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Marco Muñiz, and Siyar Andisha

Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany

Abstract. The design of distributed, safety critical real-time systems is
challenging due to their high complexity, the potentially large number
of components, and complicated requirements and environment assump-
tions. Our case study shows that despite those challenges, the automated
formal verification of such systems is not only possible, but practicable
even in the context of small to medium-sized enterprises. We considered
a wireless fire alarm system and uncovered severe design flaws. For an
improved design, we provided dependable verification results which in
particular ensure that conformance tests for a relevant regulation stan-
dard will be passed. In general we observe that if system tests are spec-
ified by generalized test procedures, then verifying that a system will
pass any test following these test procedures is a cost-efficient approach
to improve product quality based on formal methods.

1 Introduction

Wireless communication offers a low-cost solution for distributed sensing and
actuation systems. In recent years, wireless systems have expanded their roles
towards performing an increasing number of safety critical tasks. The addition of
more features inevitably increases their complexity and with it the risk of critical
malfunctions. Consequently, there is a pressing need for methods and tools to
verify the safety of wireless systems in critical applications. In this paper, we
report on the verification of a wireless fire alarm system. Wireless fire alarm
systems are increasingly preferred over wired ones due to advantages such as,
e.g., spatial flexibility.

The main purpose of a fire alarm system is to reliably and timely notify
occupants about the presence of indications for fire, such as smoke or high tem-
perature. As system components may fail, e.g. due to physical damage, this
purpose can in general not be guaranteed. Thus fire alarm systems need to em-
ploy self-monitoring procedures and notify maintainers if they are not able to
fulfill their main purpose. Both false alarm notifications and false maintainer
notifications should be avoided as they induce unnecessary costs.

Given the safety and liability issues associated with system failures, it is
necessary to establish, with a good level of confidence, that the system design is
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correct with respect to its requirements. In our case study, we accompanied the
development of a wireless fire alarm system (WFAS) by SeCa GmbH [2], a small
company specialized in radio technology. We consider requirements from the
European standard EN-54, part 25 [8], which regulates the main obligations for
commercially available WFAS. These requirements are stated as test procedure
specifications. For example, the triggering of a single sensor anywhere in the
system must cause a fire notification within 10 seconds. We generalized and
formalized these test procedures and verified that the WFAS design will pass EN-
54 conformance tests executed according to those test procedures in all possible
scenarios.

Given the characteristics of the system, conventional testing poses consider-
able technical challenges: It is difficult to precisely control environment condi-
tions such as radio interference and the timing of system inputs, not to mention
the need for a prototype implementation and hardware. We propose the use of
formal verification tools and techniques to overcome these difficulties. Nonethe-
less, state-of-the-art verification techniques also face several challenges while
treating a system with such characteristics. First, the number of components and
topologies is large. Second, the standard documents explicitly specify complex
environment assumptions which need to be considered in the analysis. Third,
the relevant properties are real-time properties. A further challenge was posed
by the fact that we analyzed the design a priori, i.e. during its development, thus
it was necessary to efficiently handle design changes.

The primary goal of our case study was to ensure that EN-54 certification
tests will not fail due to design flaws. To this end we needed to provide the
company with sufficient evidence that the system fulfills its requirements while
giving a detailed account of the assumptions and limitations of the analysis, i.e.
we needed to provide dependable [15] analysis results. An additional goal was
to study the feasibility of applying formal methods to the verification problems
found in small to medium-sized enterprises (SMEs).

During our case study we assumed the role of consultants and became an ac-
tive component of the development team of the company. We created, validated,
and verified models of the WFAS under design and the environment conditions
specified by EN-54 25, using several formalisms and tools. Most aspects of the
protocol are modelled using timed automata [3], which were subsequently ver-
ified using Uppaal [4]. Untimed liveness aspects of the alarm functionality of
the system were verified using SPIN [14].

