verification

of Assembler programs and (2) verification of micro kernels. For this work, both

are important because our practical work was done on Microsoft Hypervisor that

can be seen as a special micro kernel.

1.6.1 Assembler Verification

For the verification, low-level languages like Assembler are much more compli-

cated than high-level languages like C. The complexity of the language comes

from different facts. First of all, the program is unstructured. There exists no

native loop but conditional jumps and labels which together represent the loop.

Program verification uses the structure of a program to introduce invariants or

frame conditions. If there does not exist a structure most of the existing veri-

fication tools do not work properly. Another fact that increases complexity is
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the polymorphic use of numbers and bitvectors. Although this is also part of

high-level languages, it is usually neglected in program verification. Assembly

instructions always have this polymorphic use of registers. Bit shifts and logical

Bit operations are widely used in Assembler and cannot be neglected at all.

Besides the level of complexity coming from the language itself, there is

also a difference in the level of complexity coming from the specification and

the verification properties used. Depending on the demands of the domain there

can be type safety checks, memory safety checks (memory must be allocated, out

of bounds checks for arrays etc.) or pre-/postcondition pairs representing the

functional properties of a program. Invariants can either be found automatically

or have to be given as part of the specification. More detailed verification also

means more computational effort. The increase in verification time can be huge

depending on the programs to check.

Existing Assembler verification programs usually have simple specifications

to reduce the complexity of the system. Boyer and Yu [12] verified MC68020

assembler programs. They used the theorem prover Nqthm as their verification

tool; they formalized the MC68020 as Nqthm theories, thus in effect giving

an interpreter for the processor; assembler programs are then translated into

expressions over this special logic. Vx86 differs in various dimensions from this

early work, Vx86 works on the much more complex x86 architecture, Vx86

incorporates contracts (including framing) into the Assembler, Vx86 uses an

automatic theorem prover (ATP), Vx86 has been used to verify parts of a real

industrial strength operating system.

Another approach to guarantee that Assembler programs are safe are Typed

Assembly Languages (TAL) [19, 53, 37, 14, 38, 67]. TALs are low-level, stati-

cally typed target languages. TALs guarantee type safety, which typically im-

plies memory safety. However, TALs do not guarantee arithmetic safety, call

safety, interrupt safety or other functional properties. Furthermore, TALs are

often idealistic Assembler languages, they are only used as target languages for

compilers; as such they do not deal with the whole instruction set of the pro-

cessor. We, however, also have to deal with instructions like HLT or CPUID

and the virtualization instruction set.

Proof carrying code (PCC) has a similar goal [56, 29, 31, 30, 57]. Instead

of defining type safety for Assembler code, PCC adds proofs to untrusted As-

sembler files, which establish certain properties. The receiver of the untrusted

code is then able to use a simple and fast proof validator to check that the

proof is valid and hence the untrusted code is safe to execute. Like TAL, PCC

focuses on memory safety; it is not a general verification architecture. There

are no functional contracts as needed for real world applications like the Mi-

crosoft Hypervisor. In personal communication with the authors we found out
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that using our approach could be interesting for PCC. Contracts are introduced

into the binary code by the PCC compiler. There exists a tool to discharge

those contracts later on. The current tool uses a weak proof system. Using our

approach, the proof system is much stronger and could discharge more difficult

contracts. On the other hand, it is not clear whether our approach can handle

the control flow resulting from the compilers. Optimizations of compilers can

introduce irreducible control flow. Our translation approach would not be able

to deal with that.

Verification on source code and verification on binary code is also a question

of trust. Verification on the binary level means that all compiler optimizations

are also verified. The disadvantage is that it is not clear how to verify more

difficult contracts on this level. Annotations from the high-level language do

not refer to the binary representation and thus would have to be compiled in

a difficult way. Verification on source code level means to assume a correct

working compiler. This is the case for all software model checkers that are

discharging annotations on source code. As adavantage they can deal with more

difficult annotations refering directly to high-level constructs. Model checkers

are already used on the C source code of the Microsoft Hypervisor.

Besides PCC and TAL, there exists a lot of verification on binary code.

They all share the idea of verification after the compiler. They also share the

limitation of very weak proof systems. They share the lack of modular reasoning

for high-level languages, which is not needed if the whole program is compiled

to one binary. They do not support functional specifications. There exists

for example an extension of Codesurfer, called Codesurfer/x86, presented in

[3, 6, 63, 4, 5, 35, 52, 62]

1.6.2 Hypervisor and Micro Kernel Verification

Up to our knowledge there does not exist a project aiming for the verification

of a hypervisor. But a hypervisor can be seen as a kind of micro-kernel, ex-

tended with virtualization capabilities. Various projects aim for micro-kernel

verification. The CLI stack project in the late 1980s [11] was the first project

focusing on the pervasive verification of computer systems. In total, the system

consisted of four levels: starting from a verified FM 8502 microprocessor via a

simple Assembler language up to a verified operating system.

Verisoft [34, 24, 2, 22] is in spirit similar to the CLI project. Verisoft de-

veloped machine-models for Assembler, small step and big step semantics for

more abstract programming languages, and programs for devices, kernels, op-

erating systems and applications. However, the Verisoft project only dealt

with idealistic processors, inline Assembler, and OS. The L4.verified project



18 CHAPTER 1. INTRODUCTION

VC

Z3

BPL

Prelude

C

ASM

Instruction
Semantics

Processor
State

Vx86

VCC

Boogie

Figure 1.4: Data flow in our verification process

[39, 44, 43, 42, 41] aims at the formal verification of an industrial strength im-

plementation of an L4 micro-kernel, which is highly optimized for the ARM

platform. While the L4.verified project tries to do low-level C verification, it

has – to the best of our knowledge – not yet started verifying Assembler code.

Verisoft and the L4.verified project use the same verification technology. Both

systems use the interactive theorem prover Isabelle and a Hoare calculus em-

bedded in Isabelle [64] to verify properties of the micro-kernel. The automation

was slightly improved with the integration of automatic tools that can verify

parts of the proof obligations [23]. However, the resulting system does not yet

achieve the automation level we achieved.

1.7 Structure of the Thesis

Our approach is to use existing C tools for Assembler verification. An overview

on how the tool chain will work can be seen in Figure 1.4.

First of all, the Assembler files have to be translated into a format parsable

by a C compiler. This is done by a syntax translation from Assembler to C,

which is described in Chapter 2. This translation is implemented in the func-

tional programming language F# (pronounced “F sharp”). It translates each

Assembler instruction into a call of a function. The meaning of the instructions

is provided by separate files that contain a C implementation for each function.

These functions access the internal processor registers as C variables (the proces-
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sor model). In Chapter 3, we present the processor model and show exemplary

implementations of the Assembler instructions. The separate files are included

in the automatically generated code. After this step, a C compiler would be able

to compile the “Assembler” file (it is now a C file with a processor simulator)

into a binary or executable. Executing this binary would not yield the same

result as executing the original Assembler code, but it would only change the

virtual processor state. This is also described in the chapter mentioned.

The previous translation enables us to verify pure Assembler code. However,

in mixed programs, where some parts are written in C language and other

in Assembler there is another important need. For the transition from C to

Assembler the calling conventions have to be taken into account and the function

specification of the functions called from C and written in Assembler have to

be translated to the virtual processor model. This is discussed in Chapter 4.

We evaluate our approach on example code in Chapter 5. Due to copy-

right restrictions, we only present a function that does not fall under the non-

disclosure agreement and a simple example similar to a function in the Hyper-

visor.

In Chapter 6, we conclude what was achieved. Furthermore, we mention

future work: parts that are not yet finished and also some ideas in which direc-

tion this work could be extended. A short overview of the history of the x86

architecture is given in Appendix A. It should show the interested reader why

some of the (sometimes) strange instructions exist.



Chapter 2

Translation of Assembler

into C Programs

For our verification approach, we have to translate the Assembler input into a

C compliant file for the verification tool. The translation has two main parts: A

syntactical translation of the Assembler instructions to C function calls, and a

translation of the operands. An operand can be a processor register or memory

access. A memory access is translated to a corresponding pointer dereference,

possibly using pointer arithmetic. A processor register is translated to an access

of the virtual processor state. The syntactical translation consists of three

phases: (1) a parser that reads in an assembler input file and produces a syntax

tree, (2) an analysis phase that translates the operands and detects loops, and

(3) a pretty printer that produces legal C code out of the syntax tree.

In the first phase, the parser generates a syntax tree that abstracts unnec-

essary information like empty lines and comments. Although this syntax tree

is generated out of an Assembler program, we interpret the tree as a C pro-

gram, i.e. the instructions are interpreted as function calls. In the second phase

tree transformers are used to change memory accesses into pointer arithmetic,

change back jumps into while-loops, and resolve other Assembler constructs

that are not available in C. In the third phase, the pretty printer generates a C

program from the syntax tree. It introduces type casts and parenthesis to make

the output C compliant code.

Our current implementation does not support all Assembler constructs. For

example, we do not support all prefixes (like rep) or floating point operations.

This is because they are not used in Microsoft Hypervisor. The missing parts

can be easily implemented in the future if our approach is extended to programs

that need them. Our main goal at the moment is to verify the Assembler code

20
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of the Microsoft Hypervisor.

2.1 Microsoft Macro Assembler Notation

We are using the Assembler syntax of the Microsoft Assembler that follows

the Intel notation. A line in the Assembler file consists of an optional label,

followed by an optional instruction and an optional comment, i.e., a line can

also be empty. Most instructions are of the form mnemonic destination, source

where mnemonic is the name of the instruction and destination and source are

the operands. An operand can be a register, a memory access, or a constant

expression. The destination operand can serve as input and output, while the

source operand is always input. Some instructions have a different number of

arguments, e.g., a jump instruction has a label as its single operand. A register

operand is the name of a processor register, see Chapter 3. A memory operand

can also involve a limited amount of pointer arithmetic, see Section 2.3.2).

For readers familiar with GNU Assembler syntax that is derived from AT&T

notation, a short description of differences should help in understanding the

Assembler examples. The general shape of the AT&T instruction format is

mnemonic source, destination, whereas the Intel syntax swaps the operands.

The register names in AT&T syntax are prefixed by a “%” sign, which is omitted

in Intel syntax. If we want to store a copy of the value from register “rax” into

the register “rbx”, one would write in AT&T notation mov %rax,%rbx, whereas

in Intel notation this looks like mov rbx, rax. Literal values in Microsoft syntax

are written as decimal numbers or optionally as hexadecimal numbers followed

by an “h”, without the prefix “$” that is used in AT&T syntax. The number

“$0x10” is written in Intel notation as “10h”.

2.2 Parser

We use a parser generator to not invent everything from scratch. A parser

generator takes as input a grammar, e.g. in Backus–Naur form, and produces a

parser. Figure 2.1 on the following page presents the (simplified) grammar

used for Vx86. We let the preprocessor of the Microsoft Macro Assembler

run before the parsing process starts. The parser takes the preprocessed file

as input, which means that macros from included files are inlined. Thus, we

do not have to assemble the information from multiple Assembler files. The

preprocessor also catches illegal code and produces appropriate error messages.

For example, it will detect, if an assembler instruction is used with an illegal

prefix (the supported combinations are described in the manuals). Also not



22 CHAPTER 2. TRANSLATION OF ASSEMBLER INTO C PROGRAMS

〈digit〉→ 0-9
〈hdigit〉→ 0-9|a-f|A-F
〈letter〉→ a-z|A-Z|
STRING→ (〈letter〉| 〈digit〉)+
NL→ \n|\r \n
REQUIRES→ ;ˆ requires ( STRING )
ENSURES→ ;ˆ ensures ( STRING )
WRITES→ ;ˆ writes ( STRING )
SPEC→ ;ˆ spec ( STRING )
INVARIANT→ ;ˆ invariant ( STRING )
ASSERT→ ;ˆ assert ( STRING )
ASSUME→ ;ˆ assume ( STRING )

〈Prog〉→ STRING equ 〈Para〉 NL 〈Prog〉| ; NL 〈Prog〉|
. altentry STRING NL 〈Prog〉|
REQUIRES NL 〈FunSpec〉 STRING proc NL 〈StmtList〉 eproc NL 〈Prog〉|
ENSURES NL 〈FunSpec〉 STRING proc NL 〈StmtList〉 eproc NL 〈Prog〉|
WRITES NL 〈FunSpec〉 STRING proc NL 〈StmtList〉 eproc NL 〈Prog〉|
STRING proc NL 〈StmtList〉 eproc NL 〈Prog〉|
extern STRING : STRING NL 〈Prog〉| extern STRING : proc NL 〈Prog〉|
STRING qword 〈Para〉 NL 〈Prog〉| NL 〈Prog〉| EOF

〈FunSpec〉→ NL 〈FunSpec〉| REQUIRES NL 〈FunSpec〉|
ENSURES NL 〈FunSpec〉| WRITES NL 〈FunSpec〉

〈Expr〉→ 〈StmtList〉

〈StmtList〉→ 〈Statement〉 NL| 〈Statement〉 NL 〈StmtList〉

〈Statement〉→ | 〈Instruction〉| 〈Label〉| 〈Label〉 〈Instruction〉| SPEC| ASSERT|
INVARIANT| ASSUME

〈Instruction〉→ lock 〈Instruction〉| STRING| STRING 〈Para〉|
STRING 〈Para〉 , 〈Para〉| STRING near 〈Parameter〉

〈Label〉→ STRING :|@:

〈Para〉→ STRING| @b| @f| INT64| [ 〈Para〉 ]|
byte ptr [ 〈Para〉 ]| word ptr [ 〈Para〉 ]|
dword ptr [ 〈Para〉 ]| qword ptr [ 〈Para〉 ]|
byte ptr 〈Para〉 [ 〈Para〉 ]| word ptr 〈Para〉 [ 〈Para〉 ]|
dword ptr 〈Para〉 [ 〈Para〉 ]| qword ptr 〈Para〉 [ 〈Para〉 ]|
〈Para〉 / 〈Para〉|〈Para〉 * 〈Para〉| 〈Para〉 + 〈Para〉|〈Para〉 - 〈Para〉|
( 〈Para〉 )|NOT 〈Para〉| Para [ Para ]|
rax|rbx|rcx|rdx|rdi|rsi|rbp|rsp|r8-r15|cr0-cr8|
eax|ebx|ecx|edx|edi|esi|ebp|esp|r8d-r15d|
ax|bx|cx|dx|di|si|bp|sp|r8b-r15b|
al|bl|cl|dl|dil|sil|bpl|spl|r8l-r15l|
cs|ds|es|fs|gs|ss|dr0-dr7|xmm0-xmm15

Figure 2.1: Grammar of x86 Assembler in Backus–Naur Form
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every operand can be used with every instruction, for example, it is not allowed

to copy from a debug register into another debug register. We do not need to

check for these errors because the preprocessor already reports them. The given

grammar from Figure 2.1 on the preceding page is not literally the one we use

for the parser generation. For example, the constructs that are ignored by our

tools like comments, procedure headers, etc. are missing in the grammar. In

our real implementation, the corresponding grammar rules are included. They

make the grammar huge and do not help in understanding the approach or the

grammar.

