
Detecting Quasi-equal Clocks

in Timed Automata

Marco Muñiz, Bernd Westphal, and Andreas Podelski

Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany
{muniz,westphal,podelski}@informatik.uni-freiburg.de

Abstract. A recent optimizations technique for timed model checking
starts with a given specification of quasi-equal clocks. In principle, the
zone graph can used to detect which clocks are quasi-equal; the construc-
tion of the zone graph would, however, defeat its very purpose (which
is the optimization of this construction). In this paper, we present an
abstraction that is effective for the goal of the optimization based on
quasi-equal clocks: it is coarse enough to yield a drastic reduction of
the size of the zone graph. Still, it is precise enough to identify a large
class of quasi-equal clocks. The abstraction is motivated by an intuition
about the way quasi-equalities can be tracked. We have implemented the
corresponding reasoning method in the Jahob framework using an SMT
solver. Our experiments indicate that our intuition may lead to a useful
abstraction.

1 Introduction

Timed automata and timed model checking [1,12,18] have been very successfully
applied for the verification of real-time systems. Still, the number of clocks in
a timed automaton will always be an issue for scalability, and the optimization
of timed model checking will always be a topic of research. Optimization tech-
niques for timed model checking are often based on some notion of redundancy
in the representation of the timed model and its behavior in terms of clock val-
uations. The detection of the corresponding redundancies is then a prerequisite
for applying the optimization.

An example of a redundancy which gives the opportunity of a provably very
effective optimization is the notion of quasi-equal clocks [11]. Two clocks x and y
in a given timed automaton are quasi-equal if the invariant x = y∨x = 0∨y = 0
holds. That is, in every step in every transition sequence, the two clocks x and
y have equal value except for steps where one of them has been reset but not
the other. As a consequence, the invariant x = y can be violated only at single
time points (i.e., during time periods of length zero). In a way, the violation of
the invariant is an artefact of the model of the behavior of a timed systems by
discrete sequences.

The optimization presented in [11] starts with a given specification of quasi-
equal clocks. In principle, the zone graph can be used to detect which clocks
are quasi-equal; the construction of the zone graph would, however, defeat its

V. Braberman and L. Fribourg (Eds.): FORMATS 2013, LNCS 8053, pp. 198–212, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Detecting Quasi-equal Clocks in Timed Automata 199

very purpose (which is the optimization of this construction). In this paper, we
present an abstraction that is coarse enough to yield a drastic reduction of the
zone graph and precise enough to identify a large class of quasi-clocks.

The abstraction is motivated by an intuition about the way quasi-equalities
can be tracked. The intuition is that the behavior of a timed automaton over
a non-zero period of time (without resets) will neither introduce new quasi-
equalities nor “destroy” a quasi-equality, and hence we can apply the most coarse
abstraction there. In contract, when different values for quasi-equal clocks arise
in a sequence of configurations where time does not elapse, we must track the
constants for the values of the clocks as precisely as possible (i.e., apply no
proper abstraction). Thus, as an intermediate step for computing abstract zones,
we must apply logical reasoning in order to infer whether the zone accounts for
behavior of zero (as opposed to: non-zero) periods of time.

Our abstraction methods amounts to computing an abstraction of the zone
graph. We use the abstract zone graph to detect quasi-equal clocks.

We have implemented our method in the Jahob verification framework. This
allows us to represent zones (and abstract zones) by linear real arithmetic for-
mulas and to perform the required logical reasoning (on the duration of the
corresponding period of time) through calls of an SMT solver.

We have used our implementation to conduct preliminary experiments. The
results indicate that the abstraction is effective for the goal of the optimization
based on quasi-equal clocks: it is coarse enough to yield a drastic reduction of
the size of the zone graph. Still, the abstraction is precise enough to identify a
large class of quasi-clocks.

Related work. In [13], a syntactical pattern for timed automata is proposed.
Automata constructed under this pattern are called sequential timed automata.
There, the so-called master clocks will be reset at exactly the same point of
time. Thus, master clocks are quasi-equal by construction. Unfortunately, the
class of sequential timed automata is rather restricted. Therefore, one would like
to be able to use the general class of timed automata and apply a method for
detecting or checking quasi-equal clocks. This motivates the present work.

In [7] an abstraction method is proposed for detecting equal clocks (at a par-
ticular location). Once equal clocks at a particular location have been detected,
a substitution method can be used to reduce the number of clocks in that loca-
tion. Thus, the method can effectively reduce the number of clocks per location
and also in the whole timed automaton. In this sense, the method [7] is similar
wrt. its goal to our method. The difference lies in technical details. Computing
quasi-equal clocks requires to detect zero time paths. For this, our method tracks
the actual valuations of clocks, which the method [7] does not. As a consequence,
it will not be able to detect quasi-equal clocks when they are not equal.