Several case studies on the verification of safety critical and distributed sys-
tems have been published. Fehnker et al. [10] report on verification of the ad hoc
on-demand distance vector routing protocol (AODV) where they enumerate all
possible topologies with up to 5 nodes. We provide verification results for a wider
range of topologies. Closer to our work is the verification of an AODV protocol
draft [5]. Their approach using HOL and SPIN considers real-time only in form
of integral factors, and they did not validate the models with the development
engineers. Other works [21,17] report on verification of the CAN bus protocol
and a self-recovery algorithm without considering real-time.
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Madl et al. [19] use Uppaal as part of a model-based verification framework
that performs limited compositional analysis where only isolated aspects of the
considered protocol are modeled using timed automata. Semi-automatic verifi-
cation of time-triggered architectures has also been carried out in the works of
Kopetz et al. [18] and Tripakis et al. [23]. Our verification strategy is based on
the use of fully automatic tools to discharge the main requirements after de-
composition and optimization. In addition, verification of real-time properties of
wireless sensor networks found in the literature is typically applied a posteriori,
e.g., for LUNAR [24], an implementation already existed, and they consider to
“employ a formal construction method rather than a post-construction verifica-
tion” as future work. Similarly, Dong et al. [9] verified E-2C when it was already
“in test” and Gebremichael [12] verifies the then well-known Zeroconf protocol.

The next section describes the requirements analyzed in our case study to-
gether with our formalization. Thereafter, Sections 3 and 4, describe the verifica-
tion of a concrete system design which aims at implementing those requirements.

2 Requirements

Fire alarm systems are regulated in the European Union by the standard EN 54 [8].
Its requirements are expressed with respect to components, e.g. sensors, and a
central unit. The central unit is a special device which is the interface of the
system with its users. It in particular displays events such as alarms and sensor
failures. Indications of fire detected by the sensors raise alarm events. Sensors
communicate using radio channels to cause the central unit to display an alarm.
Sensors need to be monitored constantly in order to ensure that their commu-
nication path towards the central unit is functioning correctly. The detection of
a sensor failure is also required to be displayed at the central unit.

2.1 Formalization of EN 54-25 Requirements

For each requirement, Part 25 of the EN 54 standard contains specifications
of test procedures including environment conditions and test engineer interac-
tions. All test procedures assume a ready-for-use system as specified by the
system manufacturer. A system is ready-for-use when the alarm and monitoring
functions are fully operational and events are expected to be detected and dis-
played. During a test, one can assume that the test engineer conducts exactly
those interactions with the system that are prescribed by a particular test proce-
dure. Additionally, the standard specifies the number of system components that
should be used for each test. There are certification authorities which perform
tests based on the procedures specified by the standard and issue compliance
certificates if those tests are passed. Thus we consider a design correct if it is
guaranteed to pass all tests following those test procedures.

The standard provides test procedures for the following requirements:

1. The loss of the ability of the system to transmit a signal from a component
to the central unit is detected in less than 300 seconds and displayed at the
central unit within 100 seconds thereafter.
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Table 1. DC formalization of the considered requirements.

2. A single alarm event is displayed at the central unit within 10 seconds.
3. Two alarm events occurring within 2 seconds of each other are each displayed

at the central unit within 10 seconds after their occurrence.
4. Out of exactly ten alarms occurring simultaneously, the first should be dis-

played at the central unit within 10 seconds and all others within 100 seconds.
5. There must be no spurious displays of events at the central unit.
6. Requirements 1 to 5 must hold as well in the presence of radio interference

by other users of the frequency band. Radio interference by other users of the
frequency band is simulated by a jamming device specified in the standard.

We already provided a formalization of the test procedures in [7]. From that,
we derived testable Duration Calculus (DC) [6] properties. We call a component
responsible for monitoring another a master, the monitored component is called
a slave. The master-slave relation of a system is called its topology. Let T be a
WFAS topology with the finite set C of components in addition to the central
unit which use the frequency bands (or radio channels) in the set F . We assume
the following observables for T . For i ∈ C, j ∈ F :

– RDY: true iff the system has been declared ready for use.
– FAIL: i iff component i is unable to transmit to the central unit, ⊥ otherwise.
– DETi: true iff the master of component i has detected a failure at i.
– DISPi: true iff the central unit has displayed an event at component i.
– ALi: true iff component i has detected an event.
– JAMj : true iff radio channel j is being jammed.

The standard specifies that at most one component may be disabled during
the test, and that disabled components are never re-enabled (FailPersT , cf. Ta-
ble 1). That is, for each component, there is no interval which can be chopped
into one phase where the component is disabled followed by a second phase where
the component is not disabled.

