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Abstract. Motivated by the problem of deciding verification conditions for the
verification of functional programs, we present new decision procedures for au-
tomated reasoning about functional lists. We first show how to decide in NP the
satisfiability problem for logical constraints containing equality, constructor, se-
lectors, as well as the transitive sublist relation. We then extend this class of con-
straints with operators to compute the set of all sublists, and the set of objects
stored in a list. Finally, we support constraints on sizes of sets, which gives us the
ability to compute list length as well as the number of distinct list elements. We
show that the extended theory is reducible to the theory of sets with linear cardi-
nality constraints, and therefore still in NP. This reduction enables us to combine
our theory with other decidable theories that impose constraints on sets of objects,
which further increases the potential of our decidability result in verification of
functional and imperative software.

1 Introduction

Specifications using high-level data types, such as sets and algebraic data types have
proven effective for describing the behavior of functional and imperative programs
[14, 27]. Functional lists are particularly convenient and widespread in both programs
and specifications. Efficient decision procedures for reasoning about lists can therefore
greatly help automate software verification tasks.

Theories that allow only constructing and decomposing lists correspond to term
algebras and have efficient decision procedures for quantifier-free fragments [1, 17].
However, these theories do not support list concatenation or sublists. Adding list con-
catenation makes the logic difficult because it subsumes the existential problem for
word equations [6, 13, 19], which has been well-studied and is known to be difficult.

This motivates us to use as a starting point the logic of lists with a sublist (suffix)
relation, which can express some (even if not all) of the properties expressible using
list concatenation. We give an axiomatization of this theory where quantifiers can be
instantiated in a complete and efficient way, following the methodology of local theory
extensions [20]. Although local theory extensions have been applied to term algebras
with certain recursive functions [21], they have not been applied to term algebras in
the presence of the sublist operation. The general subterm relation in term algebras
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was shown to be in NP using different techniques [23], without discussion of practical
implementation procedures and without support for set operators. Several expressive
logics of linked imperative data structures have been proposed [3, 11, 12, 24]. In these
logics, variables range over graph nodes, as opposed to lists viewed as terms. In other
words, the theories that we consider have an additional extensionality axiom, which en-
sures that no two list objects in the universe have identical tail and head. This axiom has
non-trivial consequences on the set of satisfiable formulas and requires a new decision
procedure. Our logic admits reasoning about set algebra constraints and cardinalities of
sublist and content sets. In particular, the cardinality of the set of sublists of a list xs can
be used to express the length xs. Decidable logics that allow reasoning about length of
lists have been considered before [28]. However, our set algebra constraints are strictly
more expressive and capture forms of quantification that are useful for the specification
of complex properties.

Contributions. We summarize the contributions of our paper as follows:

– We give a set of local axioms for lists with sublist relation that admits efficient
implementation in the spirit of [11, 24] and can leverage general implementation
methods for local theory extensions [4, 5].

– We show how to extend this theory with an operator to compute the longest com-
mon suffix of two lists. We also give local axioms that give the decision procedure
for the extended logic.

– We show how to further extend the theory by defining sets of elements that corre-
spond to all sublists of a list, and then stating set algebra and size operations on such
sets. Using a characterization of the models of this theory, we establish that the the-
ory admits a reduction to the logic BAPA of sets with cardinality constraints [9,10].
We obtain a decidable logic that supports reasoning about the contents of lists as
well as about the number of elements in the list.

Impact on verification tools. We have found common functions in libraries of func-
tional programming languages and interactive theorem provers that can be verified to
meet a detailed specification using our logic. We discuss several examples in the paper.
Moreover, the reduction to BAPA makes it possible to combine this logic with a number
of other BAPA-reducible logics [18,22,25,26]. Therefore, we believe that our logic will
be a useful component of verification tools in the near future.

2 Examples

We describe our contributions through several examples. In the first two example we
show how we use our decision procedure to verify functional correctness of a function
written in a functional programming notation similar to the Scala programming lan-
guage [16]. In our third example we demonstrate the usefulness of our logic to increase
the degree of automation in interactive theorem proving. Throughout this section we
use the term sublist for a suffix of a list.