Assembler files include information that is not necessary for the verification

of functionality. For example, most of the functions have an artificial data block

that makes sure the alignment is best for performance. Those performance issues

are not important for our verification purpose and can be ignored. Assembler

also has some constructs that are not available in other languages. For example,

a function can have multiple entry points. So one function can have an entry

point at the beginning and an entry point with a different name at a later point of

the code. A developer can then call one of the two versions by referring to either

of the entry points by their name. Fortunately, in the Microsoft Hypervisor such

things are not used. If they occurred, one would have to copy the body twice in

the C code, because C does not know any construct that has such a behavior.

Mainly, the Assembler file consists of constant definitions, annotations, func-

tion declarations (also external C functions), function bodies, and ignorable

things. A function body consists of lines which can have labels, instructions,

operands, and comments. Labels and comments are optional. All instructions

have a fixed number of operands. The number of operands for each instruction

can be found in the Intel instruction manuals.

The VCC function specifications, i.e., the pre- and postconditions as well

as writes clauses, are defined between the parameters and an optional func-

tion body. In the Assembler files of the Hypervisor, the function headers are

introduced by macros (also introducing framing), and they are expanded in a

preprocessing step. The definition of the function specification cannot be placed

at the same position as in the C version. Instead it should appear before the

start of a function. There can be additional comments, but no constant defini-

tion may be written between the annotations and the function header.

2.3 Syntax Tree Transformer

To translate a language into another one can use a common syntax tree that

supports the constructs of both languages. Syntax tree transformers can then

be used to change the constructs that are specific to the input language into
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int i = 10;
while ( i > 0)
invariant ( i >= 0)
{

5 i−−;
}

Figure 2.2: Example for a C loop with a simple loop invariant

semantically corresponding constructs of the output language. For some pairs

of languages, such a translation can be easily developed. An example is a

syntax translation from Java to C++. Mainly libraries are different for those

languages. Some of the details have to be adapted. But most part of the

languages is the same, as well syntactically as semantically. If (like in operating

systems) no libraries are used and the languages are not too far away (like

functional languages and imperative languages, object oriented languages etc.),

the translation can be done with a syntax translation where some details have

to be adapted. A change for example from functional languages to imperative

languages cannot be done in such a simple way, because many constructs of one

language result in very complex constructs in the other language.

Our abstract syntax tree serves as an intermediate representation for the

translation from Assembler to C. The syntax tree produced by the parser still

contains Assembler constructs that have no direct correspondance in C. The

task of the syntax tree transformer is to translate these constructs to C.

The syntax tree is much simpler than the original Assembler file. It consists

of constant definitions (which map a name to a number), variable definitions

(which are real C variables), function declarations (which can be C or Assembler

functions that are not located in the current file), and function definitions. A

function definition contains a function body consisting of a list of statement. A

statement is an annotation, a label, an instruction, a jump, a break, or a loop

statement. An instruction contains a function name (the Assembler mnemonic)

and a list of operands. The loop statements, introduced by a loop detection

algorithm, have no direct correspondance in Assembler.

2.3.1 Loop Detection

One difference between Assembler and C is the way loop invariants are given.

C annotations usually have loop invariants between the loop statement and

the loop body, see Figure 2.2. Assembler has no native loop statement. The

corresponding construct would be a label and a conditional jump to this label

later in the code, see Figure 2.3. However, the C verifier does not allow invariants
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mov rax, 10;
LoopStart:
;ˆ invariant (rax >= 0)

4 dec rax
jnz LoopStart

Figure 2.3: Example for an Assembler loop with a simple loop invariant

mov (rax, 10);
LoopStart:

while (1)
invariant (rax >= 0)

5 {
dec (rax);
if ( rflags.zf == 0) break;

}

Figure 2.4: The translation of the Assembler example from Figure 2.3

attached at labels. Thus, we introduce an artificial loop. The label is now not

only a label, but also the place for a loop entry. Now, we can annotate the loop

with the given invariant.

The loop detection is very simple. For every jump instruction it is checked,

whether the label has appeared earlier in the code. If that is the case, we

introduce a loop that starts at the label and extends up to the jump instruction.

If the jump is conditional, then it is replaced by a break for the loop with

the negation of the condition, see Figure 2.4. This simple loop detection was

sufficient for all Assembler function that occur in the Microsoft Hypervisor code.

2.3.2 Memory Operands

Memory access in Assembler is done with the help of an address stored in a

register. In C, this could be seen as a pointer with the address given by the

value of the register. This memory is then read or written, the counterpart in

C is a pointer dereference. A problem here is the pointer arithmetic that differs

between Assembler and C. Some memory accesses do not just access the address

given by a register, but add offsets given by a constant to this address. This

does not seem to be very difficult at the first sight, but in reality this causes a lot

of trouble. As an example, consider the memory operand 16[rax] in Assembler

notation. Naively one may translate it to something like ∗((uint64∗)rax + 16),

where uint64 would be the type for a 64-Bit number. However, this leads to

the wrong address. In Assembler, the address would be the value stored in

rax + 16. In C, the address would be the pointer stored in rax + 8 times 16
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(where 8 is the size of a uint64 in bytes). Having some parenthesis around the

computation would make the C program right: ∗(uint64∗)(rax+16). But then,

the verification tool used was not able to detect a relation between specified

memory locations in pre- and postconditions, and the accessed memory. In

VCC, pointer arithmetic is only handled correctly if the addition is performed

on pointers not on integer values. Therefore, rax has to be cast to a pointer

before the addition can happen. This means, we have to adapt the constants

in the computation. This again means that we have to analyze the syntax

tree to detect the width of memory access and then divide by this number. In

our example, 16[rax] would translate to ∗((uint64∗)rax + 2). Although it does

no longer look like the same address, it is correct now. Such casts are often

introduced automatically in the transformer.

2.4 Pretty Printer

The pretty printer is a recursive walker that produces a string for every element

in the syntax tree. For every node in the tree it outputs the corresponding C

code. For example, for a loop statement it outputs the while header and calls

itself recursively on the loop body. Similarly it handles the other constructs like

labels, jumps, breaks and instructions.

An instruction in Assembler consists of an opcode and a number of optional

operands. For our C representation, all instructions are translated to function

calls. The number of parameters depends on the instruction. The instructions

do not have a return parameter, they are functions from a global processor state

into a new global processor state. To make the printer as simple as possible, we

do not analyse the instructions themselves, but treat them as opaque strings.

Illegal instructions are not checked, but cannot slip through and do any harm.

First of all, an illegal instruction would be translated into a call to an undeclared

function in the C code. This means that VCC complains about an undefined

function. But even this error message should not occur, because the preprocessor

would detect them before the translation.

In Assembler, there are also prefixes. Prefixes are used to switch certain

processor paths. The only prefix that is used in the Microsoft Hypervisor code

base is the lock prefix, that disables parallel updates to the same memory

address. In a single threaded environment, this does not change the meaning

of the instruction. Only caching algorithms are affected by this prefix. For

concurrent programs, this prefix only restricts the behavior further. A locked

instruction means that there is no interruption of the execution and no parallel

instruction can access the same memory until this instruction has finished. This

means, the possible schedulings of threads are limited by the prefix. The C
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verifier proves the program correct for arbitrary schedulings. This means that

if the C verifier can prove the program without the lock prefix correct, the

program with the lock prefix is also correct.

After the syntax translation, there is still no semantics defined for the trans-

lated Assembler instructions. Even the registers are not defined in this step.

Those are part of the processor model, described in Chapter 3. The processor

model has to be included in C style to the translation to feed it into a C com-

piler or verification tool. Therefore, the processor model is implemented like

a simulator, simulating the “Assembler” instructions (they are now C function

calls) on global variables (representing the original processor registers).



Chapter 3

Abstract State for x86

Processor

Assembler is a very low-level language. It is close to the machine instruction set.

To give its semantics, it is therefore necessary to understand the processor in

detail. Nevertheless, the machine model does not have to include all details for

this purpose. For example most of the cache architecture does not show up in

our model. The caches should not be visible to the programmer, it only affects

the speed of the machine and speed is not handled by our tool. On the other

hand, it is not enough to simply represent the visible and well known registers of

the processor. Many instructions also change the internal state of the processor

and the results of the next computations depend on those changes. This means,

we also have to represent the internal registers of the processor. In this chapter,

we will give an overview about the Intel x86 Architecture as well as the model

used for it.

3.1 The x86 Processor Architecture

The x86 has been extended over many years and is very complex concerning

the number of instructions and the number of internal registers as well. A

short overview about the history is given in Appendix A. With every generation

of processors, new instructions were introduced. Nowadays, some of the old

instructions are not used anymore because there are newer instructions that can

simulate multiple of the old instructions. Old and unused instructions are not

taken out of the instruction set because of compatibility with old programs. This

means that the instruction set is unusually huge compared to other architectures.

For our processor model, a processor configuration has to be defined. The

28
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processor configuration consists of a memory and a processor state, namely a

number of registers. The registers may be changed directly by the instructions,

but they can also change indirectly by side effects of instructions. Moreover, the

values of the registers can have many different meanings: from a hardware point

of view they are bit vectors, but instructions also use them polymorphically

as numbers and as pointers for memory addresses (although from a hardware

point of view, nobody would call them “pointer”). Processor instructions can

change the state, in particular one or more registers or memory locations. For

the verification it is essential to have a representation of the registers and the

memory locations. The instruction’s behavior can be described by the changes

on that representation.

3.2 Concrete Processor State

The first part of the processor model is the memory. There are lots of different

design decisions in the memory model, and x86 architecture has many different

access modes. First of all, memory can be accessed with 8-, 16-, 32- or 64-Bit

width. This means, the processor only reads the given bits out of the memory

and writes them into a register. The addressing of the memory can be done in

different modes again. We will present two different versions of segmentation

and the flat memory model.

Segmentation, general The processor architecture supports a so called seg-

mented memory. Segmentation means that the memory is not accessed as one

big piece of memory, but is divided into chunks. Those chunks are called seg-

ments. In those segments, the memory can then be accessed with a so called

offset, relative to the segment start. With this trick, 64-Bit memory can be ac-

cessed with two 32-Bit registers: one gives the segment (such to say the higher

32-Bits) and one gives the offset (such to say the lower 32-Bits).

For a better understanding, we will give an example for addressing pixels

in a picture. If you want to refer to a single pixel in the picture (for example

the color), you have different options. One possibility is to count the pixels,

such that each pixel has a unique number. This would correspond to a direct

address. But usually, referring to a pixel would be done with a combination of

column and row numbers. You can give a row (this would correspond to the

segment in our memory model), and in this single row we need a column to

find the concrete pixel (this corresponds to the offset in our memory model).

Transcoding the two different addressings into each other can be done by simple

algorithms.
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segment

offset

Figure 3.1: Segmentation of memory

16-Bit segment 0 0 0 0

+ 16-Bit offset

20-Bit address

Figure 3.2: Intel Segmentation in Real Mode



3.2. CONCRETE PROCESSOR STATE 31

Segmentation, special x86 mode The oldest addressing mode in x86 is

segmented, it is called “Real Mode”. In oldest days of the architecture, only

16-Bit registers were available. To be able to address more than 64k bytes of

memory (in this case 1024k), a trick was used. The address of the desired byte

was given by a pair of registers, where one is a so called segment and one is

the so called offset. With two 16-Bit registers, one could address 32-Bits if

they are combined directly into a number. But Intel used another design: they

multiplied the segment by 16 (adding four 0 bits) and then added the offset

register as shown in Figure 3.2 on the facing page. This leads to something more

than 20-Bits, because there is an overlapping part of the two registers. Original

processors had an overflow, so the highest possible numbers were wrapped again

(modulo 220). It is easy to compute a linear address from a segment/offset

pair: address := 16 ∗ segment + offset . In the other direction, one possibility

is segment := address[19 : 16]012 and offset := address[15 : 0]. Note that

computing segment/offset pairs is not unique, because the two numbers do

overlap in the address translation. The suggested formula is only one of the

possibilities.

Flat memory model There is also a flat memory model, where all memory is

accessed as one piece of memory directly. This is the only memory access mode

we are handling here, because the other modes are not used in the Microsoft

Hypervisor (and its verification is our main goal). In this mode, memory access

can be seen as a 64-Bit pointer access in C notation. Note that a 64-Bit pointer

does not mean a pointer to a 64-Bit number, but refers to the bits of the memory

address. The memory address corresponds to a pointer value in C and an access

to the memory address corresponds to a pointer dereference in C. Thus we can

use a C verification tool if it supports 64-Bit wide pointers (most verification

tools do not care about the pointer size). The flat model is the easiest access

mode, because no complicated computation has to be performed before getting

the address.

Processor Registers The more voluminous parts are the registers of the

processor. The complete processor model consists of about 160 registers. We

will only give an overview, thus only mention the most important ones at this

place. The general purpose registers are shown in Table 3.1 on the next page,

all other registers are shown in Table 3.2 on page 33.