The jamming devices used during certification tests are specified as (i) only
the radio channels used by the system under test are jammed, (ii) only one, non-
deterministically selected radio channel is jammed at a time, (iii) channels are
continuously jammed for at least one second, and (iv) during channel changes,
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all radio channels are free for at most one second. More formally, we obtain JamT

(cf. Table 1). Note that it is especially hard for conventional testing approaches
to cover the non-deterministic behaviour of the jamming device.

The standard states that during monitoring testing, the system is consid-
ered to be free of alarms (NoAlT ) and that during alarm testing, failures are
not considered (NoFailT ). Requirement 5 and the deadlines of Requirement 1
can be formalized by NoSpurT , DetectT , and DisplayT . The complete, formal
requirement for the monitoring function is Req1T . Similarly, we formalized Re-
quirements 2, 3, and 4 as Alarm1T , Alarm2T , and Alarm10T . Overall, we have
Req2T for the alarm function. Note that Req1T and Req2T include JamT to
express Requirement 6. Requirements 1 to 5 without requirement 6 can be for-
mulated by redefining JamT to �d

∧
j∈F ¬JAMje. We have thus formalized all

requirements necessary to formally verify protocol designs against the standard.

3 Verification of the Monitoring Function
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Fig. 1. Example of a system topology.

The WFAS under design is expected to
work in a broad variety of buildings with
possibly suboptimal conditions for radio
signals. Therefore, the developers em-
ploy repeaters to relay messages in addi-
tion to the mandatory central unit and
the sensors. In the WFAS topology, each
component is assigned a unique master.
The master-slave relation forms a tree
with the central unit as root. Figure 1
depicts an instance of a WFAS topol-
ogy with sensors S1, . . . , S6, repeaters
R1, . . . , R3, and the central unit CU . Repeaters and the central unit function as
master i and consist of two transceivers each, Tr i1 and Tr i2. For displaying an
event, a repeater notifies its master of the incidence, which notifies its master
until the notification reaches the central unit. Functions of the protocol are dis-
tributed among the two transceivers in the masters. Transceiver Tr i1 is only used
for sensor monitoring, that is, this transceiver realizes the master-role towards
sensors. Transceiver Tr i2 realizes three functions: the slave-role towards another
repeater or the central unit, the master-role towards other repeaters, and the
forwarding of events.

Frames

S0 S1 S2 S3 S4 S5 S6 S7 S8   ...

Windows

Slots

Tics

Fig. 2. TDMA scheme.

The protocol designed employs a variant of Time
Division Multiple Access (TDMA) as shown in Fig-
ure 2. Time is partitioned into frames and frames
are divided into fixed-width windows. Windows are in
turn subdivided into slots, which are assigned to differ-
ent protocol functions. The window length is specified
in tics. Every sensor and repeater is assigned a unique
window.
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To perform failure detection, repeaters in the slave-role and sensors use the
same functionality. Slaves periodically send a keep-alive message to their master
in the corresponding slot of their assigned window. If no acknowledge message is
received from the master, a second and third keep-alive are transmitted in the
subsequent slots using a different channel. Masters listen on the corresponding
channel during the slots of their assigned slaves. A master enters its error de-
tection status when a specified number of keep-alive messages from one slave
have consecutively been missed. The master then initiates the forwarding of
the failure detection event. Event forwarding takes place without regarding slot
assignments, using the transceivers Tr i2.

To compensate for unavoidable clock drift, i.e., slight deviations between
clock speed in different components, a correction mechanism is used. Acknowl-
edgements for keep-alive messages come with a time stamp which allows the
slave to synchronize its clock with the master’s clock. Additional time inter-
vals added at the beginning and at the end of slots (guard times) ensure that
transmissions of keep-alive messages do not overlap and are not lost. In the
design, sensors stop sending keep-alive messages after a determined number of
consecutive non-acknowledged keep-alive messages because they are then miss-
ing a sufficiently recent time stamp. This mechanism prevents a malfunctioning
sensor from causing message collisions.

3.1 Modeling

The requirements (cf. Section 2.1) indicate a clear separation between environ-
ment assumptions and protocol components. We employ a reusable, modular
environment model which is coupled to a protocol design model by a defined
interface (cf. Figure 3(a)). We can thus accommodate changing design ideas
during development while maintaining fixed environment assumptions. A sam-
ple topology including all necessary model artifacts is shown in Figure 3(b). In
the following, we present our environment model and our model of the final
design of the monitoring function.