Outline of the paper. In Section 2, we use an example to recall and illustrate
the notion of quasi-equal clocks. We also investigate the issue of zero time be-
haviors and we present the abstract transition system for detecting quasi-equal
clocks. In Section 3, we present the formal setting. In Section 4, we formalize our

200 M. Muñiz, B. Westphal, and A. Podelski

�0x ≤ 60 ∧ y ≤ 60

�1

x ≤ 60 ∧ y ≤ 60

�2

x ≤ 60 ∧ y ≤ 60

�3 x ≤ 60 ∧ y ≤ 60

x ≥ 50 y ≥ 40

y ≥ 40 x ≥ 50

y ≥ 60 y := 0

x ≥ 60 x := 0

x ≥ 60 x := 0

y ≥ 60 y := 0

Fig. 1. Automaton with quasi-equal clocks x, y

abstraction by means of an abstract zone graph and a simulation relation. In
Section 5, we present an example that illustrates effectiveness of the abstraction,
i.e., the reduction of size through the abstraction. In Section 6, we present an
algorithm for computing the reachable abstract zone graph (on the fly). The out-
put of the algorithm is a relation that identifies which clocks are quasi-equal. We
present the result of our experiments using an implementation of the algorithm.

2 Example

In this section, we illustrate our approach with help of the automaton in Figure 1.
First, we refresh the notion of quasi-equal clocks. Next, we show the importance
of the zero time behavior for detecting quasi-equal clocks. Finally, we show the
corresponding abstract zone graph in which quasi-equal clocks can be efficiently
detected.

Quasi-equal clocks. two clocks are quasi-equal if for all computations their values
are equal or if one clock was reset then a reset must eventually occur for the
other clock in zero time. Quasi-equal clocks are formally defined in Section 3.
Consider the timed automata presented in Figure 1 with clocks x and y. Clearly,
clocks x and y are not equal since for example in the computation 〈�0, {ν0}〉 →∗

〈�1, x = 60 ∧ y = 0〉 the configuration 〈�1, x = 60∧ y = 0〉 yields different values
for clocks x and y. However, note that the invariant I(�1) = x ≤ 60 ∧ y ≤ 60
will prevent time to elapse at this configuration and thus the only successor of
this configuration is 〈�0, x = 0 ∧ y = 0 ∧ x ≤ 60 ∧ y ≤ 60〉 in which the values
for clocks x and y are equal. Indeed, it is the case that for all computations
from the automaton in Figure 1, the values for clocks x and y are either equal
or the value of one clock is zero and a reset in zero time for the other clock
occurs. Therefore, clocks x and y are quasi-equal. Clearly, the behavior of timed
automata in Figure 1, can be simulated by using one clock, which yields an
important speed up in the verification time.

Detecting Quasi-equal Clocks in Timed Automata 201

〈�0, x = y〉

〈�1, x = y〉

〈�2, x = y〉

〈�0, P1〉

〈�0, P2〉
〈�1, P2〉

〈�2, P1〉
〈�3, x = y〉

Fig. 2. Abstract zone graph corresponding to TA in Figure 1

Zero time behavior. As shown above, the zero time behavior of a timed au-
tomaton may cause quasi-equal clocks to arise. Therefore, zero time behavior is
important for detecting quasi-equal clocks.

In the computation given above, first a reset for clock x occurs, then in the
next transition a reset for clock y occurs. In this case, the length of the zero
time computation is just one transition. However, this does not need to be the
case. Consider the computation 〈�0, {ν0}〉 →∗ 〈�0, x = 0 ∧ y ≤ 60 ∧ y ≥ 60〉, the
invariant I(�0) = x ≤ 60∧ y ≤ 60 will not let time elapse and the only successor
is 〈�2, x = 0 ∧ y ≤ 60 ∧ y ≥ 60〉. The invariant I(�2) = x ≤ 60 ∧ y ≤ 60 will not
let time elapse and the only successor is 〈�0, x = 0 ∧ y = 0 ∧ x ≤ 60 ∧ y ≤ 60〉,
where time may elapse but the values for clocks x and y are equal. In general,
the number of transitions that may occur in zero time might be infinite.

Abstract zone graph. Given a timed automaton, our method will construct an
abstract transition system, which preserves as much as possible the zero time
behavior of a timed automaton. The configurations of the abstract transition
system are pairs consisting of locations and zones. The zones that we compute
are of two types. Either a zone for which time is guaranteed not to elapse or a
conjunction of equalities for clocks for which time may elapse.

Figure 2 shows the abstract transition system corresponding to the abstraction
defined in Section 4 applied to the automaton in Figure 1, where zones P1, P2

are P1 := x ≤ 60 ∧ x ≥ 60 ∧ y = 0 and P2 := y ≤ 60 ∧ y ≥ 60 ∧ x = 0.
Note, that in configurations where time may elapse the corresponding zone is
x = y. In the transition induced by the edge (�1, x ≥ 60, x := 0, �0) from the
automaton in Figure 1 and configuration 〈�1, P1〉. The successor configuration
〈�0, P ′〉 with zone P ′ = (P1∧x ≥ 60)[{x} := 0]∧I(�0) is not zero time. Therefore,
(P1 ∧ x ≥ 60)[{x} := 0] ∧ I(�0) is relaxed to x = y, leading to configuration
〈�0, x = y〉. Since, every zone in the set of reachable configurations implies that
x = y ∨ x = 0 ∨ y = 0, our abstraction allow us to soundly conclude that x and
y are quasi-equal.