There exist 16 general purpose registers (GPR). They are used for all kinds

of arithmetic, bitwise and memory access operations. When the processor ar-

chitecture was introduced, only 8 of those registers did exist. The registers were

extended to 32-Bit and later on to 64-Bit. The names of them are derived from
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64-Bit 32-Bit 16-Bit 8-Bit
RAX EAX AX AL
RBX EBX BX BL
RCX ECX CX CL
RDX EDX DX DL
RDI EDI DI DIL
RSI ESI SI SIL
RBP EBP BP BPL
RSP ESP SP SPL
R8 R8D R8W R8L
R9 R9D R9W R9L
R10 R10D R10W R10L
R11 R11D R11W R11L
R12 R12D R12W R12L
R13 R13D R13W R13L
R14 R14D R14W R14L
R15 R15D R15W R15L

Table 3.1: General Purpose Registers of the x86 Architecture

the old 16- and 32-Bit registers of the x86 architecture. All registers can be

accessed as 64-, 32-, 16-, or 8-Bit values. The names and availability can be

seen in Table 3.1. We implemented only the 64-Bit versions of the registers.

All changes on the smaller portions of the registers are described with respect

to the 64-Bit registers. Normal behavior for x86 processors is a zero extension,

even if one would expect sign extension. Note that in this case, a negative 32-

Bit number will result in a positive 64-Bit number. This is part of the Intel

architecture and also the instruction semantics in our model.

Beside those general purpose registers, there exist a lot of additional regis-

ters. First and most important is the RFLAGS register that is a bit vector

where every bit represents an event of the last computation. For example, the

bit 6 of the RFLAGS register is the zero flag (abbreviated ZF ). It is set if the

result of the last computation was equal to 0. Conditional jumps check the flag

register to decide whether to jump. In Assembler it is not possible to condi-

tionally jump depending directly on the value of some general purpose register.

Instead one has to use an additional instruction that changes the flag regsiter.

There are 6 segment registers (CS, DS, SS, ES, FS, and GS). They

are used in segmentation mode where an address does not consist of just a flat

number but of a pair of segment and offset. Those two values are then combined

to compute the linear address. In our model, they do not have a meaning because

we are working in flat mode. Nevertheless, they have to be modeled because

the processor state can be saved or loaded to or from memory. The same is true

for floating point registers (FP), registers of the multimedia extension (MMX),
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name size bit-wise access
RFLAGS 64 yes

CS 64 no
DS 64 no
SS 64 no
ES 64 no
FS 64 no
GS 64 no

FP0-7 80 no
MMX0-7 64 no
XMM0-15 128 no

GDTR 80 no
IDTR 80 no
CR0-8 64 yes
DR0-7 64 no

Table 3.2: Special Purpose Registers and their size in the processor

and registers of the streaming single-instruction multiple-data extensions (SSE)

called XMM. In the Microsoft Hypervisor they are not used except to save the

processor state to memory.

Some registers describe the descriptor state of the guest operating systems.

The global descriptor table (GDTR), local descriptor table (LDTR), and in-

terrupt descriptor table (IDTR) as well as the task register (TR) do exist but

again the values are not interesting for the Microsoft Hypervisor verification

itself. They are only used if memory is exchanged between two different virtual

address spaces.

Some other registers exist in the non-virtualization mode. There are 5 con-

trol registers (CR0, CR2, CR3, CR4, and CR8) and 6 debug registers (DR0,

DR1, DR2, DR3, DR6, and DR7). They are used for example to control the

debugging mode of the processor. In debugging mode, only one step of the guest

operating system is executed before returning to the hypervisor. Such modes

can be activated by special bits in the registers. Some instructions do use them

to toggle behavior.

3.2.1 Hardware Virtualization

Under a normal operating system, different programs are executed side by

side. Multiple programs are separated from each other by memory manage-

ment. Server processes are often targets of attackers from networks. If one such

server process is hacked, the attacker can reach other processes by executing

operating system functions. To address this attack scenario, important server

processes are executed on different computer systems. If an attacker is able to
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hack one of the processes, it cannot affect the other systems. But with this

separation, another problem occurs. The computers are not very balanced any-

more: some computers are “overloaded” and cannot handle all requests as fast

as they should, while others are “underloaded” so they would have computing

power for other purposes.

Hardware Virtualization was invented to use computer hardware more effi-

ciently. Virtualization allows running different operating systems on just one

physical machine. This leads to a more efficient machine, because the processes

that need processing power can now get the power from other processes that

do not need it. Having the processes in different operating systems can have

different reasons. The security reason was already mentioned. Some programs

run better on special operating systems; so different server processes should not

only be executed on different instances of one operating system, but also of

different operating systems. To get these operating systems running in parallel,

there is one program called hypervisor. This hypervisor manages all operating

systems as so called guests. All guests have their own virtual memory environ-

ment and do not see that they are scheduled. Nowadays, operating systems do

run different user programs at the same time and all programs do have their own

virtual memory. The difference to a hypervisor is that user programs usually

do not have shared access to hardware components except if the access hap-

pens through a hardware abstraction layer of the operating system or a special

driver. Operating systems access hardware directly and thus cannot easily work

with another operating system accessing the same hardware at the same time.

The necessary scheduling is part of the hypervisor. The general idea behind a

hypervisor is inherited from a micro kernel. Micro kernels only have a small

number of hardware drivers and mainly schedule other processes, running with

limited rights. Hardware access in micro kernels is done by processes. That is

also the idea behind a hypervisor.

Writing such hypervisors can be done in pure software, running guests with

the rights of a normal program. In this case, there are restrictions, e.g., the

operating system cannot access hardware directly and it is executed with limited

rights. Operating systems are not written to be executed in such a way, so

the virtualization software has to manage all the differences in the background

without the operating system noticing it. The virtualization software has to

be updated to keep operating systems running with the newest updates and

even then there are sometimes incompatibilities. Another method is to get

hardware support. In this case, a more privileged mode than the one for a

normal operating system is introduced. A guest operating system can now run in

the original system layer. The hypervisor has even more privileges, for example

on the memory allocation. The guest operating system does not see that it is
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less privileged now. Memory access is not done like in the original system layer,

but with an additional translation and an additional page table that a guest

does not see or know of. The memory allocation is now done with an additional

(invisible) pagetable, using so called nested page tables. The hypervisor can

set wakeup events, such as invalid instructions (changing to the virtualization

mode), interrupts and so on. Many additional administrative data structures

are introduced in the software (hypervisor) and in hardware (processor) to hide

the differences of the execution.

There are two concurrent implementations of hardware virtualization by

AMD and Intel. They differ not only in the names of the instructions but also

in the behavior and the processor state. At the moment, we provide only a model

for the AMD virtualization. But the Intel architecture should be representable

in a very similar way. We implemented the AMD version because it is older and

thus the implementation in the hypervisor is expected to be more mature.

3.3 Abstract Processor Model

For the verification, we create an abstract model of the physical (concrete)

processor. The concrete model consists of a set of bitvectors, called registers.

We created a model for this that represents this concrete processor state in a

programming language. This model can then be used for verification of the

assembler programs. In our concrete scenario, we want to use an existing C

verification tool, namely VCC that is used for the C parts of the Microsoft

Hypervisor. The C model of the processor will be called abstract processor

state. It consists of a set of variables containing numeric values. The real

processor instructions change the concrete processor state, while the transition

function presented in Section 3.4 will change the abstract processor state.

The physical registers in the concrete processor state have names, arbitrarily

chosen by the developers. The concrete instructions refers with those names to

the physical registers. We mostly use the same names to access our abstract

state. Thus the semantics of the instructions can be expressed in a very similar

fashion to the descriptions of the processor instructions.

During the work, two different models were implemented. The first imple-

mentation was simple, because it was very close to the concrete state. For

every register there is a global variable with the same name. This allows for

the specification to constrain the values of registers in the assembler code. In

the translated version this specification refers to the corresponding variables in

the C model. Also the translated C version of the code refers to these global

variables and looks very similar to the original Assembler version.

In the first implementation, only arithmetic registers were modeled com-
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uint64 R[16];
2 SegReg SR[6];

uint64 kernelGSbase;
SegReg TR;
SegReg LDTR;
DescTableReg GDTR;

7 DescTableReg IDTR;
CtlReg0 CR0;
uint64 CR2;
CtlReg3 CR3;
CtlReg4 CR4;

12 CtlReg8 CR8;
FlagsReg RFLAGS;
bool GIF;
EFEReg EFER;
ActivityState activity state ;

17 bool interrupt shadow;
uint08 CPL;
uint64 DR[8];
FPReg FPR[8];
uint128 XMM[16];

22 uint64 RIP;
uint64 oldRIP;
Prefixes prefixes ;
Rex rex;
Opcode opcode;

27 ModRM modrm;
Sib sib ;
uint32 disp;
uint64 imm;
STAReg STAR;

32 uint64 LSTAR;
uint64 CSTAR;
SFMASKReg SFMASK;
SysEnterCSReg SYSENTER CS;
SysEnterESPReg SYSENTER ESP;

37 SysEnterEIPReg SYSENTER EIP;
VmCtlReg VM CR;
IgnNeReg IGNNE;
SmmCtlReg SMM CTL;
VmHSavePaReg VM HSAVE PA;

42 uint64 SVM KEY;
VirtualizationMode vtmode;
uint64 VMCB ADDR;
VmcbCA VMCB CA;
CtlReg0 hCR0;

47 CtlReg3 hCR3;
CtlReg4 hCR4;
PatReg hPAT;
EFEReg hEFER;
PatReg PAT;

52 MTRRcapReg MTRRcap;
MTRRdefTypeReg MTRRdefType;
MTRRphysBaseReg MTRRphysBase[8];
MTRRphysMaskReg MTRRphysMask[8];
MTRRfixReg MTRRfix64K 00000;

57 MTRRfixReg MTRRfix16K 80000;
MTRRfixReg MTRRfix16K A0000;
MTRRfixReg MTRRfix4K C0000;
MTRRfixReg MTRRfix4K C8000;
MTRRfixReg MTRRfix4K D0000;

62 MTRRfixReg MTRRfix4K D8000;
MTRRfixReg MTRRfix4K E0000;
MTRRfixReg MTRRfix4K E8000;
MTRRfixReg MTRRfix4K F0000;
MTRRfixReg MTRRfix4K F8000;

67 IORRBaseReg IORRBase0;
IORRMaskReg IORRMask0;
IORRBaseReg IORRBase1;
IORRMaskReg IORRMask1;
TopMemReg TOP MEM1;

72 TopMemReg TOP MEM2;
SysCfgReg SYSCFG;
ApicBaseReg APIC BASE;
uint64 TSC;
uint64 TSC AUX;

77 CPUID 00000000Reg CPUID 00000000;
CPUID 00000001Reg CPUID 00000001;
CPUID 80000000Reg CPUID 80000000;
CPUID 80000001Reg CPUID 80000001;

Figure 3.3: Abstract processor state
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pletely. Many auxiliary registers were modeled only by a variable storing the

value. However, their effect to other instructions was not modeled. For exam-

ple, in our first model, a processor could claim via its CPUID registers that

it does not support virtualization although it executes virtualization functions.

The values of the registers were chosen nondeterministicly.

Because the first processor model introduces a single global variable for each

register, it can only support one processor. Nowadays, most of the existing

computers have multiple processors or cores in them. This means that multiple

threads can run at the same time. To enable verification for multi-processor

architectures, a processor must be implemented as a datatype. This datatype

can be instantiated for the different threads, and thus a multi-processor system

can be simulated. Note that in a multi-processor system no data structures

have to be shared between the single processors.

In our second model, the processor state is a huge data structure. The

mapping from the concrete state to the abstract state is now done with the help

of a partial function. This function takes as input a register name of the concrete

state and returns the location of the corresponding register in the abstract state.

This partial function is part of the automatic translator that was implemented

in this work.

Note that the “Abstract” Processor Model is not more abstract in the sense

that it stores less information than the Concrete Processor State. Instead, all

information is kept, but it is represented not in hardware but in software. The

word is mainly used to make clear what state we are referring to and was chosen

because in the definition of abstraction it is referred to as a subset, not a strict

subset.

For the rest of this work, we use the notation of the first model. This is

easier to read, because the instance of the data structure does not appear. We

use the register names from the concrete state as the names for the abstract

processor state. In the real implementation, we have different instances and the

additional overhead to select the current instance is handled by the automatic

translation.

3.4 Instruction Semantics

Assembler functions consist of a sequence of Assembler instructions. An instruc-

tion takes as input a processor state and generates a new processor state. In

instruction manuals of Intel and AMD, the changes are described relative to the

concrete processor state. In our verification approach, instruction effects are de-

scribed by C code that manipulates the abstract processor model from Section

3.3. For each Assembler instruction we define a C function. This function may



38 CHAPTER 3. ABSTRACT STATE FOR X86 PROCESSOR

type name abbreviation in mnemonics
8 Bit byte b
16 Bit word w
32 Bit double word d
64 Bit quad word q

Table 3.3: Bit width and their abbreviation

take more parameters than the Assembler instruction to make some information

explicit (for example the segment registers for memory access). This is more

convenient for the instruction specification that is later used in the verification

process.

Some instructions behave very different, depending on the type (memory or

register) of their arguments. In the original description from Intel, the specifica-

tion has many case distinctions. We avoid them by introducing several functions

by coding the type of the destination operand into the name of the function.

The relevant type information is already known by the parser. For example, the

parser can distinguish between memory access and register access, so it produces

not a call to a “mov” function, but to a “mov mem” or a “mov reg” function.

The specifications of the functions are simpler if the type of the destination is

known. In contrast, the source operand can be evaluated completely and can

be given as a numeric value to the function. Thus its type does not need to be

encoded in the function name. We also distinguish the width of the access, as

shown in Table 3.3. A move into a 32-Bit register will then have the instruction

name “mov reg d” in our translation.

In principle, the complete semantics could also be given by the automatic

translation. Instead of introducing a call to a function, the translator could also

inline the code that manipulates the abstract processor state. Our approach

makes it easier to implement a new processor model (either a more precise

model or for another architecture), because the complete model resides in an

external file that does not interfere with the tool sources.