Environment Model. The environment consists of modules that represent
radio channels (Media), non-deterministic component failures (Switcher), and
radio interference by a jamming device (Jammer). To allow parallel commu-
nication over different radio channels, the communication medium consists of
one timed automaton for each channel used by the system. System models send
messages to the media using a synchronisation channel array TX, indexed with
the message type and the channel used. A medium then broadcasts the mes-
sage using the RX channel array with the same indexing conventions. When a
component is deactivated by the Switcher automaton, any message sent by the
component is discarded at the media without being relayed. Likewise, messages
are discarded at the radio channel blocked by Jammer.

The protocol is designed to be free of collisions. To verify this property, media
models were designed to accept only one message at a time. If two components
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(a) Model architecture.
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(b) Inner and outer networks (cf. Sect. 3.2).

Fig. 3. Model architecture and exemplary model instance for the monitoring function.

send messages simultaneously, a deadlock occurs. Verifying the absence of colli-
sions thus amounts to checking whether the complete model has deadlocks.

x <= Second
ch: channelID

gBlockedChannel := -1,
x:=0

gBlockedChannel := ch gBlockedChannel := ch,
x := 0

BLOCKED

INIT_BLOCKED

ch: channelID

ch : channelID ch:channelID

FREE

x >= Secondx >= Second
gBlockedChannel := -1,

x := 0

gBlockedChannel := ch,
x:=0

gBlockedChannel := ch,
x := 0

gBlockedChannel := -1,
x := 0

Fig. 4. Radio jammer model.

Radio interference is modeled by
the Jammer automaton (see Fig-
ure 4). The currently blocked radio
channel is indicated by the global vari-
able gBlockedChannel. If all radio
channels are free, its value is -1. As the
radio jammer may have been switched
on before the system is ready for use,
blocking of a radio channel as ob-
served by the ready-for-use system may be initially shorter than 1s (cf. JamT

on page 4). This situation is explicitly modeled by location INIT BLOCKED.

Clock reduction. Motivated by the large number of components, we applied
quasi-equal clock reduction [13]. This technique takes advantage of clock vari-
ables that have the same value except for discrete points in time. These clocks
are reduced to a single, centralized clock and thus verification complexity is de-
creased. In our case, the environment model includes the central clock sources
Frame and Window. They provide a global clock variable which is reset at the
end of each window and use a broadcast channel to notify components whenever
the clock is reset. The automaton Window also handles keeping track of the
number of windows passed since the beginning of the frame. Note that symme-
try reduction can not be applied because the assignment of slots to components
is based on the components’ identity.

To make the simplifying assumption that clocks are perfectly synchronized
and can be reduced, we verified separately that the guard times used in the design
satisfy the conditions of [16]. These conditions ensure that keep-alive messages
do not collide given that quartz oscillators work inside their specified ranges.
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TX[LZ][channelLZ]! RX[ACK][channelLZ]?

absTime <= WindowEnd
absTime <= LZ3Start + LZdelay

absTime <= Slot2End
RX[ACK][channelCALL]?

cycleReset?

TX[LZ][channelALARM]!

TX[LZ][channelCALL]!

RX[ACK][channelALARM]?

cycleReset?

second_try

third_try

window_end
first_try

absTime <= LZ2Start + LZdelay

absTime<=Slot1End absTime <= CycleLength

slot_end

absTime <= LZStart + LZdelay

absTime <= LZStart
idle

absTime >= Slot2End

gSensorID := id

absTime >= LZ3Start

absTime >= WindowEnd

absTime>=Slot1End

gSensorID := id

absTime >= LZStart

gSensorID := id

absTime >= LZ2Start

Fig. 5. Model of the slave-role of components.

Monitoring Protocol Model. The protocol design is modeled by the different
system components that perform the functions of masters and slaves. Figure 5
shows the timed automaton modelling the slave-role of sensors. Note that the
keep-alive message is potentially sent three times in a slot.

A repeater is basically modelled by three sub-models: the master-role towards
sensors, the master-role towards repeaters, and the slave-role of repeaters. A
master-role is further subdivided into two sub-models: the first one receives keep-
alives and replies with acknowledgements, the second one keeps track of missing
messages to determine the status of its slaves. In order to observe DETi in the
model, the second master-role timed automaton synchronizes with the Switcher
automaton once an error is detected. A central unit is similar to a repeater, just
without the model for the slave-role.