202 M. Muñiz, B. Westphal, and A. Podelski

3 Preliminaries

The formal basis for our work are timed automata [1]. Let X be a set of clocks.
The set Φ(X) of simple clock constraints over X is defined by the grammar
ϕ ::= x ∼ y | x − y ∼ C | ϕ1 ∧ ϕ2 where x, y ∈ X, C ∈ Q+

0 , and ∼∈ {<,≤,=
,≥, >}. Constraints of the form x− y ∼ C are called difference constraints. We
assume the canonical satisfaction relation “|=” between valuations of the clocks
ν : X → R+

0 and simple clock constraints.
A timed automaton A is a tuple (L,X, I, E, �0), which consists of a finite

set of locations L, with typical element �, a finite set of clocks X, a mapping
I : L → Φ(X), that assigns to each location a clock constraint, and a set of edges.
E ⊆ L×Φ(X)×P(X)×L. An edge e = (�, ϕ, Y, �′) ∈ E from � to �′ involves a guard
ϕ ∈ Φ(X), and a reset set Y ⊆ X. For easiness of presentation our definition of
timed automaton does not include synchronizations or data variables. However,
our idea can be extended to such “richer models” in a straight forward manner.
For the rest of the paper, let us fix a timed automaton A = (L,X, I, E, �0).

A zone is the maximal set of clock valuations satisfying a clock constraint.
Given timed automaton A, for a clock constraint Z ∈ Φ(X), let [Z] denote the
maximal set of valuations satisfying Z. In the following we shall use Z to stand
for [Z] as a shorthand. Then, Φ(X) denotes the set of zones for A. For zone Z,
we define Z↑ = {ν + d | ν ∈ Z, d ∈ R+} and Z[Y := 0] = {ν[Y := 0] | ν ∈ Z}
where ν[Y := 0] denotes the valuation obtained from ν by resetting exactly the
clocks in Y .

The symbolic semantics for timed automaton A is defined by the zone graph
S(A) = (Conf (A),→, c0) where Conf (A) ⊆ L×Φ(X) is the set of configurations
consisting of pairs of a location � ∈ L and a zone Z ∈ Φ(X), c0 = 〈�0, {ν0}〉 is the
initial configuration where ν0(x) = 0 for all clocks x ∈ X and →⊆ Conf (A) ×
Conf (A) is the transition relation with delay transitions 〈�, Z〉 → 〈�, Z↑ ∧ I(�)〉,
and action transitions 〈�, Z〉 → 〈�′, (Z∧ϕ)[Y := 0]∧I(�′)〉 if there exists an edge
(�, ϕ, Y, �′) ∈ E.

The quasi-equal relation ≡ for timed automaton A introduced in [11,13] is the
relation containing all pairs of clocks for which in all computations of A their
values are equal, except at points of time where they are reset and time is not al-

lowed to elapse. Formally, it is defined as≡def
= {(x, y) | x, y ∈ X and 〈�0, {ν0}〉 →∗

〈�, Z〉 =⇒ ∀ν ∈ Z. ν |= x = y ∨ x = 0 ∨ y = 0}. This notion is illustrated by
the Example Section 2.

A normalization operator norm defined on zones is used to construct a finite
representation of the transition relation→. Maximal bound normalization [15,8],
lower and upper bound zone based abstractions [3] and normalization using dif-
ference constraints [5] are some normalization procedures we may use to present
our idea. Since our model for timed automata includes diagonal constraints we
will define norm to be the normalization operator presented in [5]. We now for-
mally define the norm operator. For timed automaton A, let G be a finite set
of difference constraints, and k : X → Q+

0 be a function mapping each clock x
to the maximal constant k(x) appearing in the guards or invariants in A con-
taining x. For a real d let {d} denote the fractional part of d and �d� denote its

Detecting Quasi-equal Clocks in Timed Automata 203

integer part. Two valuations ν, ν′ are equivalent, denoted ν ∼ ν′ iff (1) for all
x, either �ν(x)� = �ν′(x)� or both ν(x) > k(x) and ν′(x) > k(x),(2) for all x, if
ν(x) ≤ k(x) then {ν(x)} = 0 iff {ν(x)} = 0 and (3) for all x, y if ν(x) ≤ k(x)
and ν(y) ≤ k(y) then {ν(x)} ≤ {ν(y)} iff {ν(x)} ≤ {ν′(x)} ≤ {ν′(y)} (4) for all

ϕ ∈ G, ν ∈ ϕ iff ν′ ∈ ϕ. Then norm(Z)
def
= {ν | ν ∼ ν′, ν′ ∈ Z}.

4 Zero Time Behavior Abstraction

In this section, we present our method for detecting quasi-equal clocks. The main
observation is that if two clocks x and y are quasi-equal then for all computations
if one clock, say x is reset then a reset for the other clock y must appear in
some future configuration in the computation path. In particular, for all the
configurations in the computation fragment between the resets of x and y time
cannot elapse (i.e. all the delay successors of a configuration have a delay of
zero). Another key observation is that if in a configuration time is allowed to
elapse, clocks x and y must be strictly equal. Therefore, to detect quasi-equal
clocks. We do not only need to consider resets of clocks but also configurations in
which time is allowed to elapse and configurations in which time is not allowed to
elapse. The following definition formalizes our notion of zero time configurations,
i.e. configurations for which time cannot elapse.