Example 1: dropping elements from a list. Our first example, listed in Figure 1, is the
function drop of the List class in the Scala standard library (such functions also occur in
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def drop[T](n: Int, xs: List[T]): List[T] = {
if (n ≤ 0) xs
else xs match {

case nil⇒ nil
case cons(x, ys)⇒ drop(n−1, ys)
}
} ensuring (zs⇒ (n < 0→ zs = xs) ∧

(n ≥ 0 ∧ length(xs) < n→ zs = nil) ∧
(n ≥ 0 ∧ length(xs) ≥ n→ zs � xs ∧ length(zs) = length(xs)− n))

Fig. 1: Function drop that drops the first n elements of a list xs

n > 0 ∧ xs 6= nil ∧ cons(x, ys) = xs ∧ zs � ys ∧
(n− 1 ≥ 0 ∧ length(ys) ≥ n− 1 → length(zs) = length(ys)− (n− 1))→

zs � xs| {z }
G1

∧ (n ≥ 0 ∧ length(xs) ≥ n→ length(zs) = length(xs)− n)| {z }
G2

Fig. 2: One of the verification conditions for the function drop

standard libraries for other functional languages, such as Haskell). The function takes
as input an integer number n and a parametrized functional list xs. The function returns
a functional list zs which is the sublist obtained from xs after dropping the initial n
elements.

The ensuring statement specifies the postcondition of the function (a precondition is
not required). The postcondition is expressed in our logic FLS2 of functional lists with
sublist sets shown in Figure 8. We consider the third conjunct of the postcondition in
detail: it states that if the input n is a positive number and smaller than the length of xs
then (1) the returned list zs is a sublist of the input list xs, denoted by zs � xs, and (2)
the length of zs is equal to the length of xs discounting the n dropped elements.
Deciding verification conditions. To verify the correctness of the drop function, we
generate verification conditions and use our decision procedure to decide their validity.
Figure 2 shows one of the generated verification conditions. This verification condition
corresponds to the case when n is greater than 0 and xs is not the empty list. It is
expressed in our logic of Functional Lists with Sublists and Sets (FLS2).

We further split the verification condition into two subgoals G1 and G2 (see Fig-
ure 2). Each subgoal corresponds to one of the conjuncts in the postcondition of func-
tion drop. For proving subgoal G1 we only need to reason about lists and sublists, but
not about their lengths. We can prove this subgoal using the decision procedure for the
simpler theory of Functional Lists with Sublists (FLS) that we present in Section 6. In
the following, we concentrate on the more interesting subgoal G2.

Subgoal G2 can be proved using the FLS2 decision procedure presented in Sec-
tion 7. The theory FLS2 is a combination of the theory FLS and the theory of sets with
linear cardinality constraints (BAPA) [9]. Our decision procedure follows the method-
ology of [25] that enables the combination of such set-sharing theories via reduction
to BAPA. Figure 3 illustrates how this decision procedure proves subgoal G2. We first
negate the subgoal and then eliminate the length function. For every list xs we encode
its length length(xs) using sublist sets as follows. We introduce a set variable Xs and
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FLS fragment:
Xs = σ(xs) ∧Ys = σ(ys) ∧ Zs = σ(zs) ∧
xs 6= nil ∧ cons(x, ys) = xs ∧ zs � ys
Projection onto shared sets Xs , Ys , Zs :
Zs ⊆ Ys ∧ Ys ⊆ Xs ∧ card(Xs) > 1 ∧ card(Xs) = card(Ys) + 1

BAPA fragment:
xs length = card(Xs)− 1 ∧ ys length = card(Ys)− 1 ∧ zs length = card(Zs)− 1 ∧
n > 0 ∧ (n− 1 ≥ 0 ∧ ys length ≥ n− 1→ zs length = ys length − (n− 1)) ∧
n ≥ 0 ∧ xs length ≥ n ∧ zs length 6= xs length − n
Projection onto shared sets Xs , Ys , Zs : card(Xs) 6= card(Ys) + 1

Fig. 3: Separated conjuncts for the negated subgoal G2 of the VC in Figure 2 with the
projections onto shared sets

define it as the set of all sublists of xs: {l. l � xs}, which we denote by σ(xs). We
then introduce an integer variable xs length that denotes the length of xs by defining
xs length = card(Xs) − 1, where card(Xs) denotes the cardinality of set Xs . Note
that we have to subtract 1, since nil is also a sublist of xs. We then purify the result-
ing formula and separate it into two conjuncts for the individual fragments. These two
conjuncts are depicted in Figure 3. The two separated conjuncts share the set vari-
ables Xs , Ys , and Zs . After the separation the underlying decision procedure of each
fragment computes a projection of the corresponding conjunct onto the shared set vari-
ables. These projections are the strongest BAPA consequences that are expressible over
the shared sets in the individual fragments. After the projections have been computed,
we check satisfiability of their conjunction using the BAPA decision procedure. In our
example the conjunction of the two projections is unsatisfiable, which proves that G2 is
valid. In Section 7 we describe how to construct these projections onto set variables for
the FLS2 theory.