In order to maintain simple and readable models, assumptions of the main
requirement Req1T are integrated directly into the model. For instance, the fact
that RDY holds permanently is modeled by the fact that no operation modes
outside of a ready-for-use system are modeled. Likewise, no alarms or their cor-
responding features are present in the model in order to satisfy NoAlT . The
persistence of failures, FailPersT , is modeled directly by not allowing the timed
automata to return to normal operation once they have been deactivated. Addi-
tionally, the Switcher automaton allows for only one component to be deactivated
during a system run (cf. Section 2.1).

3.2 Verification

We realized the environment and protocol model including assumption treatment
in Uppaal. In the models [1], the observables from Section 2.1 are modeled either
as locations in the timed automata, or as mappings to (both continuous and
discrete) variable values. Uppaal queries can be derived from the testable [20]
DC formulae in Section 2.1 to check the satisfaction of the requirements.

Decomposition: Inner and Outer Network. As the two transceivers operate
on different radio channels, any WFAS topology can be seen as consisting of two
independent networks with the repeaters as gateways. We call the network used
for communication between repeaters and the central unit the inner network
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Sensors as slaves, N = 126. Repeaters as slaves, N = 10.
Query seconds MB States seconds MB States

DetectT 36,070.78 3,419.00 190,582,600 231.84 230.59 6,009,120

NoSpurT 97.44 44.29 640,943 3.94 10.14 144,613

No LZ-Collision 12,895.17 2,343.00 68,022,052 368.58 250.91 9,600,062

Detection Possible 10,205.13 557.00 26,445,788 38.21 55.67 1,250,596

Table 2. Verification of the final design (Opteron 6174 2.2Ghz, 64GB, Uppaal 4.1.3).

and the network used to communicate between sensors and repeaters the outer
network. In Figure 3(b), instances of inner and outer networks are highlighted
for the depicted topology.

The detection aspect of the monitoring functionality, DetectT , takes place
local to an inner or outer network. Thus it can be verified by regarding a master
and its set of slaves in isolation, since monitoring subnetworks do not commu-
nicate or interfere with each other because of the TDMA scheduling. We thus
verified separate models for the monitoring function of sensors (outer network)
and of repeaters (inner network), while abstracting away the networks and com-
ponents that do not participate in the detection function.

Topology Coverage. We performed verification on two models, each consisting
of a master with the maximum number of slaves allowed by the design as required
by EN 54-25. The sensor to master model comprises a master (representing both
a repeater and the central unit) and 126 sensors, plus the environment models
(Jammer, Switcher, and Media). Verifying a subtopology with the maximum
number of connected sensors subsumes all other subtopologies with a smaller
number of components because a functioning sensor overapproximates, in par-
ticular, the behavior of an absent sensor. Together with the observation that
subnetworks are isolated in their detection function, verifying detection on the
model provided is sufficient to prove the satisfaction of DetectT and NoSpurT
in all topologies T , when each topology is considered as a collection of isolated
outer network subtopologies. Analogously, the model of the master role towards
repeaters, which contains 10 repeaters, covers all topologies.

Results. The verification of a model of the initial design of the monitoring
protocol resulted in the discovery of two design faults: A corner case in which
the detection deadline was exceeded by one tic and a violation of NoSpurT in
the presence of a jamming signal. Given the timing constraints specified for
the jamming signal, it was possible for it to continuously block the keep-alive
messages of a sensor, thus causing spurious failures to be detected at its master.
The design was consequently adapted to shorten the length of the windows
assigned to sensors and to include an additional retry (to make three in total) for
the transmission of the keep-alive packets, together with a faster channel rotation
scheme. Verification of the adapted design revealed no further vulnerabilities
(cf. Table 2). Likewise, we verified NoSpurT in the final model and performed
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additional checks to establish validity: Reachability of the detection location
excludes trivial satisfaction of the requirements, and the absence of deadlocks
excluded message collisions. In addition, we verified that Jammer satisfies JamT .

Having successfully verified the detection phase of the protocol, we still need
to verify DisplayT in order to discharge requirement Req1T . As forwarded fail-
ures and alarms are treated equally according to the design, we condition the
satisfaction of DisplayT to the satisfaction of the alarm deadline requirements.
Given that the deadline for displaying failures is much larger (100 seconds as
opposed to 10 seconds for alarms), we deduce that satisfying alarm deadlines
subsumes satisfying failure display deadlines.