Definition 1 (Zero time configuration). A configuration 〈�, Z〉 is zero time
if the invariant of location � precludes time to elapse. Formally,

zt(�, Z)
def
= ∀ν ∈ Z, d ∈ R+

0 . ν + d |= I(�) =⇒ d = 0.

Our method preserves as much as possible the information corresponding to zero
time configurations and abstracts away much information from the non-zero time
configurations. If a configuration 〈�, Z〉 is zero time, our method will preserve
all the information in Z. However, if the configuration 〈�, Z〉 is non-zero time,
our method will abstract Z by means of the relax operator rlx to a much bigger
zone rlx(Z), which preservers the strict equalities entailed by the zone Z. The
following definition formalizes the relax operator.

Definition 2 (Relax operator). Given a zone Z ∈ Φ(X). The relax operator
rlx applied to the zone Z over-approximates Z by a conjunction of the clock
equalities it entails. Formally,

rlx(Z)
def
=

∧
{x = y | x, y ∈ X and ∀ν ∈ Z. ν |= x = y}.

As an example of the relax operator, consider the zone Z in Figure 3 left. It is
the case that all the valuations in Z satisfy the constraint x = y. However, there
are valuations in Z which satisfy x �= z and also valuations which satisfy y �= z.
Therefore, the result of applying the relax operator to Z yields the zone x = y
as shown in Figure 3 right. Note, that the zone rlx(Z) has no constraints on the
unequal clocks. Another important property of rlx(Z) is that it contains only

204 M. Muñiz, B. Westphal, and A. Podelski

1

5

x

1
5

y

4

z

Z

∞

x

∞

y

∞

z

x = y

Fig. 3. The relax operator on zone Z := x−y ≤ 0∧x−y ≥ 0∧x ≥ 1∧y ≤ 5∧y−z ≤ 1.

positive equalities and thus will remain unaffected by passage of time. That is
rlx(Z) = rlx(Z)↑. Note, that rlx(Z) is much bigger than Z and it is closed with
respect to delays. If a configuration is zero time our method will abstract the
configuration by means of the normalization norm operator. On the contrary, if
a configuration is non-zero time, our method will abstract the configuration by
means of the relax rlx operator. The normalization operator norm is increasing,
idempotent and yields a finite number of zones. Since our method relies on both
the normalization operator norm and the relax operator rlx it is important that
the relax operator exhibits the above mentioned properties.

Lemma 1. The relax operator is increasing, idempotent and yields a finite ab-
straction. Formally, the following hold:

– Z ⊆ rlx(Z) for any Z ∈ Φ(X)
– rlx(rlx(Z)) = rlx(Z) for any Z ∈ Φ(X)
– the set {rlx(Z) | Z ∈ Φ(X)} is finite.

Our goal is to construct an abstract zone graph in which quasi-equalities can
be soundly and efficiently computed. We now continue with the formal definition
of our method.

Definition 3 (Abstract zone graph). Timed automaton A induces the ab-

stract zone graph S#(A) = (Conf (A),�, c#0) where:

– Conf (A) ⊆ L× Φ(X) is the set of configurations

– c#0 = (�0,
∧

x,y∈X
x = y) is the initial configuration

– �⊆ Conf (A) × Conf (A) is the transition relation defined as:

〈�, P 〉 �
{
〈�′, norm(F)〉 if zt(�′, F)

〈�′, rlx(F)〉 otherwise

if there is an edge (�, ϕ, Y, �′) ∈ E, where F = (P ∧ϕ∧ I(�))[Y := 0]∧ I(�′).

Detecting Quasi-equal Clocks in Timed Automata 205

The initial abstract configuration is a conjunction asserting all clocks to be equal.
Given a configuration and an edge, the successor zone F is computed. If the
destination configuration is zero time, the zone F will be normalized to norm(F).
This is because in zero time it is important to preserve as much information as
possible. This information is useful for detecting zero time paths in which quasi-
equal clocks may arise. If the destination configuration is not zero time, the zone
F will be relaxed to rlx(F). The zone rlx(F) consist of conjuncts asserting all
strict equalities of clocks in zone F . In addition, the relax operator will remove
inequalities introduced by clock resets. Note that the abstract zone graph only
performs discrete transitions. This is because if a configuration is “detected” as
non-zero time, the relax operator will be applied and the corresponding zone is
closed with respect to delays. For easiness of presentation we use norm(F) to
ensure the relation � to be finite. We remind the reader that any normalization
operator norm′ such that norm′(Z) ⊇ Z, norm′(norm′(Z)) = norm′(Z) and the
set {norm′(Z) | Z ∈ Φ(X)} is finite, will be suitable for our method.

For a timed automaton A, we formalize the behavior of the corresponding
abstract zone graph S#(A) with respect to the zone graph S(A) via a simulation
relation.