The semantics of the instructions, or in other word the changes made by the

instructions, represent the transition function of the processor. In the hardware

processor, this function takes a concrete processor state and returns a new

concrete processor state. In our abstract model, this function takes as input

an abstract processor state and returns a new abstract processor state. The

abstract processor state is given by a set of registers as shown in Table 3.1

on page 32 and Table 3.2 on page 33 as C variables (see also the complete

C definition in Figure 3.3 on page 36). The semantics of the instruction is

given as a C function, for example mov mem q(x,y) (see Figure 3.4 on page 43).
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Bit name of the flag abbreviation used
0 Carry Flag CF
2 Parity Flag PF
4 Auxiliary Carry Flag AF
6 Zero Flag ZF
7 Sign Flag SF
8 Trap Flag TF
9 Interrupt Enable Flag IF
10 Direction Flag DF
11 Overflow Flag OF

12+13 IO Privilege Level IOPL
14 Nested Task NT
16 Resume Flag RF
17 Virtual-8086 Mode VM
18 Alignment Check AC
19 Virtual Interrupt Flag VIF
20 Virtual Interrupt Pending VIP
21 ID Flag ID

Table 3.4: Flags and their corresponding bits

The translation replaces the Assembler instruction by function calls to those C

functions.

3.4.1 Flags

The register called flags is a bitvector, where every bit has a special meaning

(see Table 3.4). For a complete description, the interested reader can look them

up in the Intel architecture manuals. For simplicity, we will only explain those

bits that are used in the presented instructions.

The bits of the flags register are set by many instructions, according to the

result of the computation. In Assembler, they are mainly used for conditional

jump instructions, which may depend only on the flags. The most important

flags for the Microsoft Hypervisor code are the Zero flag (abbreviated ZF ) and

the Sign flag (abbreviated SF ). The Zero flag is represented by bit 6 in the 64-Bit

flag register, the Sign flag is represented by bit 7. If the result of a computation

is zero, the zero flag is set, and if it is less than zero, the sign flag is set, otherwise

the flags are cleared. The Zero flag computation can be represented with the

following pseudo code:

if a = 0 then

ZF ← 1

else

ZF ← 0
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end if

where ZF represents the Zero flag in the flag register and a is the result of the

computation. The flags are important for example to handle loops, where a

register is used to count down to 0. After every decreasing step, the Zero flag

is set according to the decreasing computation. With a conditional jump, the

code execution can continue, depending on the result. The jump instructions

are described in Section 3.4.7.

The Sign flag is more complicated. In our abstract processor state the regis-

ters are defined as unsigned integers. This means there is no real sign. Hardware

registers are bitvectors that are interpreted in different ways. For example the

bitvector could be interpreted as a signed number or as an unsigned number,

but also as an address in the memory. To represent negative binary numbers,

the bitvector is interpreted as a two’s complement number. In this notation,

negative numbers have a “1” in the most significant bit (in this case the Bit

64). So, the Sign flag is originally not representing the sign of the number but

the most significant bit and is also set if the result of an unsigned computation

is very large. We check that the most significant bit is set by checking the (un-

signed) register is at least 263. Note that we will not use it in the rest of the

work for readability reasons, but the simplified test for a number less than 0.

In the implementation, the test is done with the most significant bit.

In principle, we could define a single function that changes all flags according

to the result. However, some of the processor instructions do not change all flags,

but only parts of them; others set the flags differently, e.g., the sign flag differs

for 32-bit computations. For example logical and only changes Zero, Sign, and

Parity flag (set if the number of set bits in the result is even) according to

the result; Overflow (usually set if the most-significant (sign) bit of the result

differed from the signs of both source operands) and Carry flag (usually set if the

last integer addition or subtraction resulted in a carry out of the most-significant

bit position of the result) are always set to 0, while Auxiliary flag (set if the last

binary-coded decimal (BCD) operation resulted in a carry) is undefined. The

flags have to be changed after every instruction according to the instruction

manuals from Intel or AMD. Therefore, we introduce auxiliary functions for

each flag that sets it according to the result. These functions are called by the

functions implementing the instructions as described in the instruction manuals,

or the flags are set to fixed values if the instruction requires this.

3.4.2 Instruction Pointer (IP)

The instruction pointer (short: IP ) points to the next instruction that will be

executed. It can be changed because of one of three cases:
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• an instruction has been executed, so the IP is increased to point to the

next instruction,

• a jump has been performed and the IP now points to another program

location, or

• a call has been performed (respectively a return at the end of the call)

and the execution jumps to another function.

In our implementation, the IP is not part of the abstract semantics. This

is not because we forgot about it, but we found out that we do not need it.

A description of the reasons for neglecting the IP is presented in the next

paragraphs.

First of all, if we translate the Assembler program into C code, we do not

have addresses. So the IP would not make any sense in this case. To make

it point to something, we would have to translate sizes of the instructions into

labels and use those labels instead of addresses. So all lines of the translated

code would start with a label. For the execution of the next instruction, we

do not need the IP , because in C semantics, the next instruction is “loaded”

automatically, without a pointer explicitly pointing to it. The more interesting

parts are the branching instructions.

If a jump instruction is performed, the processor has to modify the IP reg-

ister, such that the execution goes on at another point in the program. Usually,

programs are not written in pure Assembler language, but in a so called Macro

Assembler. This Macro Assembler allows not only direct jumps to an address

given by a number, but also to labels that are defined somewhere else in the

program. Direct jumps are very complicated, because instructions in Intel As-

sembler do not have fixed length. If, for example, a register access is changing

from 16-Bit to 32-Bit width, the size of the instructions byte code changes be-

cause a prefix is dropped (it was needed for 16-Bit access). Direct jumps are

not used in the complete Hypervisor code, and we have not seen them in other

sources either. Instead, developers do use labels from the Macro Assembler

language. This fact is first of all very interesting and second very helpful for

our translation. In the C language, a construct with labels and jumps is also

provided, namely the goto statement. We can translate each Macro Assembler

label into a C label and each Assembler jump into a C goto. Doing so, we do

not have to access the IP register.

For call and return instructions, not only the IP register is changed. They

also use a special stack frame that is written by the call and restored by the

return. In this stack frame, there are values for the back address to continue

execution there, but also for the stack pointer and other information. Usually,
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this stack frame is not accessed directly, except by viruses and schedulers. Using

the C calling mechanism, the same information is only given implicitly. Having

a return address to continue execution is also done by the semantics of C return

statement. IP does not have to be changed explicitly there; it is changed by

the C instructions implicitly.

Altogether, we decided not to model the IP at all. If somebody wants to

access the stack frame, we would need to introduce a stack frame, which would

be difficult from C code. If a direct jump outside the current function is used,

our implementation would give an error at the moment, and this is not easy to

circumvent, because it is a design decision.

3.4.3 Mov Access

A Mov access instruction assigns a value to a register or memory address. It is

named after the mnemonic of the simplest instruction of the group. The value

can come from a memory access, from a register, an immediate constant, etc.

The destination can be a register or a memory region. It does not change the flag

registers. Note that the instructions have some restrictions on the combinations

of operands that are possible. For example, it is not possible to read from a

debug register and write to another debug register. We do not care about the

restrictions, because we use a preprocessor before our tool that already checks

for those combinations.

An instruction mov rax, rbx for example will copy the value from rbx into

register rax:

rax← rbx

Memory access is translated by the syntax translation (before this step) to

pointer analysis in C style. No adaptations have to be introduced at this point.

We denote memory access by writing the memory address in square brackets

“[” and “]” as it is done in Assembler. This corresponds to a pointer access in

C, where the memory address is given by a variable of a pointer type and the

access to the cell is done by dereferencing with a “*” before the address Here is

an example mov -instruction that will copy the value stored in register rbx into

the memory cell refered to by rax (mov [rax], rbx):

[rax]← rbx

The specification and the C implementation for a memory write access is given

in Figure 3.4 on the facing page. The actual writing is implemented in an extra

function because other instruction implementations reuse this function.

From here on, we will also refer to the parameters of an instruction with let-

ters a, b and so on. So the general mov instruction would be:

a← b
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void mov mem q(SRIndex sreg, uint64∗ offset, uint64 data)
maintains(thread local(offset))
maintains(mutable(offset))
writes(offset)

5 ensures(∗offset == data)
{

∗offset = data;
}

Figure 3.4: Implementation of a 64-bit mov instruction writing to memory

Another variant of the mov instruction is movnti that is “storing a double

word using non-temporal hint” (see instruction manuals). This means it writes

32- or 64-Bits to memory without caching the memory line (this is the non-

temporal hint). The memory is not even in cache after the write process, so a

read from that memory location would lead to a cache miss afterwards. This

is a technical detail, mainly for performance reasons. Given that we are only

interested in functional correctness, not in performance, we can translate the

instruction in the same way as the ordinary mov.

The instruction “load effective address” lea computes the address of a mem-

ory cell without dereferencing it. The address of a memory cell allows for limited

arithmetic, e.g. adding a constant to a base address given by a register. That

is the reason why it is even used today, because it can make fast computations

of simple arithmetic expressions (like addition or multiplication with a small

constant) without overwriting the input. The instruction’s parameters look like

parameters of a mov instruction. The only difference is that the pointer arith-

metic is done but the dereferencing is not. A difficulty for our implementation

of the instruction is that the pointer dereference is already introduced during

the syntax translation pass. Therefore, we had to change the syntax transla-

tion: the lea instruction has to be detected during the parsing process to find

out whether the dereferencing should be left out. The lea instruction is only

applicable if the second parameter is a memory address.

As last instructions of this section, we would like to mention movaps (Move

Aligned Packed Single-Precision Floating Point Values) and movdqa (Move

Aligned Double Quadword) that move a 128-Bit data structure to a XMM

register. The values of the XMM registers are not used in the Microsoft Hyper-

visor, the difference between a packed single-precision floating point value and

a double quadword can thus be neglected. In Hypervisor, the instructions are

used to save XMM registers to the memory or load them back again.
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3.4.4 Stack operations

The stack is a special memory region with a special pointer to it (the register

rsp). Although the stack is not visible in high-level languages like C, it is always

available. The compiler usually creates stack frames, containing addresses where

the execution is to be continued after the end of the function, parameters of

functions, and much additional information. In contrast to those automatically

managed data areas in high-level languages, the stack has to be managed by

hand in Assembler. If more variables than the 16 general purpose registers are

needed, some of the results have to be saved somewhere temporarily. This is

usually done by pushing them onto the stack, although there exist some other

ways. The alternatives are mainly used by high-level compilers and only very

rarely in Assembler code. If the results are needed later on, the program can

pop them again from the stack. Interesting is that pushing does not only put

a value in the memory, but also sets the stack pointer to the next memory

location. The same is true for the pop operation: it reads the value from the

stack and sets the stack pointer to the last memory location. This means the

stack is implementing a LiFo (Last in First out) queue.

While the push-pop pair is writing or reading a normal register, pushfq-popfq

are doing the same for the flag register. Thus the flag status can be saved and

later on restored.

The implementation looks like this:

push

rsp← rsp− 8

[rsp]← a

pop

a← [rsp]

rsp← rsp + 8

pushf

rsp← rsp− 8

[rsp]← rflags.raw

popf

rflags.raw ← [rsp]

rsp← rsp + 8

where the raw field refers to all flag bits as bitvector. Note that the popf

instruction is simplified here. The processor manual specifies that not all flags
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are read from memory and some reserved bits are ignored. Our implementation

also takes care of this. Note that the stack grows downwards while most normal

data structures would grow upwards.

3.4.5 Arithmetic Operations

So far, only linear arithmetic is modeled. But multiplication and division could

be implemented in a very similar fashion.

C language implements linear arithmetic almost in the same way as machine

instructions; an interesting point is the overflow handling of VCC. VCC will

normally check for overflows and report an error if it cannot prove their absence.

To remove this error the programmer has to give a precondition on the input

values that restricts the range to prevent overflows. Therefore, our tool does not

have to check for overflows; they cannot occur in correct programs. The overflow

bit is cleared by all arithmetic operations. Other flags have to change according

to the result of the operation. A real C implementation with its specification

is given in Figure 3.5. The pseudo code representation of the add instruction

looks like this:

a← a + b

if a = 0 then

rflags.zf ← 1

else

rflags.zf ← 0

end if

if a < 0 then

rflags.sf ← 1

else

rflags.sf ← 0

end if

and in the same way the sub instruction:

a← a− b

if a = 0 then

rflags.zf ← 1

else

rflags.zf ← 0

end if

if a < 0 then

rflags.sf ← 1

else

rflags.sf ← 0
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void add reg q(uint64 &reg, uint64 data)
2 writes( rflags , reg)

ensures(reg == old(reg) + data)
ensures(rflags.CF == carry add q(old(reg),data))
ensures(rflags.PF == parity q(unchecked(old(reg)+data)))
ensures(rflags.AF == (uint64)((old(reg) & 15) + (data & 15)) < (data & 15))

7 ensures(rflags.ZF == (uint64)(unchecked(old(reg)+data) == 0))
ensures( rflags.SF == (uint64)(unchecked(old(reg)+data) >> 63))
ensures(rflags.OF == overflow add q(old(reg),data))
ensures(rflags.TF == old(rflags.TF))
ensures( rflags.IF == old(rflags.IF))

12 ensures(rflags.DF == old(rflags.DF))
ensures(rflags.IOPL == old(rflags.IOPL))
ensures(rflags.NT == old(rflags.NT))
ensures(rflags.RF == old(rflags.RF))
ensures(rflags.VM == old(rflags.VM))

17 ensures(rflags.AC == old(rflags.AC))
ensures(rflags.VIF == old(rflags.VIF))
ensures(rflags.VIP == old(rflags.VIP))
ensures( rflags.ID == old(rflags.ID))
{

22 uint64 oldr = reg;
uint64 r = oldr + data;
reg = r;
rflags.CF = carry add q(oldr, data);
rflags.AF = (uint64)((oldr & 15) + (data & 15)) < (data & 15);

27 rflags.PF = parity q(r) ;
rflags.ZF = (uint64)(r == 0);
rflags.SF = (uint64)(r >>63);
rflags.OF = overflow add q(oldr, data);

}

Figure 3.5: Specification and implementation of an add Assembler instruction

end if

Note that we do not have any optimization at this position. If there are a

number of additions one after another, the flags will not be used except for the

last instruction. But instead of optimizing them out of the code, VCC or Z3

will detect the information to be irrelevant.