4 Alarm Verification

Whenever an event is detected, it is forwarded towards the central unit to be
displayed. Forwarding is performed by the second transceiver Tr2, which always
uses a different radio channel than Tr1. An event is transmitted in the slot imme-
diately following detection or reception for forwarding, thus ignoring the window
assignments. This design choice speeds up transmission, but allows for collisions,
i.e. simultaneous transmission of two or more messages. When a collision occurs,
the information of the participating messages may be distorted or destroyed.

A resolution protocol was devised in order to accommodate for the possi-
bility of collisions. The protocol follows a tree-splitting [11] approach based on
the system-wide unique ID numbers of the components. The protocol assigns a
tic for the start point of the transmission in the next slot. At the start point,
a component listens shortly to determine whether the channel is free, in which
case the transmission is started (“listen before talk”). If the channel is in use, the
component waits until the next slot to retry transmitting using the same start-
ing point. After a transmission, if no acknowledgment is received, a collision is
assumed and, based on the binary representation of the ID and the respective
collision counter, the colliding components deterministically modify their start-
ing point for retrying the transmission in the next slot. The process is repeated
as long as an event is not successfully transmitted and should guarantee that
every waiting event eventually reaches the central unit.

0 1 4 5 6 7 8
Slot

t0

8 7 6

8 7 7 7

8 8 8 8 8 7

8 8 8 8 8 8 8

2 3

ID 127

ID 85

ID 42

ID 1

(0111 1111)

(0101 0101)

(0010 1010)

(0000 0001)

Fig. 6. Collision resolution. The transmission
start tics are shown inside the circles. Collid-
ing components are shown in red, waiting ones
in gray, and successful transmissions in green.

In Figure 6, the initial steps
of the collision resolution are de-
picted for an example scenario. As-
sume, components with IDs 127,
85, 42 and 1 detect an event at
time t0. In the slot following t0,
all components start transmitting
their events at initial transmission
start tic 8, which results in a colli-
sion of all 4 messages. All compo-
nents detect the situation (they did
not receive an acknowledgement),
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advance their collision counter, and choose based on their ID and the new value
of the collision counter a new starting point. In slot 2, components 127 and 85
start their transmission at tic 7 while components 42 and 1 continue to start at
tic 8. The messages of components 127 and 85 collide once again, while 42 and
1 find the channel in use and wait for the next slot to retry. In slot 3, all collid-
ing components advance their counter and now 127 chooses an earlier starting
point while 85’s starting point does not change. This allows 127 to transmit suc-
cessfully while the remaining components detect the transmission and wait. The
process repeats and 85, 42 and 1 finally deliver their events to their masters.

4.1 Alarm Deadlines

Environment and Collision Resolution Model. For the environment, we
employed an architecture similar to the one described in Section 3. The media
models were extended to explicitly accept and observe message collisions. A
newly added parameter models the range of radio communications, which limits
the number of components whose messages may collide. With a value of 1, only
components connected to the same master, and their master can collide, higher
values allow collisions with components connected to masters further away.

Additionally, a simpler radio jammer was used. The non-deterministic jam-
mer as shown in Figure 4 proved too complex in its behavior, causing the ver-
ification to timeout. After consulting with the company and the certification
authority, we elicited additional assumptions about the jamming device used for
EN-54 certification. Those assumptions allowed us to model and use a sequential
jammer, that deterministically chooses the channel to be jammed. Again, we
used quasi-equal clock reduction and the assumption that clocks are perfectly
synchronized. Note that, due to listen before talk, message collisions only occur
if transmissions start at the exact same time, hence perfectly synchronized clocks
present a more difficult scenario for collisions.

We modelled the tree splitting collision resolution algorithm for the alarm
behavior of the sensors and the forwarding component of repeaters. Repeaters
employ an event queue implemented as an array with a pointer variable. For the
verification of a single alarm and ten simultaneous alarms, all sensors start in
the alarmed state, this without loss of generality since it is the common behavior
for all possible detection time points in the previous slot. In the model for two
alarms, non-determinism is introduced to allow for the alarms to occur at all
possible points inside a 2-second interval, in particular simultaneously.