Example 2: greatest common suffix. Figure 4 shows our second example, a Scala
function gcs, which takes as input two functional lists xs, ys and their corresponding
lengths lxs, lys. This precondition is specified by the require statement. The function
returns a pair (zs,lzs) such that zs is the greatest common suffix of the two input lists
and lzs its length. This is captured by the postcondition. Our logic provides the operator
xs u ys that denotes the greatest common suffix of two lists xs and ys. Thus, we can
directly express the desired property. Figure 5 depicts two constellations of lists xs, ys,
and their greatest common suffix zs that may arise during the computation of gcs.

Figure 6 shows one of the verification conditions that are generated for the function
gcs. This verification condition captures the case when the lists xs, ys are not empty,
their lengths are equal, their head elements x, y are equal, and lz1s is equal to length(xs)-
1. This situation is depicted on the right hand side of Figure 5, i.e., in this case the lists
xs and ys are identical. The verification condition can again be split into two subgoals.
We focus on subgoal G1. Figure 7 shows the separated conjuncts for this subgoal and
their projections onto the shared set variables Xs , Ys , Zs , and Z1s . Using the BAPA
decision procedure, we can again prove that the conjunction of the two projections is
unsatisfiable.
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def gcs[T](xs: List[T], lxs: Int, ys: List[T], lys: Int): (List[T], Int)
require (length(xs)=lxs ∧ length(ys)=lys) =

(xs,ys) match {
case (nil, )⇒ (nil, 0)
case ( , nil)⇒ (nil, 0)
case (cons(x, x1s), cons(y, y1s))⇒

if (lxs > lys) gcs(x1s, lxs−1, ys, lys)
else if (lxs < lys) gcs(xs, lxs, y1s, lys−1)
else {

val (z1s, lz1s) = gcs(x1s, lxs−1, y1s, lys−1)
if (x = y ∧ lz1s = (lxs − 1)) (cons(x, z1s), lz1s+1) else (z1s, lz1s)
}

} ensuring ((zs, lzs)⇒ length(zs) = lzs ∧ zs = xs u ys)

Fig. 4: Function gcs that computes the greatest common suffix of two lists

zs

z1sx1sxs

y1sys

tail

tail
tail∗

tail∗

tail∗

z1s,y1s

x1s

zs,ys

xs tail tail∗

Fig. 5: Lists xs, ys and their greatest common suffix zs

Example 3: interactive theorem proving. Given a complete specification of functions
such as drop and gcd in our logic, we can use our decision procedure to automatically
prove more complex properties about such functions. For instance, the function drop
is not just defined in the Scala standard library, but also in the theory List of the Is-
abelle/HOL interactive theorem prover [15]. Consider the following property of func-
tion drop:

m ≥ n→ τ(drop(n, xs)) ⊆ τ(drop(m, xs))

where the expression τ(xs) denotes the content set of a list xs, i.e., τ(xs) =
{head(l). l � xs}. This property corresponds to Lemma set drop subset set drop, which
is proved in the Isabelle theory List. Using the postcondition of function drop to eliminate
all occurrences of this function in Lemma set drop subset set drop yields the following
formula in our logic:

(n < 0→ zsn = xs) ∧
(n ≥ 0 ∧ length(xs) < n→ zsn = nil) ∧
(n ≥ 0 ∧ length(xs) ≥ n→ zsn � xs ∧ length(zsn) = length(xs)− n) ∧
(m < 0→ zsm = xs) ∧
(m ≥ 0 ∧ length(xs) < m→ zsm = nil) ∧
(m ≥ 0 ∧ length(xs) ≥ m→ zsm � xs ∧ length(zsm) = length(xs)−m) ∧
m ≥ n→ τ(zsn) ⊆ τ(zsm)

The proof of lemma set drop subset set drop that is given in the Isabelle theory is not
fully automated and involves the statement of an intermediate lemma. Instead, using
our decision procedure we can prove the lemma directly and fully automatically. Our
logic is, thus, useful to increase the degree of automation in interactive theorem proving.
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length(xs) = lxs ∧ length(ys) = lys ∧ xs 6= nil ∧ ys 6= nil ∧ lxs = lys ∧ x = y ∧
cons(x, x1s) = xs ∧ cons(y, y1s) = ys ∧ lz1s = lxs− 1 ∧
length(z1s) = lz1s ∧ z1s = xs1 u y1s ∧ zs = cons(x, z1s) ∧ lzs = lz1s + 1 →