Increment and decrement are special cases of addition and subtraction, where

the second parameter is set to “1”. Thus, changes on the flags are equal to the

changes of addition and subtraction.

The compare instruction cmp is a special instruction that is not obviously an

arithmetic operation. It sets the flags according to a subtraction of the parame-

ters like sub, but does not save the result in the register. Thus, only the flags are

set according to the result and subsequent conditional execution can take place.

Here is the implementation of cmp:
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if a = b then

rflags.zf ← 1

else

rflags.zf ← 0

end if

if a < b then

rflags.sf ← 1

else

rflags.sf ← 0

end if

The compare and exchange cmpxchg instruction is more complicated to ex-

plain. It compares the first parameter to the value in the rax register (this is

a fixed, implicit parameter). If the two values are equal, the value of rax is set

to the value of the first parameter. Otherwise the value of the first parameter

is set to the value of the second parameter. Here comes the pseudo code of the

implementation:

if rax = a then

rflags.zf ← 1

else

rflags.zf ← 0

end if

if rflags.zf = 1 then

rax← a

else

a← b

end if

Note that cmpxchg does not change the Sign flag, in contrast to cmp.

3.4.6 Logical Operations

Although they are called “logical operations” by Intel, the listed operations are

bitwise operations. Bitwise operations handle the register, memory location or

constant as bitvector. The instructions also affect the Zero and Sign flags, their

computations will not be mentioned anymore henceforth. The implementation

of the instructions is straight forward because bitwise operations also exist in

the C language.

For the bitwise operations (xor, or, and, test, not) the Sign and the Zero flags

are set according to the result. The operator ◦ would refer to one of the logical

operations xor, or, and :

a← a ◦ b
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if a = 0 then

rflags.zf ← 1

else

rflags.zf ← 0

end if

if a < 0 then

rflags.sf ← 1

else

rflags.sf ← 0

end if

The logical test instruction test sets the flags register like the and instruction,

but it does not write back the result. The bitwise negation not switches all bits

from 0 to 1, and from 1 to 0 respectively. Flags are not changed at all by the

not operation.

3.4.7 Labels, Jumps and Invariants

Jumps exist in different varieties, because they usually contain conditionals in

their name. As described in Section 3.4.2, the IP register is not modeled.

Instead of using direct jumps with an address, labels in the Macro Assembler

context are used. A jump to a label LABEL can then be translated like the

following code:

LABEL :

. . .

Goto LABEL

The conditional jumps express the condition in the names, for example con-

ditional jump for the Zero flag is called jz, or for the negation jnz. While jz jumps

if the Zero flag is set, jnz jumps if the Zero flag is not set. The corresponding

code for a conditional jump to a label LABEL:

LABEL :

. . .

if cond then

Goto LABEL

end if

The condition is coded into the 2nd and 3rd letter of the Assembler instruction,

as shown in Table 3.5 on the next page. The instruction name is built by a

leading “j” plus the condition behind.

In Assembler, we do not have structured loops. Instead, loops are imple-

mented by a label at the beginning of the loop and a conditional jump back to

that label. For the verification of such loops, invariants have to be annotated.
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short cut description cond
Z zero RFLAGS.ZF = 1

NZ not zero RFLAGS.ZF = 0
E equal RFLAGS.ZF = 1

NE unequal RFLAGS.ZF = 0
S negative RFLAGS.SF = 1

NS zero or positive RFLAGS.SF = 0

Table 3.5: Conditions for conditional jumps

They do not exist in ordinary Assembler code, so we introduced them artificially

as special comments. Comments in Assembler start with semicolon (;), addi-

tional specification starts with “;ˆ” plus a keyword. The keyword for invariants

is “invariant” and takes as argument VCC expressions, so the simplest invariant

would be:

;ˆ invariant (true)

Besides the simplest invariant, you could give arbitrary complex ones. They can

include quantifiers, the global state of the processor, and the memory.
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Pitfalls

In Section 4.1, we show how C and Assembler functions can be combined. From

the calling conventions of C compilers, we get proof obligations for the Assembler

functions, presented in Section 4.2. In Section 4.3 we present the techniques to

verify multi-threaded programs. In Section 4.4 there is a description of general

properties we verified on the Assembler code.

Together with the function specific postconditions and writes clauses, we get

the complete specification of every single function.

4.1 Mixing Assembler and C Functions

Most of the programs are written in high-level languages like C or Java, not in

Assembler. There are different reasons for that. One is the fact that in Assem-

bler, lots of implicit programming techniques for other languages have to be im-

plemented explicitly. For example the stack that is implicitly used in high-level

languages, has to be implemented for Assembler programs explicitly. There is no

variable creation like in high-level programming languages, instead, only a fixed

number of registers are available. In high-level languages, the compiler puts the

registers into the memory (either stack or heap) and loads them automaticaly

into registers when they are used as variables. In Assembler, such a concept has

to be implemented by hand. Because of such reasons, Assembler code is huge

compared to the same program implemented in high-level languages. On the

other hand, such Assembler code can be more optimized because concepts that

are not used in a program do not have to be implemented.

In the high-level/low-level translation (that a C compiler does), lots of things

have to be made explicit for the hardware execution. Besides the fact that

variables do not exist, there is also the fact that in hardware execution registers

can be accessed or types are not as strict as in high-level languages. Such a

50
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extern int bar(int a)
ensures ( result == a);

4 int foo(int a)
ensures ( result == a)
{

return bar(a);
}

Figure 4.1: C code of a function, calling another C function

;ˆ ensures (rax == rcx);
2 bar proc

mov rax, rcx
ret

7 bar endp

Figure 4.2: Short Assembler example, that returns the first function parameter

coding can be made in many different ways. To be able to use the same libraries

for different compilers, there exist some so called “calling conventions”. They

tell the compiler developers where to put function parameters, how to handle

the stack, and lots more.

Programs written in high-level languages have to be translated to a low-

level program that can be executed on the hardware machine. The binary code

of such an executable file can also be represented as an Assembler program,

where for each numeral description a mnemonic is introduced. Such equivalent

descriptions are also part of the processor description, where mainly the binary

format is described, but with the help of the Assembler mnemonics. This means

that in the processor description, both are documented: the hardware binary

format and the Assembler format.

Sometimes one needs to program in Assembler for performance reason or for

direct hardware access. The main idea is not to implement a whole program in

Assembler code, but use it as a possibility to extend C programs. A combination

of C and Assembler is therefore necessary.

Here is the code of a simple example for mixed source. In Figure 4.1, there is

a C implementation of a simple function that calls an Assembler function given

in an external file. In Figure 4.2, the Assembler implementation is shown. The

specification for both functions is very simple in this case: they return the value

of the parameter.

In Figure 4.3 on the following page, our translated version of the Assembler
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void bar()
ensures (rax == rcx);

3 {
rax = rcx;

}

Figure 4.3: C translation of a short Assembler example, that returns the first
function parameter

function is given. Note the difference in handling parameters and return value.

The C function needs parameters declared in the function footprint, where an

Assembler function expects the parameters to be in some registers. The return

parameter in a C function has to be given a type, whereas in Assembler pro-

grams, return values are always in the rax register and are loosely typed (a

register can represent different things). In this small example, the stack is not

used by the Assembler function. Nevertheless, verification of those differences

is essential for pervasive verification, if the Assembler function does not meet

the calling conventions, the C function will be destroyed completely.

Verification of Assembler functions does not only mean the verification of

the Assembler parts of the program, but also that the Assembler function uses

the calling conventions correctly. The correct behavior is described in Section

4.2.

4.2 Calling Conventions for C Compilers

A Compiler performs a translation: it takes a high-level language (in this case

C code) and produces a kind of binary file (in this case we assume Assem-

bler). Function and procedure calls are translated directly, but the implicit

assumptions of the language are made explicit as well. In the C source there are

functions with parameter definitions, declarations of local variables, statements,

etc. C source code never has expressions about the function stack or a method

of transferring parameters, those are the implicit assumptions introduced by the

compiler. For the interaction of Assembler and C functions the details have to

be made explicit. Assembler functions have to access register and memory in

the same way that a C compiler does for the translation of C functions.

Note that there exist two kinds of Assembler:

• Inline Assembler, where the Assembler code is written into a C file

• Pure Assembler, where the Assembler code is written into separate ASM

files.
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In our case, we are only talking about pure Assembler. This is because our main

focus is on Microsoft Hypervisor verification. This is 64-Bit only code, and the

64-Bit C compiler by Microsoft cannot handle inline Assembler. Pure Assembler

has the advantage that the interfaces between C and Assembler are defined in

a clearer way. In inline Assembler, every time an inlined block is beginning or

ending, the border between the two languages is crossed. The translation then

has to introduce assertions, preventing the results from being inconsistent. This

means, registers and variables have to be in sync, and the verification tool has

to keep track of them. In the case of functions, only the pre- and postconditions

have to be translated, so that the C function can later use them after they are

verified against the Assembler function.

In inline Assembler, jumps from the Assembler part of a function into the C

part of the function can be used. This again would introduce a crossing of the

languages. Then, the addresses of the instructions have to be computed. And

this computation can differ, depending on the optimizations of the undelying

compiler. This is the worst case that can occur in code. Hopefully, most of the

Assembler programs would not make use of this possibility, because this would

lead to very complicated computations for the verification.

In the rest of the document, we will only describe Windows 64-Bit Calling

Conventions. For Linux, they can differ, as well as for Windows 32-Bit.

4.2.1 Registers and Parameters

A C compiler has to store the C variables somewhere. It can put them into the

stack, in registers, or the heap memory. For computations, the values are often

loaded into registers. This is all hidden from the high-level language developer.

If a C function would simply call an Assembler function, this Assembler function

could destroy all the values the C code depends on. For example, if the stack

pointer would point to a different location, nothing that was stored previously

on the stack would be found anymore.

To avoid such a behavior, C compiler conventions tell the programmer which

of the registers can be used without saving. All other registers have to be saved

(mainly on the stack) and restored before returning. Thus, the calling function

does not see the change in the register values. For the possibly changed registers,

the calling function must not depend on the value of the registers. If the values

should be used, the calling function has to save and restore them itself. In

Figure 4.4 on the next page, the row caller shows the registers that the caller

has to care about while the row callee shows the registers that the called function

has to preserve. From this table, a number of general correctness criteria can

be created. For all entries in row callee, a postcondition can be introduced:
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rax rbx rcx rdx rdi rsi rbp rsp r8 – r11 r12 – r15 xmm
caller X X X X X
callee X X X X X X

Figure 4.4: responsibility for the correct use of registers

parameter 1. 2. 3. 4. return
register rcx rdx r8 r9 rax

Figure 4.5: parameter transfer via registers

∀r ∈ callee : old(r) = r, where old(r) denotes the value of the register at the

function entry. In particular, the rsp register (the stack pointer) has to point to

the same value as it did before the function call. This means the stack size must

not grow, because if it would grow, the stack pointer would decrease. This is a

very important proof obligation because if it does not hold, the calling function

would not be able to read anything from its stack, because the stack could have

changed completely.

Another important part that is introduced by the compiler is the parameter

transfer for functions. In C, parameters are given as a comma separated list

of variable definitions. The return parameter is given as a type of the function

and its value is set by the return statement. In Assembler, such a construct

does not exist. Instead, special registers are used as parameters of functions.

Figure 4.5 shows which registers are used for parameter transfer. The register

values are filled by the C compiler or (if called by another Assembler function)

by the Assembler programmer. The return value is read again from the rax

register by the caller. If all calls are made from Assembler to Assembler, this is

not a problem at all. If all calls are made from C to C, this is not interesting

at all. If calls are mixed in one direction, at least one of the functions has to be

changed. In our case, we wrap the Assembler functions into a C function. This

wrapper function transfers parameters to registers and returns the return value

in C style.

I will present this on our example function:

void bar()

{
rax = rcx;

}

The wrapper function has to introduce a new function that hides the bar func-

tion from calls and knows about the calling conventions. We can implement it

like this:

1 int bar wrap(int a)
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ensures ( result == a) /∗ annotation of C function ∗/
ensures (rdi == old(rdi))

ensures ( rsi == old(rsi))

ensures (rbp == old(rbp))

6 ensures (rsp == old(rsp))

ensures (r12 == old(r12))

ensures (r13 == old(r13))

ensures (r14 == old(r14))

ensures (r15 == old(r15))

11 {
rcx = a; //1st parameter

bar() //function call

return rax; //return value

}

The postcondition is extended by the proof obligations from calling conventions.

It also makes sure to have a non-growing stack after each function call. If this

wrapper function can be verified, it will also ensure that the contract of the

assembler routine matches the contract given in the C program. We can now

call the function bar wrap like every ordinary C function with a parameter and

a return value. Everything concerning registers is completely hidden from the C

function call. Note that those wrapper functions do not have to be introduced

by the developer but are created by the translation tool fully automatically.

4.2.2 Memory

There exist two types of memory: heap memory and stack memory. In C, heap

memory is allocated (and deallocated) by explicit allocation functions. For

verification purposes, those allocation functions are extended by counting the

allocated memory. Its existence allows information about the validity of point-

ers. Stack memory in contrast is only implicitly used. The compiler allocates it

and uses it. The stack is completely hidden in the C language.

In Assembler, no explicit allocation functions exist. But in most of the As-

sembler programs (at least the whole Microsoft Hypervisor code) do not access

arbitrary memory regions. Usually, memory is allocated in a C program. As-

sembler functions get those memory portions as a parameter. The precondition

of the Assembler function requires that the memory is allocated. This has to

be ensured by the calling function, which usually itself requires that the mem-

ory is allocated, unless it allocated the memory itself. Thus the allocatedness

is propagated through the call stack of the program from the place where the

alloc function was called in C.
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4.3 Verification of Multi-threaded Software

Multi-threaded software is handled by VCC with a special memory model. The

different threads have separated memory regions except common data struc-

tures. This is also an assumption that is usually used by developers of the

software.