Verification and Results. The event forwarding mechanism of the proposed
design posed a challenge for verification for two main reasons: (a) The forwarding
times strongly depend on the topology, in particular on the number of repeaters
along the way to the central unit, and (b) the algorithm employs complex data
structures.

The EN-54 standard requires that an “especially difficult” topology is used
in certification tests. The developers agreed with the certificate authority on
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T = T1 (palm tree, full coll.) T = T2 (palm tree, limited coll.)

Query ids seconds MB States seconds MB States

Alarm1T - 3.6± 1 43.1± 1 59k ± 15k 1.4± 1 38.3± 1 36k ± 14k

Alarm2T seq 4.7 67.1 110,207 0.5 24.1 19,528

Alarm10T seq 44.6± 11 311.4± 102 641k ± 159k 17.3± 6 179.1± 61 419k ± 124k

opt 41.8± 10 306.6± 80 600k ± 140k 17.1± 6 182.2± 64 412k ± 124k

Table 3. Resource consumption for the verification of the alarm functionality.

one which involves the maximum number of chained repeaters allowed by the
design and is expected to cause many collisions based on the IDs of the involved
components. This topology resembles a “palm tree”, with the central unit as
root, 5 chained repeaters, and 10 sensors connected to the farthest repeater.

We realized the chosen topology using Uppaal, but had to use the convex-
hull overapproximation [25] to successfully verify all properties. For the verifica-
tion runs, we considered different scenarios for the “palm tree” topology along
several dimensions: 1. The range of the collisions (“full” for all components col-
liding, “limited” for only neighboring components colliding) 2. The assignment
of IDs for the colliding sensors (“opt” for optimized IDs with large edit distances
and “seq” for IDs sequentially assigned) 3. Which receiver is influenced by the
radio jammer (averaged results are shown). Average time, memory and states
explored are shown in Table 3. Additionally, we were requested by the com-
pany to extract the expected worst-case response times for alarm delivery. We
employed the inf and sup functions provided by Uppaal, and obtained upper
bounds for the time needed to deliver 10 simultaneous alarms with the IDs sets
we considered: in T1 the 1st alarm is displayed after at most 4.32s (T2: 5.89s),
and the 10th alarm after at most 44.4s (T2: 33.45s). As soon as prototype hard-
ware and software were available, the developers measured the response times for
different scenarios and proved the model predictions accurate. This validation
step enhanced the confidence of the developers in their design.

4.2 Non-Starvation of the Collision Resolution

Although valuable for certification, only limited topology and scenario coverages
are achieved by the results reported on in Section 4.1. To increase confidence
on the effectiveness of the collision resolution protocol, we set out to provide
evidence that delivery of messages is ensured. That is, that the protocol satisfies
the liveness property that a message delivery request is eventually served.

Untimed Collision Resolution Model. For more general scenarios than the
ones considered in Section 4.1, Uppaal proved unwieldy. Thus we provide a
Promela [14] model for SPIN, which is a state-of-the-art tool for checking models
with bounded integer data. In our model, a single process non-deterministically
selects, from a given set I of component IDs, N ≤ |I| component IDs which
will detect an alarm. The protocol state is encoded by an array indexed by
the component IDs allowed in the system (256 in our case). At each position,
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there is a collision counter and binary flags indicating whether the component
detected an alarm and whether it has delivered its message. One step of the model
represents the evolution during one slot. In the step, collisions are detected and
start-times are updated by executing the collision resolution algorithm for each
active entry of the array. The time when the alarm is detected is also chosen
non-deterministically for each selected component. Thus with, e.g., a given set
I = {i1, . . . , i10} of 10 IDs the case N = 3 analyses all possible collisions of size
1, 2, and 3 with any possible overlap in time. For instance, the case that only
i1, i2 detect an alarm at the same time is covered by the case where i3 detects
an alarm earlier and immediately transmits its message successfully.

Topology Coverage. The model represents one-hop collisions, that is, col-
lisions between sets of components whose messages can collide, similar to the
models employed for the verification of the failure detection mechanism (cf. Sec-
tion 3.1). A choice of N IDs from I in our model covers all topologies where those
IDs are logically and physically distributed such that their messages may collide.
Verifying the model for a given value of N is equivalent to checking liveness for
the protocol in all topologies with up to N colliding messages.

|I| N sec. MB States

255 2 49 1,610 1,235,970

H 10 3,393 6,390 6,242,610
L 10 4,271 10,685 10,439,545
Rnd 10 4,465 11,534 11,268,368
average 4,138 9,994 9,763,809

Table 4. Resource consumption for
the verification with SPIN 6.2.3.