length(zs) = lzs| {z }
G1

∧ zs = xs u ys| {z }
G2

Fig. 6: One of the verification conditions for the function gcs

FLS fragment:
Xs = σ(xs) ∧ Ys = σ(ys) ∧ Zs = σ(zs) ∧ Z1s = σ(z1s) ∧
cons(x, x1s) = xs ∧ cons(y, y1s) = ys ∧ xs 6= nil ∧ x = y ∧ ys 6= nil ∧
z1s = x1s u y1s ∧ zs = cons(x,z1s)
Projection onto shared sets Xs , Ys , Zs , Z1s :
card(Xs) > 1 ∧ card(Ys) > 1 ∧ card(Zs) > 1 ∧
Z1s ⊆ Zs ∧ card(Zs) = card(Z1s) + 1 ∧
((card(Z1s) = card(Xs)− 1 ∨ card(Z1s) = card(Ys)− 1) → Zs = Xs = Ys)

BAPA fragment:
xs length = card(Xs)− 1 ∧ ys length = card(Ys)− 1 ∧
zs length = card(Zs)− 1 ∧ z1s length = card(Z1s)− 1 ∧
xs length = lxs ∧ ys length = lys ∧ z1s length = lz1s ∧
lxs = lys ∧ lz1s = lxs− 1 ∧ lzs = lz1s + 1 ∧ zs length 6= lzs
Projection onto shared sets Xs , Ys , Zs , Z1s :
card(Z1s) = card(Xs)− 1 ∧ card(Z1s) = card(Ys)− 1 ∧ card(Zs) 6= card(Z1s) + 1

Fig. 7: Separated conjuncts for the negated subgoal G1 of the VC in Figure 6 with
projections onto the shared sets

3 Logic FLS2 of Functional Lists with Sublists Sets

The grammar of our logic of functional lists with sublist sets is shown in Figure 8. It
supports reasoning about lists built from list constructors and selectors, sublists, the
length of lists, and cardinality and set algebraic constraints over the sets of sublists of
lists σ(l) as well their content sets τ(l).

The remainder of the paper is structured as follows. In Section 5 we first present the
fragment FLS of the logic FLS2 that only subsumes formulas over lists and sublists, but
not sets, cardinalities, or length constraints. We then formally define the semantics of
the logic FLS and give a decision procedure for its satisfiability problem in Section 6.
Finally, in Section 7 we show how to use this decision procedure for a BAPA reduction
that decides the full logic FLS2.

4 Preliminaries

In the following, we define the syntax and semantics of formulas. We further recall the
notions of partial structures and local theory extensions from [20].

Sorted logic. We present our problem in sorted logic with equality. A signature Σ is
a tuple (S,Ω), where S is a countable set of sorts and Ω is a countable set of function
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F ::= AL | AS | F1 ∧ F2 | F1 ∨ F2 | ¬F
AL ::= TL � TL | TL = TL | TH = TH

TL ::= vL | nil | cons(TH , TL) | tail(TL) | TL u TL

TH ::= vH | head(TL)

AS ::= BL = BL | BL ⊆ BL | TI = TI | TI < TI

BL ::= sL | ∅ | {TL} | σ(TL) | BL ∪BL | BL \BL

BH ::= sH | ∅ | {TH} | τ(TL) | head[BL] | BH ∪BH | BH \BH

TI ::= vI | K | TI + TI | K · TI | card(BL) | card(BH) | length(TL)

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 8: Logic FLS2 of lists, sublist, sublist sets, list contents, and size constraints

symbols f with associated arity n ≥ 0 and associated sort s1×· · ·×sn → s0 with si ∈
S for all i ≤ n. Function symbols of arity 0 are called constant symbols. We assume
that all signatures contain the sort bool and for every other sort s ∈ S a dedicated
equality symbol =s ∈ Ω of sort s × s → bool. Note that we generally treat predicate
symbols of sort s1, . . . , sn as function symbols of sort s1 × . . . × sn → bool. Terms
are built as usual from the function symbols in Ω and (sorted) variables taken from a
countably infinite set X that is disjoint from Ω. A term t is said to be ground, if no
variable appears in t. We denote by Terms(Σ) the set of all ground Σ-terms.