Definition 4 (Simulation relation). Given a timed automaton A, a simula-
tion relation for the zone graph S(A) = (Conf (A),→, c0) and the abstract zone

graph S#(A) = (Conf (A),�, c#0), is a binary relation � on Conf (A) such that:

1. c0 � c#0
2. if 〈�, Z〉 � 〈�1, P 〉 then:

(a) � = �1 and Z ⊆ P

(b) if 〈�, Z〉 → 〈�′, Z ′〉 with edge (�, ϕ, γ, �′) ∈ E, then there exists 〈�′, P ′〉
such that 〈�, P 〉 � 〈�′, P ′〉 with edge (�, ϕ, γ, �′) and 〈�′, Z ′〉 � 〈�′, P ′〉

(c) if 〈�, Z〉 → 〈�, Z↑ ∧ I(�)〉, then 〈�, Z↑ ∧ I(�)〉 � 〈�, P 〉.

If a simulation relation � exists, we say that the abstract zone graph S#(A)
simulates the zone graph S(A).

In the rest of the paper we will consistently use Z and P to refer to zones
in the zone and abstract zone graph respectively. The definition of simulation
relation given above is quite specific. This allow us to better explain the relation
between the zone graph and the abstract zone graph. If two configurations are
in relation, the zone in the abstract zone graph is always bigger or equal than
the corresponding zone in the zone graph. If there is a discrete transition in the
zone graph then there is a discrete transition in the abstract zone graph as well.
If there is a delay transition in the zone graph, meaning that the configuration
is non-zero time, the abstract zone graph “remains” at its current configuration.
In the latter case, since zones in the abstract zone graph are bigger or equal
than zones in the zone graph, the corresponding abstract configuration is also
non-zero time and closed with respect to delays. The following lemma guarantees
the existence of a simulation relation.

206 M. Muñiz, B. Westphal, and A. Podelski

Lemma 2. For a timed automaton A, the abstract zone graph S#(A) simulates
the zone graph S(A).

Our goal is to find the set of quasi-equal clocks for a given timed automaton
A. We now define the quasi-equal relation induced by the abstract zone graph
S#(A) as the set of quasi-equalities implied by all the zones in the set of its
reachable configurations.

Definition 5. Given timed automaton A. The abstract quasi-equal relation ≡#

induced by the abstract zone graph S#(A), is the set of pairs of clocks such that
for all pairs, their values in the reachable configurations are equal or one clock
is equal to zero. Formally,

≡#def
= {(x, y) | x, y ∈ X and c#0 �∗ 〈�, P 〉 =⇒ P ⊆ {ν | ν |= x = y ∨ x = 0 ∨ y = 0}}.

Our method is sound in the sense that if two clocks are quasi-equal in the abstract
zone graph, then they are quasi-equal in the concrete zone graph. Our method
is not complete in the sense that if two clocks are quasi-equal in the zone graph,
then they might not be quasi-equal in the abstract zone graph. As an example
consider the timed automaton A′ = (L,X, I, E, �0) with L = {�0, �1, �2}, X =
{x, y}, I(�) = � for all � ∈ L and E = {(�0, x ≥ 5, {}, �1), (�1, x ≤ 2, {x}, �2)}.
Then x ≡ y but x �≡# y. This is because the edge e = (�1, x ≤ 2, {x}, �2) is
an unfeasible edge, i.e. it does not induce a reachable transition in the zone
graph. Edge e will cause clocks x, y to be unequal in the abstract zone graph.
Surprisingly, we have not been able to find an example for which the abstraction
is not complete given that the considered timed automaton contains only feasible
edges. The following theorem states formally the soundness of the abstraction.

Theorem 1 (Zero time abstraction is sound). Given timed automaton A.
If two clocks are quasi-equal in the abstract zone graph S#(A), then they are
quasi-equal in the zone graph S(A). Formally,

∀x, y ∈ X. x ≡# y =⇒ x ≡ y.

For implementation purposes, it is important that the relation � is finite. Given
a timed automaton A and by definition of the transition relation �. A con-
figuration has two possible successors. Either a successor corresponding to the
application of the norm operator, or a successor corresponding to the application
of the rlx operator. The set of zones generated by norm is finite. Further, the set
of zones generated by rlx is in O(2|X|), since it contains only positive equalities
for the clocks in X. Thus, we obtain the following theorem.

Theorem 2. The transition relation � is finite.

Detecting Quasi-equal Clocks in Timed Automata 207

�0

x ≤ 1

�1

y ≤ 1

�2

x ≥ 1

x := 0

y := 0

z ≥ 106 y := 0

〈�0, x = y = z〉

〈�1, x = 0 ∧ y = z ∧ y ≤ 1 ∧ y ≥ 1〉

〈�0, x = y〉

〈�1, x = 0 ∧ y ≤ 1 ∧ y ≥ 1〉

〈�2, x = y〉

Fig. 4. Left: a timed automaton with clocks, x, y and z. Clocks x, y are quasi-equal.
Right: the corresponding abstract zone graph.