Shared data structures are usually protected by locks. When the structure is

locked, the current thread becomes the owner of the data and can assume that

it is the only thread changing the memory. When it releases the data structure,

the structure is shared again and can then be locked by other threads. If the first

thread locks and accesses the data again, it cannot assume that the content is

still the same, since another thread may have changed it in between. Therefore,

VCC assumes that its value changed non-deterministically.

This overapproximation would not allow verification, because the software

would not be able to share any knowledge about this data structure. To make

it more precise, an additional annotation is introduced. A data structure is

annotated by data structure invariants. Those invariants give additional knowl-

edge, e.g., a field of the data structure can only have a special range. If a data

structure is locked by a thread, this data structure invariant can be temporarily

violated. If the data structure is unlocked again, VCC checks that the data

structure invariant holds again. If all access functions are verified, the special

knowledge of the invariants is known to be valid, whenever the data structure

is locked. VCC still assumes non-deterministic changes on the data structure,

however, it assumes the data structure invariants satisfied. Access data struc-

tures that are not protected by locks or other mechanisms is similar, however,

VCC checks that the invariant holds after each atomic operation.

For multi-threaded Assembler programs, we use this mechanism of VCC. The

functional specification of the Assembler routine contains also a writes clause.

If this writes clause does not contain a memory region, the Assembler code must

not write into it. However, Assembler has no notion of data structures. If the

Assembler routine writes into a memory region that contains a C data structure,

the data structure must be locked before the Assembler routine is called. The

Assembler routine cannot lock the data itself because the data structure and the

virtual lock are not visible in Assembler. So the C code calling the assembler

structure must lock the memory. VCC verifies that only locked data structures

are changed. In the C code that releases the lock, VCC also proves that the

data structure invariant is satisfied. This proof must follow inductively from

the functional specification of the Assembler routine. In practice, this turned

out to be an effective way for the Hypervisor verification.

Besides the concurrent memory access, we also want to handle multi-core
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processors for the multi-threaded software. Therefore, we create multiple in-

stances of our processor data structure. An instance is created with every

thread creation and is then passed through the C program into the Assembler

routines. Thus the C specification and the processor states of different threads

can be separated. The main process can even compare the different core states.

4.4 Implicit Correctness Criteria

So far we considered functional properties. These were given explicitly by the

programmer as pre- and postcondition of the function. Additionally, there are

a lot of implicit proof obligations that are checked for every function. All these

specifications have to be checked in a formal, mathematical way against the

concrete implementation.

4.4.1 Memory safety

Memory safety means that memory access is only performed on valid (i.e., pre-

viously allocated and not freed) memory. Therefore, the precondition of an

Assembler function needs to include the validity of all memory locations that

are accessed. If a function tries to access memory that cannot be proven valid,

VCC reports an error. Similarly, we specify explicitly the set of memory lo-

cations being written to, and it is an error to write to a memory location not

listed in the writes clause. These properties are enforced to be transitive, i.e.,

if function f calls g then the writes set of g needs to be contained within the

writes set of f, and also the precondition of g needs to follow from the context at

the call site (including preconditions of f ). The transitivity of the writes clauses

is checked by the tool, but it has to be annotated by the developer.

4.4.2 Arithmetic safety

Arithmetic safety means absence of overflows, unless otherwise stated. For

operations that can overflow (like addition, multiplication or signed division)

VCC automatically adds assertions that check if the result is in the proper range.

When an overflow behavior is desired, the user can specify this explicitly.

4.4.3 Call safety

Call safety means that the stack is cleaned up after every function call and

registers are saved before every function call. If f calls g and the postcondition

of g does not guarantee that it restores values of registers, then f needs to save

itself the registers it cares about. The registers are saved on the stack, therefore
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it is important to know that g will not modify stack locations above the current

stack pointer (stacks grow downwards on the x86 architecture), and that g does

not change the stack pointer at return. This is expressed using the postcondition

ensures(rsp == old(rsp)).

Call safety also means to proof the calling conventions. Note that the condi-

tion that the stack pointer is unchanged will also follow from the normal calling

conventions. The calling conventions result in a number of proof obligations for

the verification tool. They are inserted automatically, so no manual interaction

with a developer is needed.

4.4.4 Interrupt safety

Interrupt safety means that the stack is cleaned up after processing the whole

interrupt. We cannot verify interrupt handlers like regular functions, because

some of their subroutines push some registers on the stack, while other subrou-

tines pop them later again from the stack. Only the whole interrupt routine

(including all called subroutines) would satisfy that the stack size did not change.
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Case Study

Our main focus was on the Microsoft Hypervisor verification. Our aim was

to verify the original Assembler code by only adding specifications. In many

other projects, the source code was adapted (e.g. optimizations undone) to

enable the verification tools to handle the problems. The Hypervisor policy

only allows code changes that fix bugs and explicitly forbids changing actual

code only for verification purposes.

Unfortunately, we cannot present arbitrary snippets from the Microsoft Hy-

pervisor for legal reasons. Therefore, we will show our approach with the help

of two examples: one function that is also in the Intel Optimization Guide, and

one hand-written function which is only similar to a function in the Hypervisor.

5.1 Verifying Optimized Assembler Code

In this section, we will consider a function that sets a whole memory page

to zero. This function is heavily used on memory allocation to prevent data

leaking between two guest operating systems. Therefore, the function is written

in highly optimized Assembler. It can be found in the Intel Optimization Guide

and does not fall under the non-disclosure agreement with Microsoft.

The function takes the address of a memory page and fills it with zeros. A

memory page in the x86 architecture is a block of 4096 bytes. In the code we

use X86 PAGE SIZE to refer to that size. An example C implementation of

the function is given in Figure 5.1 on the next page. The input parameter base

is the address of the memory page.

In line 2–5, we give a functional specification for the C implementation. We

need the precondition in line 2 to prevent arithmetic overflows in the implemen-

tation. The precondition in line 3 states that the memory page is allocated and

writeable. With the annotation in line 4 we state that the function changes the

59
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void set to zero (uint64∗ base)
requires ((uint64)base + (uint64)X86 PAGE SIZE < (uint64)−1)
requires (assembler is mutable array(base,X86 PAGE SIZE/8))
writes (array range(old(base),X86 PAGE SIZE/8))

5 ensures ( forall (uint32 i ; (0 <= i && i < X86 PAGE SIZE/8) ==>
old(base)[ i ] == 0)))

{
int32 count = X86 PAGE SIZE / 8;
while (count >= 0)

10 {
∗(base) = 0;
base++;
count−−;

}
15 }

Figure 5.1: Example C implementation

mov edx, X86 PAGE SIZE / 8
label:

mov [rcx], 0
add rcx, 8

5 dec edx ; sets the zero flag if edx is equal to 0
jnz label

Figure 5.2: Example Assembler implementation

memory page. The postcondition in line 5 ensures that the page contains only

zeros after the execution of the function. Since the function changes the value

of base, we denote its value on the entry by old(base). The implementation is

straight-forward, except that it writes a uint64 (8 bytes) at a time.

In Figure 5.2, a simple Assembler translation of the C code is depicted. In

the Windows 64-Bit compiler conventions, the first parameter (base in the C

code) is always transferred via the rcx register. In the implementation, register

edx is used as the variable count. The instructions dec changes the flag register

which the instruction jnz uses to conditionally jump back to label. Thus the

loop was translated to a goto-program.

With this first translation, we will present and explain some of the optimiza-

tions made on this Assembler function. The most important instruction is the

memory access mov [rcx], 0. The instruction has a length of 7 bytes if encoded

in machine code. An instruction that assigns a register (with value 0) to the

memory would only have length 5 instead. To have the value 0 in the register,

an additional instruction has to be inserted at the beginning. We choose rax as

register and set it to zero with mov rax, 0. This instruction would again have

length 7. Instead of this, we choose the possibility of logic. Applying XOR on
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xor rax, rax
mov edx, X86 PAGE SIZE / 64

label:
4 mov [rcx], rax

mov [rcx + 8], rax
mov [rcx + 16], rax
mov [rcx + 24], rax
mov [rcx + 32], rax

9 mov [rcx + 40], rax
mov [rcx + 48], rax
mov [rcx + 56], rax
add rcx, 64
dec edx ; sets the zero flag if edx is equal to 0

14 jnz label

Figure 5.3: Example Assembler implementation after loop unrolling

a value with itself results always in a 0. Instead of mov rax, 0, we could use

xor rax, rax. This instruction has only length 4.

Processor manufacturers usually advice developers to use loop unrolling if

the number of loop iterations is constant. This means to copy the body of the

loop several times. However, it would be unwise to copy the instruction 512

times (4096/8), since this would unnecessarily fill the instruction cache. The

optimal number of copies is given very precisely in the case of AMD and Intel.

The memory access should be to contiguous 64 Bytes, which is equal to the size

of the cache line in the design. In the function presented, all memory access

is made to 64 Bit (or 8 Bytes) chunks. The loop should be unrolled 8 times

in this case, because 8 times 8 Bytes results in memory access to 64 Bytes.

After the described optimizations, the function will look as shown in Figure 5.3.

Note that the specification of the Assembler function did not change although

the function looks different now. The fact that the whole memory region is

reset will not change in any of the optimizations, thus the specification will not

change in any step.

Next, we will introduce an optimization aiming to help the branch prediction

and pipelining of the processor. The effect of the jnz instruction depends on

the arithmetic dec operation. In a pipelined architecture, the jnz would run

in parallel to the dec instruction, but the processor takes time to compute the

result of the dec. Therefore, the branch prediction unit of the processor will

guess the upcoming result and continue execution with this guess. When the

result of the dec instruction is ready, it will compare the result with the guess. If

the guess was right, execution is already going on in the right branch. Otherwise,

the processor will flush the execution and has to start over again with the right

branch. It is preferable to know the result instead of guessing. To have the
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1 xor rax, rax
mov edx, X86 PAGE SIZE / 64

label:
mov [rcx], rax
mov [rcx + 8], rax

6 mov [rcx + 16], rax
add rcx, 64
mov [rcx + 24 − 64], rax
mov [rcx + 32 − 64], rax
dec edx ; sets the zero flag if edx is equal to 0

11 mov [rcx + 40 − 64], rax
mov [rcx + 48 − 64], rax
mov [rcx + 56 − 64], rax
jnz label

Figure 5.4: Example Assembler implementation according to the optimization
guides

result of the arithmetic operation at the conditional jump, the dec instruction

has to move up further in the code. This can be done because the assignment

instructions do not affect the flags of the processor. Since add also changes the

flags, this instruction must appear before the dec. To move the add further up,

we need to adjust the constants in the memory accesses that come afterwards.

According to the Intel manual, the dependency of the address in the memory

access on the result of the add instruction will not result in extra penalties. The

resulting code is shown in Figure 5.4.

The code shown in Figure 5.5 includes the loop invariant which is necessary

to verify the function against its specification automatically. Note that one of

the most difficult problems is finding the loop invariants. Most of the invariants

are straight-forward. The invariant in line 16 is necessary to guide the theorem

prover.

Our tool Vx86 generates the code in Figure 5.6 on page 64 from the As-

sembler code in Figure 5.5 on the facing page. The pre- and postconditions

are coming from a C header file declaring the function. In the specification,

the parameter base is replaced by rcx according to the compiler conventions.

On an Intel Core2 machine, the verification of the example presented takes

about 30 seconds. The bottleneck of the verification is not the translation of

the Assembler instruction but the background theory which is sitting in the

assembler is mutable array predicate.
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1 ;ˆ spec (uint64 offset = 0);
xor rax, rax
mov edx, X86 PAGE SIZE / 64

label:
;ˆ invariant (0 < rdx && rdx <= (uint64)(X64 PAGE SIZE/64))

6 ;ˆ invariant (rax == 0)
;ˆ invariant ( offset + 8∗rdx == X64 PAGE SIZE/8)
;ˆ invariant ((old(rcx))−64∗rdx+X64 PAGE SIZE == rcx)
;ˆ invariant (((uint64∗)(old(rcx)))+offset == (uint64∗)rcx)
;ˆ invariant (((uint64∗)rcx) == (((uint64∗)rcx)+0))

11 ;ˆ invariant (assembler is mutable array((uint64∗)(old(rcx )),
(X64 PAGE SIZE/8)))

;ˆ invariant ((uint64∗)(old(rcx)) <= (uint64∗)rcx)
;ˆ invariant ((uint64∗)rcx < (uint64∗)(old(rcx))+X64 PAGE SIZE/8)
;ˆ invariant ( forall (uint32 i ; (0 <= i && i < offset) ==>

16 old(rcx)[ i ] == 0)))
mov [rcx], rax
mov [rcx + 8], rax
mov [rcx + 16], rax
;ˆ assert (((uint64∗)rcx)+8 == (uint64∗)(rcx+64));

21 add rcx, 64
mov [rcx + 24 − 64], rax
mov [rcx + 32 − 64], rax
dec edx ; sets the zero flag if edx is equal to 0
mov [rcx + 40 − 64], rax

26 mov [rcx + 48 − 64], rax
mov [rcx + 56 − 64], rax
;ˆ spec ({ offset += 8; })
jnz label

Figure 5.5: Annotated source of the example function



64 CHAPTER 5. CASE STUDY

1 void set to zero ()
requires (assembler is mutable array((uint64∗)rcx,x64 page size/8))
requires (rcx+(uint64)x64 page size < (uint64)−1)
writes (array range((uint64∗)(old(rcx )), x64 page size/8), &core)
ensures ( forall (uint32 i ; (0 <= i && i < X86 PAGE SIZE/8) ==>

6 old(rcx)[ i ] == 0)))
{

spec (uint64 offset = 0);
xor (rax,rax);
mov (rdx,X64 PAGE SIZE / 64);