A Σ-atom A is a Σ-term of sort bool. We use infix notation for atoms built from
the equality symbol. A Σ-formula F is defined via structural recursion as either one
of A, ¬F1, F1 ∧ F2, or ∀x : s.F1, where A is a Σ-atom, F1 and F2 are Σ-formulas,
and x ∈ X is a variable of sort s ∈ S. We typically drop the sort annotation (both
for quantified variables and the equality symbols) if this does not cause any ambigu-
ity. We use syntactic sugar for Boolean constants (true, false), disjunctions (F1 ∨ F2),
implications (F1 → F2), and existential quantification (∃x.F1). We define literals and
clauses as usual. A clause C is called flat if no term that occurs in C below a predicate
symbol or the symbol = contains nested function symbols. A clause C is called linear
if (i) whenever a variable occurs in two non-variable terms in C that do not start with
a predicate or the equality symbol, the two terms are identical, and if (ii) no such term
contains two occurrences of the same variable.

Total and partial structures. Given a signatureΣ = (S,Ω), a partialΣ-structure α is
a function that maps each sort s ∈ S to a non-empty set α(s) and each function symbol
f ∈ Ω of sort s1 × · · · × sn → s0 to a partial function α(f) : α(s1)× · · · × α(sn) ⇀
α(s0). If α is understood, we write just t instead of α(t) whenever this is not ambiguous.
We assume that all partial structures interpret the sort bool by the two-element set of
Booleans {0, 1}. We further assume that all structures α interpret the symbol =s by
the equality relation on α(s). A partial structure α is called total structure or simply
structure if it interprets all function symbols by total functions. For a Σ-structure α
where Σ extends a signature Σ0 with additional sorts and function symbols, we write
α|Σ0 for the Σ0-structure obtained by restricting α to Σ0.

Given a total structure α and a variable assignment β : X → α(S), the evaluation
JtKα,β of a term t in α, β is defined as usual. For a ground term t we typically write just
JtKα. A quantified variable of sort s ranges over all elements of α(s). From the interpre-
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tation of terms the notions of satisfiability, validity, and entailment of atoms, formulas,
clauses, and sets of clauses in total structures are derived as usual. In particular, we use
the standard interpretations for propositional connectives of classical logic. We write
α, β |= F if α satisfies F under β where F is a formula, a clause, or a set of clauses.
Similarly, we write α |= F if F is valid in α. In this case we also call α a model of
F . The interpretation JtKα,β of a term t in a partial structure α is as for total structures,
except that if t = f(t1, . . . , tn) for f ∈ Ω then JtKα,β is undefined if either JtiKα,β is
undefined for some i, or (Jt1Kα,β , . . . , JtnKα,β) is not in the domain of α(f). We say
that a partial structure α weakly satisfies a literal L under β, written α, β |=w L, if (i) L
is an atom A and either JAKα,β = 1 or JAKα,β is undefined, or (ii) L is a negated atom
¬A and either JAKα,β = 0 or JAKα,β is undefined. The notion of weak satisfiability is
extended to clauses and sets of clauses as for total structures. A clause C (respectively,
a set of clauses) is weakly valid in a partial structure α if α weakly satisfies α for all
variable assignments β. We then call α a weak partial model of C.
Theories and local theory extensions. A theory T for a signature Σ is simply a set of
Σ-formulas. We consider theories T (M) defined as a set of Σ-formulas that are valid
in a given set of modelsM, as well as theories T (K) defined as a set of Σ-formulas
that are consequences of a given set of formulas K. In the latter case, we call K the
axioms of the theory T (K) and we often identify K and T (K). In particular, we call
K = ∅ the empty theory.

In what follows, we consider theories that are defined by a set of axioms. Let
Σ0 = (S,Ω0) be a signature and assume that signature Σ1 = (S,Ω0 ∪Ω1) extends Σ0

by new function symbols Ω1. We call the function symbols in Ω1 extension symbols
and terms starting with extension symbols extension terms. Now, a theory T1 over Σ1

is an extension of a theory T0 over Σ0, if T1 is obtained from T0 by adding a set of
(universally quantified) clauses K. In the following, when we refer to a set of ground
clauses G, we assume they are over the signature Σc

1 = (S,Ω0 ∪ Ω1 ∪ Ωc) where Ωc
is a set of new constant symbols. Let K be a set of (universally quantified) clauses. We
denote by st(K, G) the set of all ground subterms that appear in K or G and by K[G]
the set of all instantiations of clauses in K where variables appearing below extension
terms have been instantiated by the terms in st(K, G). Then an extension T1 = T0 ∪ K
is a local extension if it satisfies condition (Loc):

(Loc) For every finite set of ground clauses G, G ∪ T1 |= false iff there is no
partial Σc

1-structure α such that α|Σ0 is a total model of T0, all terms in
st(K, G) are defined in α, and α weakly satisfies K[G] ∪G.