5 Size of the Abstract Zone Graph

In this section we characterize the size of the abstract zone graph based on
the number of reachable configurations. We show that when an automaton A
contains only feasible edges i.e. for each edge e in the timed automaton there
exists a computation path in which the edge e induces a transition, then the size
of the zone graph S(A) is an upper bound for the size of the abstract zone graph
S#(A).

Definition 6 (Size). For timed automaton A we defined the size of the zone
graph S(A) = (Conf (A),→, c0) and the size of the abstract zone graph S#(A) =

(Conf (A),�, c#0) to be the number of reachable configurations. Formally,

|S(A)| = |{c | c0 →∗ c}| and |S#(A)| = |{c | c#0 �∗ c}| respectively.
The following theorem shows that when in the input automaton all edges induce
a reachable configuration in the zone graph S(A). Then the number of config-
urations from the corresponding abstract zone graph S#(A) is smaller or equal
than the number of configurations in the zone graph S(A). The theorem follows
from the following facts. First, if the abstract zone graph S#(A) performs an
action transition with edge e then the zone graph S(A) also performs a transi-
tion with edge e. Second, by Lemma 2 it is the case that S#(A) simulates S(A)
and all zones in the configurations of S#(A) are bigger than the corresponding
ones in S(A).

Theorem 3 (|S#(A)| ≤ |S(A)|). Given a timed automaton A, the zone graph
S(A) = (Conf (A),→, c0) and the abstract zone graph S#(A) = (Conf (A),�
, c#0). If A is such that for all e = (�, ϕ, Y, �′) ∈ E there is a transition 〈�, Z〉 →
〈�′, Z ′〉 with edge e and c0 →∗ 〈�, Z〉 then |S#(A)| ≤ |S(A)|.
The feasibility of edges is not a strong condition, since in practice unfeasible
edges will not occur intentionally, except in the cases when the modeler makes a
mistake. Theorem 3 gives an upper bound on the size of the abstract zone graph.
In practice for a timed automaton the difference on the size of the abstract and

208 M. Muñiz, B. Westphal, and A. Podelski

Algorithm 1. High level algorithm for detecting quasi-equal clocks

Input: timed automaton A = (L,X, I, E, �0)
Output: a binary relation QE ⊆ X× X containing quasi-equal clocks in A
1: W := {c#0 }, V := ∅
2: QE := {(x, y) | x, y ∈ X and x is different than y}
3: while W = ∅ and QE = ∅ do
4: take 〈�, P 〉 from W
5: for all (x, y) ∈ QE do
6: if P ⊆ {ν | ν |= x = y ∨ x = 0 ∨ y = 0} then
7: QE := QE \ {(x, y)}
8: end if
9: end for
10: if P ⊆ P ′ for all 〈�, P ′〉 ∈ V then
11: add 〈�, P 〉 to V
12: for all 〈�′, P ′〉 with 〈�, P 〉 � 〈�′, P ′〉 do
13: add 〈�′, P ′〉 to W
14: end for
15: end if
16: end while
17: return QE

the size of the concrete system can be exponential. To illustrate this, consider
the automaton A in Figure 4 left. We observe that the zero time behavior occurs
at points of time where x = 1 ∧ y = 1 ∧ z = n with n ∈ {1, 2, . . . , 106}. The
normalized zone graph using maximal constant over approximation will contain
at least 106 configurations. In Figure 4 right the complete full abstract zone
graph S#(A) is illustrated. At point of time x = 1 ∧ y = 1 ∧ z = 1 our method
detects a zero time configuration and computes the exact successor zone Z1 :=
x = 0∧y = z∧y ≤ 1∧y ≥ 1. Note that zt(�1, Z1) is valid, then there is a transition
with edge (�1,�, {y}, �0). Our method computes F := x = 0∧ y = 0∧ z = 1 and
the formula zt(�0, F) is not valid, thus F is relax to rlx(F) := x = y leading to
configuration 〈�0, x = y〉. Since F does not imply a quasi-equality for clock z, the
clock z is abstracted away. The resulting abstraction has only 5 configurations.

6 Algorithm and Experiments

In this section, first we present a high level algorithm for performing a reacha-
bility analysis on the abstract zone graph induced by a given timed automaton.
Next, we give some details on our implementation and compare the results ob-
tained by our implementation to the ones obtained by using a model checker.

6.1 Algorithm for Detecting Quasi-equal Clocks

Algorithm 1 lists a high level algorithm for finding quasi-equal clocks in a given
timed automaton. The idea of Algorithm 1 is to traverse the reachable state

Detecting Quasi-equal Clocks in Timed Automata 209

space of S#(A) while maintaining a relation QE containing quasi-equal clocks.
The reachable state space is computed on the fly.

We continue by describing Algorithm 1 in detail. At line 2 the set QE is
initialized to have all non reflexive quasi-equalities. At line 3 the while condition
ensures that the algorithm will terminate either when we have visited the whole
reachable space of S#(A) or when there are no quasi-equal clocks in QE. At
lines 4 to 8 the algorithm picks a configuration 〈�, P 〉 to be explored and checks
that all the quasi-equalities (x, y) in QE are implied by P . If this is not the case,
then it will remove (x, y) from QE. Note that in the algorithm the size of QE
only decreases. Finally, at lines 10 to 14 the algorithm computes the successor
of 〈�, P 〉 using the transition relation �.