Verification and Results. The analysis
of the untimed model uncovered several vul-
nerabilities of the protocol. Firstly, there is
an issue present in all carrier sensing proto-
cols: The hidden terminal problem. When
two components are unable to detect the
transmissions of each other and repeatedly
transmit simultaneously, effectively causing
a common receiver to lose all information.
The problem was deemed, however, acceptable by the developers, since it rarely
occurs in practice and can be easily avoided by slightly adapting the physical dis-
tribution of sensors. Therefore we only considered scenarios without the hidden
terminal problem for the verification.

For component selections with N = 2, a problem of the limited number of
starting points for transmissions was uncovered: Whenever components with IDs
0 and 128 entered into collision resolution with a third component causing them
to collide at the same tic, the algorithm caused the collision to repeat in an
endless loop. Due to the similar binary representations of the IDs, identical and
repeating start point selections were made by both components. The company
adapted the configuration tools for the WFAS in a way that avoids assigning
these IDs to components in close physical proximity. For higher values of N , the
memory and time available were insufficient. We thus resorted to sampling IDs
according to the similarity of their binary representation. We observe that the
steps of the collision resolution algorithm correlate with the similarity between
the binary strings of the IDs The average resource consumption figures for our
verification effort with SPIN are shown in Table 4. We performed random selec-
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tion of ID assignments for collisions of 10 sensors. The sampling was guided to
explore the effect of similarity using the Hamming distance of the components
within a sample. Three different categories were chosen: low similarity (L), high
similarity (H), and pure random samples (Rnd). In total, we sampled 31,744
different 10-component selections. As seen in Table 4, similarity appears to have
an inverse correlation with the size of the explored state space. We can thus
assume that a good coverage over the space of ID selections was achieved.

5 Conclusion

The formal modelling and verification of the new Wireless Fire Alarm System
proved challenging. Employing different techniques and tools such as property
decomposition, internal assumption treatment, meta-reasoning about topology
coverage, and timed and untimed verification support of Uppaal and SPIN
enabled us to dependably provide sufficient evidence that EN-54 certification
tests will not fail due to design flaws. All models are available for download [1].

Our verification effort proved valuable for the development process of the
company involved. We discovered previously unknown flaws that triggered sig-
nificant revisions of the design. For the final design, we delivered concrete in-
formation about the operational circumstances for which our verification results
apply. According to the testimony of the company, the project was accelerated
compared to previous developments without the use of formal methods: The first
prototype implementation already passed all initial in-house tests, thus the test
phase was substantially shortened and the effort of bug-fixing ameliorated.

What can be learned from our effort? We feel that the key for providing
valuable results in limited time was to generalize and formally specify relevant
and involved test procedures, and verify that tests following those will be passed.

Because most companies specify tests and are used to this activity, formaliz-
ing test procedures seems to be a cost-efficient way of obtaining precise specifi-
cations for formal verification. From our experience, verifying that a design will
pass all tests according to the given generalized test procedure can avoid huge
test efforts; in addition, verification does not require initial implementations and
hardware prototypes as opposed to conventional testing.

We related the models to the knowledge and experience of the designers
by simulating different scenarios directly in Uppaal. Discussing these scenarios
facilitated the assessments of whether the models faithfully represent the design
under development, i.e. model validation. In our case, a further indication for
validity is that time bounds predicted by the model could be confirmed by the
developers by measuring the implemented system.

Of course, the development goal here was not a system which only passes the
certification tests, but a good system, one that fulfills all functions it was designed
for. The WFAS, for example, should properly handle the failure of more than
one sensor at a time. Checking such scenarios is possible with our techniques and
would further increase confidence, but incurs additional costs for specification
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and modelling. Here, conventional testing is appropriate: From knowledge about
the models, we expect the given scenarios to pass.

We see that formal methods and tools available today are capable of treating
problems of SMEs while adding value to their development process. A priori
design verification as conducted in our case study facilitates finding design errors
early and potentially saving efforts and costs. For the certification of critical
systems, verification of design models could also improve certification processes,
in addition to the verification of binaries as in DO-333 [22].
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