5 Logic FLS of Functional Lists with Sublists

We now define the logic of functional lists with sublists (FLS) and its accompany-
ing theory. The logic FLS is given by all quantifier-free formulas over the signature
ΣFLS = (SFLS, ΩFLS). The signature ΣFLS consists of sorts SFLS = {bool, list, data}
and function symbols ΩFLS = {nil, cons, head, tail,u,�}. The sorts of the function
symbols in ΩFLS are shown in Figure 9. We use infix notation for the symbols u and �.

The theory of functional lists with sublist relationship TFLS is the set of all for-
mulas in FLS that are true in the canonical model of lists. We denote this canonical
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nil : list

cons : data× list→ list

tail : list→ list

head : list→ data

� : list× list→ bool

u : list× list→ list

Fig. 9: Sorts of function symbols in the signature ΣFLS

αFLS(list)
def
= L

def
= { t ∈ Terms(ΣL) | t : list }

αFLS(data)
def
= D

def
= { t ∈ Terms(ΣL) | t : data }

αFLS(cons)
def
= consL

def
= λ(d, l). cons(d, l)

αFLS(nil)
def
= nil

αFLS(tail)
def
= tailL

def
= λl. if l = nil then nil else l′ where l = cons(d, l′)

αFLS(head)
def
= headL

def
= λl. if l = nil then d1 else d where l = cons(d, l′)

αFLS(�)
def
= λ(l1, l2). l1 �L l2

αFLS(u)
def
= λ(l1, l2). l1 uL l2

Fig. 10: The canonical model αFLS of functional lists with sublists

model by αFLS. The structure αFLS is the term algebra generated by the signature
ΣL = (SFLS, {cons, nil, d1, d2, . . . }), where d1, d2, . . . are infinitely many constant
symbols of sort data. The complete definition of αFLS is given in Figure 10. The canon-
ical model interprets the sort list as the set of all ΣL-terms of sort list. We denote this
set by L. Likewise, the sort data is interpreted as the set of all ΣL-terms of sort data.
We denote this set by D. The function symbols cons and nil are interpreted as the cor-
responding term constructors. The function symbols head and tail are interpreted as
the appropriate selectors headL and tailL. The predicate symbol � is interpreted as the
sublist relation �L⊆ L× L on lists. The sublist relation is defined as the inverse of the
reflexive transitive closure of the tail selector function:

l1 �L l2
def⇐⇒ (l2, l1) ∈ { (l, tailL(l)) | l ∈ L }∗

The relation �L is a partial order on lists. In fact, one can show more.

Proposition 1. The relation �L induces a meet-semilattice on the set L.

We denote by uL the meet operator of the semilattice induced by �L. Given two lists l1
and l2, the list l1 uL l2 denotes the greatest common suffix of l1 and l2. The structure
αFLS interprets the function symbol u as the operator uL.

We further define the theory of all finite substructures of αFLS. Let ΣFLSf be the
signature ΣFLS without the function symbol cons and let αFLSf be the structure αFLS

restricted to the signature ΣFLSf . We call a finite subset L of L sublist closed if for all
l ∈ L, l′ ∈ L, l′ �L l implies l′ ∈ L. For a finite sublist closed subset L of L, the
structure αL is the finite total substructure of αL induced by the restricted support sets
αL(list) def= L and αL(data) def= { headL(l) | l ∈ L }. We denote by MFLSf the set of
all such finite total substructures αL of αFLSf . The theory TFLSf is the set of all FLS
formulas that are true in all structuresMFLSf .
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6 Decision Procedure for FLS

In the following, we show that the theory TFLS is decidable. For this purpose we reduce
the decision problem for TFLS to the decision problem of the theory TFLSf . We then
give a finite first-order axiomatization of the theory TFLSf and show that it is a local
theory extension of the empty theory. In total, this implies that deciding satisfiability of
a ground formula F with respect to the theory TFLS can be reduced to deciding satisfi-
ability of F conjoined with finitely many ground instances of the first-order axioms of
TFLSf .

6.1 Reducing FLS to FLSf

We first note that satisfiability of an FLS formula F in the canonical model can be
reduced to checking satisfiability in the finite substructures, if the function symbol cons
does not occur in F .

Proposition 2. Let F be a quantifier-free ΣFLSf -formula. Then F is satisfiable in αFLS

if and only if F is satisfiable in some structure α ∈MFLSf .