11 while()

invariant (0 < rdx && rdx <= (uint64)(X64 PAGE SIZE/64))
invariant (rax == 0)
invariant (offset + 8∗rdx == X64 PAGE SIZE/8)

16 invariant ((old(rcx))−64∗rdx+X64 PAGE SIZE == rcx)
invariant (((uint64∗)(old(rcx)))+offset == (uint64∗)rcx)
invariant (((uint64∗)rcx) == (((uint64∗)rcx)+0))
invariant (assembler is mutable array((uint64∗)(old(rcx )),

(X64 PAGE SIZE/8)))
21 invariant ((uint64∗)(old(rcx)) <= (uint64∗)rcx)

invariant ((uint64∗)rcx < (uint64∗)(old(rcx))+X64 PAGE SIZE/8)
invariant ( forall (uint32 i ; (0 <= i && i < offset) ==>

old(rcx)[ i ] == 0)))
{

26 mov (∗((uint64∗)rcx),rax);
mov (∗((uint64∗)rcx + 1),rax);
mov (∗((uint64∗)rcx + 2),rax);
assert (((uint64∗)rcx)+8 == (uint64∗)(rcx+64));
add (rcx,64);

31 mov (∗((uint64∗)rcx + 3 − 8),rax);
mov (∗((uint64∗)rcx + 4 − 8),rax);
dec (rdx);
mov (∗((uint64∗)rcx + 5 − 8),rax);
mov (∗((uint64∗)rcx + 6 − 8),rax;

36 mov (∗((uint64∗)rcx + 7 − 8),rax);
spec ({ offset += 8; })
jnz (label);

}
}

Figure 5.6: C code translation of the Assembler code
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struct S{
uint64 dr0;
uint64 dr1;
uint64 dr2;

5 uint64 dr3;
}

void set dr(struct S∗ structure)
ensures(structure−>dr0 == dr0)

10 ensures(structure−>dr1 == dr1)
ensures(structure−>dr2 == dr2)
ensures(structure−>dr3 == dr3);

Figure 5.7: C header file containing a structure and a specification

FIELD DR0 equ 0
FIELD DR1 equ 8

3 FIELD DR2 equ 16
FIELD DR3 equ 24

set dr proc
mov [rcx + FIELD DR0],dr0

8 mov [rcx + FIELD DR1],dr1
mov [rcx + FIELD DR2],dr2
mov [rcx + FIELD DR3],dr3

Figure 5.8: Field access from Assembler to a C data structure

5.2 Translation of C Specifications

In this section, we will describe how to translate a C specification into a valid

Assembler specification. In the Hypervisor, there are functions that take as

an argument a pointer to a C structure and are implemented in Assembler.

However, there is no concept of structures in Assembler. On the other hand,

Assembler uses processor registers which are not visible in C but the specification

needs to mention them. We use the following simple example to demonstrate

the problem and our solution.

We consider a function set dr that copies the values of the debugging regis-

ters into a C data structure. The specification is given in a C file depicted in

Figure 5.7. In line 9, the debugging register of the processor is referred to with

dr0. We allow access to the data structure in normal C syntax.

The implementation is given in a separate Assembler file as shown in Fig-

ure 5.8. The Macro Assembler does not support structures. Therefore, we need

to define constants that are used as offsets for memory accesses. This is the

original code, written by an Assembler programmer.
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#define FIELD DR0 0
#define FIELD DR1 8
#define FIELD DR2 16
#define FIELD DR3 24

5
void set dr ()
ensures(∗((uint64∗)rcx + 0) == dr0)
ensures(∗((uint64∗)rcx + 1) == dr1)
ensures(∗((uint64∗)rcx + 2) == dr2)

10 ensures(∗((uint64∗)rcx + 3) == dr3)
{

mov (∗((uint64∗)rcx + FIELD DR0/8),dr0);
mov (∗((uint64∗)rcx + FIELD DR1/8),dr1);
mov (∗((uint64∗)rcx + FIELD DR2/8),dr2);

15 mov (∗((uint64∗)rcx + FIELD DR3/8),dr3);
}

Figure 5.9: C translation of an Assembler function accessing C data structure
fields

Our tool Vx86 takes the two files and produces the code depicted in Fig-

ure 5.9. The first part of the translation is the translation of the parameter

transfer. This can be done by a renaming step, where all occurrences of the

first parameter are replaced by rcx and in this case a cast to a pointer struc-

ture. Translating the data structure access is more complex and requires pointer

arithmetic. We use the address of the structure as the base address and add

an offset representing the dereferenced field. Vx86 uses the code from VCC to

compute this offset. This approach ensures that the alignment of the fields is

the same as used by the C compiler. The verification tool can find out whether

the two constants (the one resulting from the C specification and the one in the

Assembler code) are equal. This is a direct consequence of our approach.

5.3 Statistics for the Hypervisor Verification

On the code base of the Microsoft Hypervisor, we were able to prove the cor-

rectness of low-level Assembler functions. They were specified by C contracts

and implemented by Assembler code. The contracts were used for the verifica-

tion of the correctness of the C code base. The C contracts were automatically

transferred to Assembler contracts and verified against the code base by the

methodology presented in this work. We were also able to find errors in the

code base, where the specification was not fulfilled by the code. They are now

fixed in the current version of the product. The Macro Assembler consists of

5k lines of code, the Assembler consists of 15k lines of code after inlining the

macros. The source code is separated into 21 files. The function length varied
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File Annotated ASM Preproc ASM Translated C
zero 7,821 16,781 18,040

crashdump 5,625 17,791 20,217
GuestContext 1,422 16,673 18,136

Trap 82,316 420,854 444,865

Figure 5.10: File sizes in bytes at different stages of the translation

Filename Verification Time [s]
zero 1.45

crashdump 3.29
GuestContext ≤ 0.01

Trap 67.20

Figure 5.11: Verification times for various files of the Microsoft Hypervisor

from only 3 lines to 1400 lines of code. We had to handle nested loops up to a

depth of 3. Loop invariants needed for the verification typically consisted of up

to 10 conjuncts, where nested loops are exceeding this number.

We were able to verify 14k of the 15k lines of Assembler code with the

presented method. The methodology is not suitable for switches between differ-

ent virtual memory systems, which are present in the Microsoft Hypervisor at

thread switches and guest switches. Such switches are only available in operat-

ing system code, so other programs would verify completely with this method.

Figure 5.10 presents the size in bytes of four different files in different pro-

cessing stages. The column Annotated ASM denotes the size in bytes of the

annotated Macro Assembler function, i.e. the files the user edits. The column

Preproc ASM shows the file sizes after Assembler macro expansion. The column

Translated C shows the file size after the translation to C. This is the file that

includes the syntax translation. The processor model, consisting of the proces-

sor state definition and the instruction semantics, has a size of 131k bytes. On

the translated C files, we call VCC for verification. The translation itself takes

only mentionable times for very large files, i.e. the file Trap takes 2 seconds for

the translation.

Figure 5.11 shows the verification times for four example files of the Mi-

crosoft Hypervisor. As long as the procedures do not grow too much in size and

do not introduce too many control flow paths, we can verify substantial code.

For instance, the procedure ExceptionDispatch, which is part of the Trap file,

has approximately 300 instructions. Nevertheless, it verifies in approximately 3

seconds. This shows that our approach cannot be used only for short toy func-

tions but also for long and complex Assembler implementations. Verification of
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the code took under 10ms for smaller functions and up to 10 minutes for the

largest function.
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Conclusion and Future

Work

Vx86 is a verifier for proving the correctness of concurrent Intel x86 Assembler

code with AMD virtualization extensions against their contracts. Our approach

has been to (1) provide a C simulator for Intel x86, and (2) to translate the

annotated Assembler code into C code for this simulator. Despite the fact that

providing a C simulator seems to be a detour for verifying Assembler code, it

has turned out that this still allows us to verify the Assembler portion of a

complex industrial program, like Microsoft Hypervisor, in reasonable time.

In the process of developing Vx86 we have learned several characteristics of

handwritten Assembler programs: they might have complex control flow, but

they operate only on a few registers and the memory; the operations on registers

are often low-level, in addition operations have many side effects. Recursive

data structures, which typically need transitivity to describe effects on them,

are rarely used in handwritten Assembler code. As a consequence, changes to

registers and the memory can often easily be described by enumeration and

quantification.

We have also learned that Assembler code is particularly well suited for

automated verification:

• Providing an Assembler verifier is overdue – except for Assembler compil-

ers there are no tools to help Assembler writers.

• Verifying Assembler code is beneficial – if Assembler code fails, systems

typically crash.

• Writing Assembler contracts is feasible – the contracts often only mention

a limited amount of objects. Furthermore, the contracts are often easier

69
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to write than the highly optimized implementation.

• Discharging Assembler contracts is a sweet spot for Automated Theorem

Provers (ATPs) – ATPs can deal well with high quantities of low level de-

tails, since they often have specialized decision procedures for them. They

can also deal well with quantifiers; however they often cannot deal well

with complex heap structures. Luckily user written Assembler programs

do not use them.

• Verifying the calling conventions enables the safe use of compilers for

mixed executables

• Executing C programs relies on the calling conventions for Assembler pro-

grams, and mixed executables are the standard case in operating systems.

Vx86 is of course not restricted to consume only Microsoft Hypervisor code,

it can be used to verify other code bases as well. Providing such code bases

is not easy, because most companies have difficult copyright situations. Ab-

straction from the real code base is not very helpful, because the interesting

algorithms must remain intact for verification purposes. Furthermore, we think

that the presented approach is a viable way to quickly provide verifiers for other

processors.

Our work opens up multiple directions for future work. It could be interest-

ing to investigate whether our approach would be able to handle automatically

generated code. Optimized code could include irreducible control flow. Cur-

rently, we are not dealing with such code. It is not clear whether the used tools

could work with such code. This could enable approaches like PCC and TAL

to use the stronger proof system of our approach.

It would also be interesting to use different case studies. VCC is already

able to deal with C compliant source code, so many source code projects could

be used. For the Assembler code, this is more difficult because open source

projects are usually written for the GNU compilers. GNU uses the AT&T

notation while we are using the Intel notation. This would mean a change in

the parser. The approach itself, containing the processor model as well as the

instruction description, would stay the same as described in this thesis. The

result would be interesting because of three reasons:

1. verification of projects would lead to better products

2. verification of normal programs would not introduce the difficult assump-

tions on the different virtual memory areas
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3. verification of normal programs does not include the verification of differ-

ent address spaces and so that our assumption in this direction would not

be of importance.

Follow up work to the work presented in this thesis was presented in [10]. Our

methodology was used there for the verification of PikeOS which is a microkernel

with paravirtualization. Paravirtualization means that instead of an ordinary

operating system used as guest system, the guest systems is developed especially

for this application. The task of the hypervisor does not have to run in an

additional privileged mode as in Microsoft Hypervisor.

In [10], our approach was extended to accept inline Assembler. Inline As-

sembler implies more transitions from C to Assembler than in our scenario with

separated functions. The resulting approach uses partly manual work where we

use a fully automatic approach. They also use the idea of a simulation for the

processor, in their case the PowerPC architecture.
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Appendix A

x86 Processors

In this chapter we will give a brief description of how the x86 architecture

evolved. The chapter is thought to give a deeper insight into the processor

complexity. Only Intel processors are described here, although AMD has its

own processors from 486 on. The different processor architectures from the

companies Intel and AMD met later again, only to invent two new architectures

afterwards. The Core i7 architecture is not mentioned, because it was presented

only in the latest parts of the work and is not supported especially by our

approach at the moment. Most of the information presented here was obtained

from Intel R©64 and IA-32 Architectures Software Developers Manual Volume

1: Basic Architecture. Note that in the tables with processor descriptions, the

abbreviation P stands for Pentium.

With every processor generation, some extensions were made to the archi-

tecture. Furthermore, all older inventions are supported by the newer imple-

mentations. There was only one exception to that, and this exception has never

been used in mainstream computers but only in embedded systems, like print-

ers. This processor was called 80186, it is usually not counted as part of the

x86 architecture. Some of the older instructions do not have much meaning in

64–Bit native mode, but they are needed for some of the compatibility modes.

Thus it is of some interest to see how the architecture grew.

A.1 8086/8088 (1978)

Name Date Max

Clock

Transistors External

Size

Address

Space

Caches

8086 1978 8M 29k 16Bit 1MB none

When 8086 was invented, the processor was not a complete new design. In-
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stead, it was based on the older 8–Bit processor, 8080. It was not backwards

compatible, so 8080 programs could not be executed on 8086. The instruc-

tions were, however, very similar and programs could be ported easily to the

new processor. Note that 8086 architecture was not one of the fastest 16–Bit

implementations that existed at the end of 70s.

When 8086 was sold, some people demanded a somehow simpler version of

the processor. Therefore, Intel invented the 8088 processor, this is a 16–Bit

processor that has only 8–Bit access to the outside. Thus, the processor needs 2

memory accesses to transfer only one 16–Bit value: first the upper 8–Bits, then

the lower 8–Bits. The 8088 processor had only half the speed to the outside

world than the 8086.

The operation mode introduced by the 8086 processor is called Real Mode

today. It is not only the oldest mode used, but it is also the mode the processor

starts in. This fact comes from some old compatibility issues Intel introduced

when they extended their architecture.

Memory access The processor 8086 has 16–Bit wide registers. Thus, only

64KB of memory could be accessed. To avoid such limitations, the idea of

segmentation was invented. A memory access is not only made with one register,

but with two. With two registers, one could simply put one register as higher

16–Bit and another as lower 16–Bit and thus address 32–Bit. That was not the

version implemented at that time. Instead, one had 20–Bit memory addresses.

To get such 20–Bit values, the registers were nested by 4 bits. This means, the

segment register was shifted by 4 and added to the offset register. This enables

20–Bit values, if one ignores the fact that this can lead to some additional larger

values. If the value exceeds the 20–Bit value, it is wrapped by just ignoring the

highest bit.