Note, that all the operations needed in Algorithm 1 can be implemented using
difference bound matrices [4,10] and thus our approach can be implemented in
tools like Kronos [18] or Uppaal [12]. The check in line 6 for two clocks can
be implemented by checking independently whether P satisfies any disjunct in
x = y ∨ x = 0 ∨ y = 0. For computing the successor in line 12 by definition of
� it is necessary to compute zt(�′, F) where F is a convex zone. This can be
computed by checking the inclusion F ∧ I(�′) ⊇ F ↑ ∧ I(�′).

If the set QE is never empty, Algorithm 1 computes the reachable space of
S#(A) and if a pair of clocks (x, y) are in QE by Theorem 1 it follows that they
are quasi-equal in A.

Theorem 4 (Partial correctness). For any timed automaton A, if two clocks
are in relation QE from Algorithm 1, then they are quasi-equal in the correspond-
ing zone graph. Formally,

∀x, y ∈ X.(x, y) ∈ QE =⇒ x ≡ y.

Algorithm 1 will terminate whenever the relation QE is empty or whenever the
wait list W is empty. By Theorem 2, the relation � is finite, meaning that the
list W will be eventually empty. Thus we obtain the following theorem.

Theorem 5 (Termination). Algorithm 1 terminates for all inputs.

6.2 Experiments

As a proof of concept we have implemented our approach in our prototype tool
Saset. Saset is implemented in the Jahob [19,16] verification system. Our imple-
mentation represents zones as linear real arithmetic formulae and uses logical
implications to ensure a finite number of representatives. As Saset constructs the
abstract zone graph a number of constraints will arise, Saset will use an SMT
solver to solve them. In our experiments we used the solver Z3 [9].

In general our results show that the size of the transition system computed
using our abstraction is very small in comparison to the one computed by Uppaal.
Therefore, the verification times for Saset are fast in spite of the number of SMT
calls which are time costly.

210 M. Muñiz, B. Westphal, and A. Podelski

Table 1. Results for detecting quasi-equal clocks using tools Saset and Uppaal. Saset
returns the set of quasi-equal clocks whereas Uppaal performs a single query asserting
clocks to be quasi-equal. Note, that for detecting quasi-equal clocks multiple queries
are needed. The zero time behavior for automata in classA remains constant, in classB
grows linearly and in classC grows exponentially.

Automaton clocks qe-clocks max k
Saset Uppaal

SMT-calls states t (s) Q states t (s)

classA1 3 2 104 26 5 0.3 ϕ1 20k 7.3

classA2 3 2 105 26 5 0.3 ϕ1 200k 1200

classA3 3 2 106 26 5 0.3 ϕ1 t.o. t.o.

classB2 4 2 104 72 8 0.8 ϕ1 20k 7.4

classB3 5 3 104 105 10 1.3 ϕ2 30k 12.5

classB4 6 4 104 144 12 2.2 ϕ3 40k 21.0

classB5 7 5 104 193 14 3.5 ϕ4 50k 34.8

classB6 8 6 104 248 16 5.16 ϕ5 60k 45.2

classC2 3 2 5000 63 7 1.2 ϕ1 5k 5.2

classC3 4 3 5000 237 14 8.3 ϕ2 35k 31.8

classC4 5 4 5000 809 26 44.05 ϕ3 75k 202.3

classC5 6 5 5000 2389 47 195.3 ϕ3 150k 1007.3

classC6 7 6 5000 8515 85 844 ϕ4 t.o. t.o.

In Table 1, we present a number of results obtained by using our tool and the
model checker Uppaal [12]. Our intention is not to outperform Uppaal in terms
of time but to show that the abstraction method that we propose for detecting
quasi-equalities is a good abstraction. Thus, we encourage the reader to focus on
the number of states generated by the tools for each automaton. Note, that for
Uppaal to detect n clocks to be quasi-equal it would need to perform 2n queries
whereas our tool compute them directly. In Table 1, max k is the number of
the maximal constant appearing in the corresponding timed automaton and the
queries ϕ are TCTL formulae asserting a number of clocks to be quasi-equal,
e.g. ϕ1 := AG x0 = x1 ∨ x0 = 0 ∨ x1 = 0, ϕ2 := AG (x0 = x1 ∨ x0 = 0 ∨ x1 =
0) ∧ (x0 = x2 ∨ x0 = 0 ∨ x2 = 0). The experiments were executed in a AMD
Phenom II X6 3.2Ghz Processor with 8GB RAM running Linux 3.2.

We use three classes of timed automata which are relevant for our abstraction.
For classA the zero time behavior is constant and the non zero time behavior
grows. For classB the zero time behavior grows linear and the non-zero time be-
havior remains constant. For classC, the zero time behavior grows exponentially.