The proof of Proposition 2 is similar to the proof of [7, Theorem 2].
We can now exploit the fact that, in the term algebra αFLS, the constructor consL is

uniquely determined by the functions headL and tailL. Let F be an FLS formula. Then
we can eliminate an occurrence F (cons(td, tl)) of function symbol cons in a term of F
by rewriting F (cons(td, tl)) into:

x 6= nil ∧ head(x) = td ∧ tail(x) = tl ∧ F (x)

where x is a fresh variable of sort list that does not appear elsewhere in F . Let
elimcons(F ) be the formula that results from rewriting recursively all appearances of
function symbol cons in F . Clearly, in the canonical model αFLS, the formulas F and
elimcons(F ) are equisatisfiable. Thus, with Proposition 2 we can conclude.

Lemma 3. Let F be an FLS formula. Then F is satisfiable in αFLS if and only if
elimcons(F ) is satisfiable in some structure α ∈MFLSf .

6.2 Axiomatizing FLSf

We next show that there exists a first-order axiomatization KFLSf of the theory TFLSf .
The axioms KFLSf are given in Figure 11. The free variables appearing in the formulas
are implicitly universally quantified. We now explain each of these axioms and argue
their soundness, i.e., that each axiom is true in the canonical model αFLS.

The axiom Pure is a logical consequence of the following formula, which is true in
the canonical model αFLS: ∀x. cons(head(x), tail(x)) = x ∨ nil = x. Hence, Pure is
true in all finite total substructures of αFLS. The axiom NoCycle1 expresses that all lists
have nil as a sublist. This axiom is true because all lists are constructed from nil. The
axiom NoCycle2 excludes self-cycles of the form tail(x) = x, with the exception of nil.
The axioms Refl, Trans, and AntiSym express that � is a partial order. These axioms
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Pure: head(x) = head(y) ∧ tail(x) = tail(y) → x = y ∨ x = nil ∨ y = nil

NoCycle1: nil � x UnfoldL: tail(x) � x
NoCycle2: tail(x) = x → x = nil UnfoldR: x � y → x = y ∨ x � tail(y)

Refl: x � x GCS1: x u y � x
Trans: x � y ∧ y � z → x � z GCS2: x u y � y

AntiSym: x � y ∧ y � x → x = y GCS3: z � x ∧ z � y → z � x u y
Total: y � x ∧ z � x → y � z ∨ z � y

Fig. 11: First-order axiomatization KFLSf of the theory TFLSf

follow from Proposition 1. The axiom Total expresses the fact that, for a fixed list x,
all sublists of x are totally ordered by the sublist relation. This axiom follows from the
definition of �L as the reflexive transitive closure of a functional relation. The axioms
UnfoldL and UnfoldR express that, by applying tail to either side of the sublist relation,
we stay in the sublist relation. Finally, the axioms GCS1, GCS2, and GCS3 express that
u is the greatest lower bound operator of the partial order�. These axioms follow from
the definition of uL and Proposition 1.

Lemma 4. The axioms KFLSf are sound, i.e., for all α ∈MFLSf , α |= KFLSf .

As a prerequisite for proving completeness of the axioms, we next show that the
finite models of the axioms KFLSf are structurally equivalent to the finite substructures
of the canonical model of functional lists.

Proposition 5. Every finite model of KFLSf is isomorphic to some structure inMFLSf .

The proof is in Appendix B.1.

6.3 Locality of FLSf

We will now prove that the theory KFLSf can be understood as a local theory extension
and, at the same time, prove thatKFLSf is a complete axiomatization of the theory TFLSf .

In what follows, the signature ΣFLSf is the signature of the theory extension KFLSf .
We also have to determine the signatureΣ0 of the base theory T0 by fixing the extension
symbols. We treat the function symbols Ωe

def= {head, tail,u} as extension symbols,
but the sublist relation � as a symbol in the signature of the base theory, i.e. Σ0

def=
(SFLS, {nil,�}). The base theory itself is given by the axioms that define the sublist
relation, but that do not contain any of the extension symbols, i.e.

T0
def= {NoCycle1,Refl,Trans,AntiSym,Total} .

We further denote by Ke
def= KFLSf \ T0 the extension axioms.

We now show that KFLSf = T0 ∪ Ke is a local theory extension. As in the defini-
tion of local theory extensions in Section 4, for a set of ground clauses G, we denote
by Ke[G] all instances of axioms Ke where the variables occurring below extension
symbols Ωe are instantiated by all ground terms st(Ke, G) that appear in Ke and G.
Furthermore, we denote by Σc

FLSf the signature ΣFLSf extended with finitely many new
constant symbols Ωc.
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Lemma 6. For every finite set of Σc
FLSf ground clauses G, if α is a partial Σc

FLSf -
structure such that α|Σ0 is a total model of T0, all terms in st(Ke, G) are defined in α,
and α weakly satisfies Ke[G] ∪ G then there exists a finite total Σc

FLSf -structure that
satisfies KFLSf ∪G.