Registers and external communication The 8086 has eight 16–Bit regis-

ters, including a stack pointer. The instruction pointer cannot be used directly

in programs; it has to be manipulated by jump instructions. Four of those eight

registers can also be accessed as two 8–Bit registers each, one with the higher

8–Bits and one with the lower ones. These registers are named AX, BX, CX,

and DX, the corresponding 8–Bit registers are called AH and AL, BH and

BL, and so on. The other 4 registers (BP , SP , DI, and SI) are 16–Bit only

registers. The stack pointer SP points to the stack. PUSH and POP operations

access this stack with hardware support, growing down. The stack architecture

has not changed until today.

Communication to the outside world (memory, DMA–controller, interrupt–

controller, . . . ) is done via a bus with 16–Bit and a full speed of 8 MHz. There
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is no computation or cache needed for this part of the processor.

A.2 80286 (1982)

Name Date Max

Clock

Transistors external

Size

Address

Space

Caches

80286 1982 12.5M 134k 16Bit 16MB none

The architecture of 80286 was able to calculate most of the instructions in

only half the time required by the 8086. The performance increase of 80286

was, perhaps, the largest ever in the x86 architecture. It also introduced the

Protected Mode, where a hardware memory management unit (MMU) was en-

abled. In Real Mode, the 80286 behaves like a fast version of 8086. Extensions

can only be used in the newly introduced mode. 80286 was invented to support

multitasking operating systems. However, most of the time the “mainstream”

computers run them in Real Mode.

Registers and external communication did not change compared to 8086.

One interesting famous feature was introduced at that time: switching from

real to protected mode was supported by an instruction, switching back was

not. Switching back from protected mode to real mode had to be done via a

hardware reset. Perhaps Intel did not think that one would ever come back to

real mode. But in reality this happened very often. Note that the operating

system used was DOS at that time and it did only work in real mode. Every

protected mode application had to switch to real mode if an interrupt ocured.

If you consider clock interrupts that occur with 14kHz frequency, those switches

are everything but rare. The fastest possibility was to initiate a “soft” boot,

which only resets the CPU itself without resetting any peripheral devices. This

introduced the famous “Gate A20” problem that is used to switch back to real

mode until today (although today, one really does not need to switch back).

In principle, old real mode applications should work within protected mode,

if one would respect some limitations. In real world applications, those limita-

tions were violated all the time, thus nearly no real mode application did work

in protected mode. Intel did not tackle that problem, but had the hope that

the world would switch to new applications and operating systems very soon.

Memory Access Again, 80286 has only 16–Bit wide registers. To access the

full 24–Bit physical address space, Intel did not extend the old idea from 8086.

Instead, a hardware memory management unit was introduced. The segment

register was used as a pointer into a table. This table was used by the MMU

to get the value for the computation of the physical address. The idea is to
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concatenate two 16–Bit values (although not all 16–Bits were used).

A.3 80386 (1985)

Name Date Max

Clock

Transistors External

Size

Address

Space

Caches

i386DX 1985 20M 275k 32Bit 4GB none

With the introduction of 80386, the 32–Bit world came to the x86 architec-

ture. The x86 architecture with those 32–Bit extensions is called IA–32, like

I ntel Architecture 32–Bit. From an architectural point of view, this was one

of the largest and most important changes. The real mode and protected mode

were again supported, as in 80286. The protected mode was extended to the

extended mode in order to support a physical address space of 4GB.

Note that today, an additional running mode exists, called virtual 8086 mode,

short VM86. This mode is a submode of protected mode, but it exhibits a

behavior similar to the real mode. I.e., only 16–Bit registers are available, only

1 MB of memory can be addressed, etc. This was introduced to run old real

mode applications in protected mode. This is important to run old programs

under a new operating system and to avoid switching from protected mode to

real mode.

Memory Access In extended mode, the processor knows two different modes.

The first one is called flat memory model. In this mode, all addresses are given

with a 32–Bit value, a pointer into the 32–Bit linear address space. The second

one is called segmented memory model. The memory is divided into 16,383

segments, selected by a so called segment selector (this is only a part of a

segment register), and in this segment part the address is computed with a

32–Bit offset. The MMU has to translate logical addresses (containing only a

segment selector and an offset) to linear addresses for the processor.

Linear addresses do not mean physical addresses. Memory can also be

swapped to a hard disk. Therefore, the memory is divided into so called pages

that are 4,096 bytes each. Such pieces of the memory can be located either in

physical memory or on a hard disk, for each access to a linear address; a so

called page fault can occur if the memory is not located in the physical memory.

Page faults have to be handled by software to load the content from hard disk to

memory. To make room for such contents, it is likely that another page has to

be swapped out from the physical memory to hard disk. There exist translation

tables that show where those pages can be found. The linear address does not

mean that all neighboring pages are contiguous in the physical address space.
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time

Instruction

A B C D

A B C D

A B C D

Figure A.1: non-pipelined processor

time

Instruction

A B C C

A B C D

A B C D

Figure A.2: pipelined processor

Only after the computations of the MMU that looks up the address translation,

the location in physical memory can be seen.

Registers and External Communication Obviously, the register size was

extended to 32–Bit. The new 32–Bit registers have names with an E in front of

the old name, for example EAX. The old names are used to access the registers

in their old state: 16–Bit or 8–Bit wide. Note that accessing 16–Bit or 8–Bit

versions of a register only change those bits, all other bits are unchanged (as

one would expect). For external communication, the buses were also extended

by additional 16–Bits.

A.4 i486 (1989)

Name Date Max

Clock

Transistors External

Size

Address

Space

Caches

i486 1989 25M 1.2M 32Bit 4GB L1: 8K

The Intel 486 processor brought changes that were less obvious. It was the

first processor that had a floating point unit build into the processor (this was

only available as a separate processor before). And it was the first pipelined

processor in the x86 architecture.

In Figure A.1 and Figure A.2, one box labeled A, B, C, or D is represent-

ing one stage of the processor. One large box containing four of the smaller
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boxes represents one complete instruction / In non–pipelined or fully sequen-

tial processors (see Figure A.1 on the preceding page), the processor executes

one instruction. Only after the whole instruction is finished, the next one can

be processed. This means that the memory (which holds the instruction) is

waiting for work most of the time as well as most parts of the processor. In

pipelined mode (see Figure A.2 on the previous page), the processor is divided

into different stages. As an instruction progresses from one stage to another,

the now empty stage can be refilled again with a new instruction. For example,

in the second step, the first instruction has reached the stage called B, while the

second instruction can start in stage A. This leads to a more effective execution

in the processor.

A.5 Pentium (1993)

Name Date Max

Clock

Transistors External

Size

Address

Space

Caches

Pentium 1993 60M 3.1M 64Bit 4GB L1: 16KB

L2: 256 or

512K

The Pentium processor added a second execution pipeline to the 486 concept,

which lead to superscalar performance. The instructions have to be filled into

two pipelines, assuming that there are no dependencies of the instructions.

Guessing which instructions are not coupled is one of the most important prob-

lems in this case. When the Pentium processor was released, no optimizations

for that decoupling were implemented in compilers, and this did not lead to

increasing performance in any case. The processor got more popular when

it got higher clock speeds and the compilers had more optimizations built in.

Pentium processors brought another important feature for future development:

they got an APIC to support multiple processor systems. Although this was

not very important for people at that time, it became more interesting for later

processors.

External Communication E/ven for 486, the external periphery was not

able to work at the same clock speed as the processor (for example memory was

too slow). In Pentium processors, the problem became even worse. Intel decided

to improve the outside performance by extending the external communication

paths to 64–Bit. This does not mean that addresses were widened. Only the

amount of data that was transferred at one step was doubled. It also introduced

a so called “burst” mode. For normal mode, external communication is always

made with a pair of address and data. In burst mode, only one address is used
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for five consecutive data updates. This does lead to faster transfers because the

addresses do not have to be processed each time.

A.6 P6 Family (1995-1999)

The P6 family is not just one single CPU but included different evolution steps.

Altogether, they are based on a superscalar microarchitecture. Each of the

pipelines of the processor has 12 stages. The main features consist of branch

prediction, out–of–order execution, and speculative execution.

Branch prediction is performed whenever a branch in the execution can

occur. From a high level point of view, an if–then–else construct could be

seen as such a thing. A condition is checked and the execution path depends

on the outcome of that check. The pipeline has to be filled efficiently, so the

processor has to guess what to do next. The answer to that question is the

branch prediction that tries to predict the correct path. Speculative execution

can then be used to execute the path. If the outcome of the condition is known

and leads to the opposite execution path, the pipeline has to be flushed and

everything has to be deleted from all stages. Software that is optimized on the

branch prediction of a processor is executed much more efficiently than arbitrary

software.

If multiple pipelines exist, the execution of some instructions may depend

on the result of instructions that are currently in some pipeline. This means

the execution cannot be parallelized, and the new instruction has to wait until

the input is available. If this occurs, out–of–order execution can be used. This

means the order of the sequential program is changed and instead of the next

instruction, the next instruction is executed. To execute exactly like a sequential

processor, some unit has to rebuild the results again in the right order. /

A.6.1 Pentium Pro

Name Date Max

Clock

Transistors External

Size

Address

Space

Caches

P Pro 1995 200M 5.5M 64Bit 64GB L1: 16KB

L2: 256 or

512K

The Intel Pentium Pro processor is three-way superscalar. Three-way super-

scalar means that the processor can handle three instructions per clock cycle in

average. Average means that if branch prediction is wrong, this value cannot

be reached. An additional performance boost was reached by implementing a

L2–cache on the processor die. The advantage of such caches depends on the
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software that is executed.

Note that the address space was extended. It was not done by extending

to full 64-Bit physical address space, but again by introducing segmentation.

The processor could now have 16 segments with 4GB each. This extension is

called Physical Address Extension (PAE) by Intel. The processor first chooses

the segment. Then, it addresses the 4GB address space by normal access. For

operating systems and programs, this means only a limited extension. Every

program still has a memory limit of about 2GB, but more programs can use up

their limit, because then something like a fast swapping would take place. A

real 64-Bit extension was only introduced in the late Pentium IV era and the

Core2 processors.

A.6.2 Pentium II

Name Date Max

Clock

Transistors External

Size

Address

Space

Caches

P II 1997 266M 7M 64Bit 64GB L1: 32KB

L2: 256 or

512K

The multimedia extensions were introduced to the P6–family by the Pentium

II. Those extensions also needed some new registers, called MMX. Depending

on the software this can be a big improvement for performance. They are called

multimedia extensions because they were mainly used to improve programming

of video compression and similar software. The effects of the MMX instructions

are difficult to describe. Assuming that one wants to increase the values of 4

16–Bit registers by 1, you could have 4 instructions and then increase every

register. But one could improve performance by putting the four registers into

one register (4 time 16 means 64–Bit) and then have an instruction that adds

a mask to the value. The result would be correct if overflows of the 4 segments

would be ignored. The MMX instruction set consists of instructions, that are

doing logical or arithmetic computations as described.

Another big step in the x86 history was the introduction of low power states.

Although they were only beginnings on lowering the power consumption, they

enabled later improvements. Those power saving states became more interesting

with newer CPUs. When the first CPUs had a power consumption of around

1W, newer CPUs have power consumptions of up to 150W. This amounts to a

lot of saving possibilities.
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A.6.3 Pentium II Xeon

The Xeon family exists until today. They are modifications of the mainstream

processors. An example for improvements is the cache performance. While the

cache runs at half speed in Pentium II processors, in Pentium II Xeon the cache

run with full processor speed.

A.6.4 Celeron

The Celeron family had a longer life time. Celeron versions exist of Pentium

II, Pentium III and Pentium IV processors. It always represents a low budget

version of the corresponding main stream CPU. It is usually limited by the

cache size and clock speed. Main features of the processor stayed as in the

corresponding main processor.

A.6.5 Pentium III

Name Date Max

Clock

Transistors External

Size

Address

Space

Caches

P III 1999 500M 8.2M 64Bit 64GB L1: 32K

L2: 512K

P III 1999 700M 28M 64Bit 64GB L1: 32K

L2: 256K

The Pentium III introduced a large extension to the multimedia unit of the

architecture. It was extended to 128–Bits, and could either hold twice as many

subtypes or twice as much data as before. Nevertheless, new instructions were

introduced that were more general than the ones from the old MMX unit. Orig-

inally, Intel introduced the unit targeted at the multimedia software, the new

instructions are also used for games and mathematical computations. There-

fore it was important to have instructions for single–precision packed floating

point numbers. The new unit was called Streaming SIMD Extension, where

SIMD stands for Single Instruction, Multiple Data. The SSE extension was

also optimized and extended in later days.

A.6.6 Pentium III Xeon

In contrast to the mainstream processors and like the Pentium II Xeon, the

server processor had a full–speed cache. The normal version had it running

only at half speed. This was only important for high performance computing.
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A.7 Pentium IV (2000-2006)

Name Date Max

Clock

Transistors External

Size

Address

Space

Caches

P IV 2000 1.5G 42M 64Bit 64GB 12K OP

L1: 8K

L2: 256K

P IV 2004 3.4G 125M 64Bit 64GB 12K OP

L1: 16K

L2: 1M

Pentium IV is also the invention of the so called “netburst” architecture. The

processor was build for a very long time and introduced a number of extensions

to the architecture. One of the most important extensions was hyperthreading,

which means that some pipelines can be accessed like a separate processor. This

enables a dual processor system with only one physical processor. Note that

this does only speed–up overall performance if multi threading is supported by

the software, because less pipelines are able to work for a single thread.

The most important extension (for our purpose) introduced by Pentium

IV was the 64–Bit extension and the introduction of hardware virtualization

functionality. AMD was faster than Intel with both extensions, and Intel had

to react on their processors. Note that neither 64–Bit nor virtualization were

really used when those processors appeared.

The 64–Bit extension was made in a similar fashion to the 32–Bit extension:

all registers got an R instead of the E, for example RAX. The 32–Bit version

of the registers still exist in 64–Bit mode and can be accessed by the old name,

EAX in this example. Note that in 64–Bit execution mode, the standard width

for registers is 32–Bit. To have 64–Bit access, an additional prefix is needed.

According to the Intel manual, virtualization is only available in 64–Bit mode.
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