The automata in classA correspond to the automaton in Figure 4. We only
change the maximal constant appearing in the automaton and observe that the
size of the abstraction remains the same. For the automata in classB the num-
ber of quasi-equal clocks is increased but there is an order on the reset of the
quasi-equal clocks. We observe a linear increase in the number of states for both
tools. For the automata in classC the number of quasi-equal clocks is increased

Detecting Quasi-equal Clocks in Timed Automata 211

2 3 4 5 6 7

0

2,000

4,000

6,000

8,000

number of clocks

se
co
n
d
s

Saset Uppaal

2 3 4 5 6 7

0

1

2

3

·105

number of clocks

st
a
te
s

Saset Uppaal

Fig. 5. Verification times and number of states explored for automata in classC

but there is no order in the reset of the clocks. We observe an exponential
increase in the number of states for both tools. In Table 1, the construction of
the abstraction for automaton classC6 required 8515 SMT calls, according to
our tool these SMT calls took 695.2 seconds, which is 82% of the time cost.
Thus, a more efficient implementation is desirable. Since our algorithm can be
implemented using difference bound matrices a much efficient implementation is
possible. Figure 5 illustrates the results for automata in classC.

Once the quasi-equal clocks in a timed automaton have been detected. A
reduction on the number of clocks might take place, leading to a major speed
up. As an example we have reduced all the quasi-equal clocks for the automaton
classC6 by replacing them with a representative clock. The resulting zone graph
computed by Uppaal consists of 5003 states and invariant properties can be
verified in few seconds, which is an exponential gain.

7 Conclusion

In this paper, we have presented an abstraction that is effective for the goal of an
already established optimization technique which is based on quasi-equal clocks.
The abstraction is motivated by an intuition about the way quasi-equalities
can be tracked. We have implemented the corresponding reasoning method in
the Jahob framework using an SMT solver. Our experiments indicate that our
intuition may lead to a useful abstraction. I.e., the is coarse enough to yield
a drastic reduction of the size of the zone graph. Still, it is precise enough to
identify a large class of quasi-clocks.

The goal of our prototypical implementation is to be able to evaluate the
effectiveness of our abstraction for the goal of the optimization. An orthogonal
issue is the optimization of the execution time of the abstraction method itself.
In our experiments, the execution time is acceptable. Possibly the execution
time can be improved by exchanging the general-purpose SMT solver with a
specialized machinery, i.e., difference bound matrices [4,10]. We leave this aspect
to future work.

212 M. Muñiz, B. Westphal, and A. Podelski

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 312–326. Springer, Heidelberg (2004)

3. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone-based abstractions of timed automata. International Journal on Software
Tools for Technology Transfer 8(3), 204–215 (2006)

4. Bellman, R., Kalaba, R.E.: Dynamic programming and modern control theory.
Academic Press, New York (1965)

5. Bengtsson, J., Yi, W.: On clock difference constraints and termination in reach-
ability analysis of timed automata. In: Dong, J.S., Woodcock, J. (eds.) ICFEM
2003. LNCS, vol. 2885, pp. 491–503. Springer, Heidelberg (2003)

6. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004)

7. Daws, C., Yovine, S.: Reducing the number of clock variables of timed automata.
In: Proc. RTSS 1996, pp. 73–81. IEEE Computer Society Press (1996)

8. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998)

9. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Re-
hof, J. (eds.)TACAS2008.LNCS, vol. 4963, pp. 337–340. Springer,Heidelberg (2008)

10. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In:
Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)

11. Herrera, C., Westphal, B., Feo-Arenis, S., Muñiz, M., Podelski, A.: Reducing quasi-
equal clocks in networks of timed automata. In: Jurdziński, M., Ničković, D. (eds.)
FORMATS 2012. LNCS, vol. 7595, pp. 155–170. Springer, Heidelberg (2012)

12. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer (STTT) 1(1), 134–152 (1997)

13. Muñiz, M., Westphal, B., Podelski, A.: Timed automata with disjoint activity. In:
Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 188–203.
Springer, Heidelberg (2012)

14. Olderog, E.R., Dierks, H.: Real-Time Systems - Formal Specification and Auto-
matic Verification. Cambridge University Press (2008)

15. Pettersson, P.: Modelling and verification of real-time systems using timed au-
tomata: theory and practice. Ph.D. thesis, Citeseer (1999)

16. Podelski, A., Wies, T.: Counterexample-guided focus. In: Proceedings of the 37th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2010, pp. 249–260. ACM, New York (2010),
http://doi.acm.org/10.1145/1706299.1706330

17. Wies, T., Muñiz, M., Kuncak, V.: An efficient decision procedure for imperative
tree data structures. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 476–491. Springer, Heidelberg (2011)

18. Yovine, S.: Kronos: A verification tool for real-time systems. International Journal
on Software Tools for Technology Transfer (STTT) 1(1), 123–133 (1997)

19. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data struc-
tures. In: Proceedings of the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2008, pp. 349–361. ACM, New York
(2008), http://doi.acm.org/10.1145/1375581.1375624

http://doi.acm.org/10.1145/1706299.1706330
http://doi.acm.org/10.1145/1375581.1375624

	Detecting Quasi-equal Clocks in Timed Automata
	Introduction
	Example
	Preliminaries
	Zero Time Behavior Abstraction
	Size of the Abstract Zone Graph
	Algorithm and Experiments
	Algorithm for Detecting Quasi-equal Clocks
	Experiments

	Conclusion