We sketch the proof of Lemma 6. Let α be a partial Σc
FLSf -structure as required

in the lemma. We can obtain a finite partial substructure α′ from α by restricting the
interpretations of sorts data and list to the elements that are used in the interpretations of
the ground terms st(Ke, G). Then α′ is still a total model of T0 and still weakly satisfies
Ke[G]∪G, since all axioms in KFLSf are universal. We can then complete α′ to a finite
total model of KFLSf ∪G as follows. First, for every u ∈ α′(list) where α′(head) is not
defined, we can extend α′(data) by a fresh element du and define α′(head)(u) = du.
Now, let u ∈ α′(list) such that α(tail) is not defined on u. If u = α′(nil), we define
α′(tail)(u) = u. Otherwise, from the fact that α′ satisfies axioms NoCycle1, AntiSym,
and Total we can conclude that there exists a maximal element v ∈ α′(list) \ {u} such
that (v, u) ∈ α′(�). However, we cannot simply define α′(tail)(u) = v. The resulting
structure would potentially violate axiom Pure. Instead, we extend α′(list) with a fresh
element w and α′(data) with a fresh element dw, and define: α′(head)(w) = dw,
α′(tail)(w) = v, and α′(tail)(u) = w. We further extend the definition of α′(�) for
the newly added element w, as expected. The completion of α′(u) to a total function is
then straightforward.

From Lemma 6 we can now immediately conclude that the theory KFLSf satisfies
condition (Loc).

Theorem 7. KFLSf is a local theory extension of the theory T0.

Similarly, from Proposition 5 and Lemma 6, we can conclude that the axiomsKFLSf

are complete.

Theorem 8. KFLSf is an axiomatization of the theory TFLSf , i.e., T (KFLSf) = TFLSf .

6.4 Deciding FLS

We now describe the decision procedure for deciding satisfiability of FLS formulas.
Given an FLS formula F as input, the decision procedure proceeds as follows: (1) com-
pute F̂ = elimcons(¬F ), replace all variables in F̂ with fresh constant symbols, and
transform the resulting formula into a set of ground clauses G; and (2) use Theorem 7
and the reduction scheme for reasoning in local theory extensions [20], to reduce sat-
isfiability of the set of clauses KFLSf ∪ G to satisfiability of an equisatisfiable formula
in the Bernays-Schönfinkel-Ramsey class, which is decidable. The reduction scheme
computes the set of clauses T0 ∪ Ke[G] ∪ G and then eliminates all occurrences of
extension functions Ωe in literals of clauses in this set. The resulting set of clauses con-
tains only universally quantified variables, constants, relation symbols, and equality,
i.e., it belongs to the Bernays-Schönfinkel-Ramsey class. Soundness and completeness
of the decision procedure follows from Lemma 3, Theorems 7 and 8, and [20, Lemma
4].
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Complexity. For formulas in the Bernays-Schönfinkel-Ramsey class that have a
bounded number of universal quantifiers, the satisfiability problem is known to be NP-
complete [2, page 258]. The only quantified variables appearing in the set of clauses
obtained after the reduction step of the decision procedure are those that come from
the axioms in KFLSf , more precisely, the axioms in T0 and the (partial) instantiations of
the axioms in Ke. In fact, we can write the clauses for these axioms in such a way that
they use exactly 3 quantified variables. Finally, from the parametric complexity consid-
erations in [20] follows that the size of the set of clauses obtained in the final step of
our decision procedure is polynomial in the size of the input formula. It follows that
the satisfiability problem for FLS is decidable in NP. NP-hardness follows immediately
from the fact that FLS can express arbitrary propositional formulas.

Theorem 9. The decision problem for the theory TFLS is NP-complete.

7 Extension with Sets of Sublists and Content Sets

We next show decidability of the logic that extends FLS with constraints on sets of sub-
lists and the contents of lists. We do this by reducing the extended logic to constraints
on sets. For this we need a normal form of formulas in our logic. To obtain this normal
form, we start from Σ2

FLSf partial models, but refine them further to be able to reduce
them to constraints on disjoint sets. We then give a BAPA reduction [25] for each of
these refined models.

Predecessor-Refined Partial Structures. Our normal form of an FLS formula F is given
by a disjunction of certain partial models α ofKFLSf . We call these models predecessor-
refined partial models.

Definition 10. α is a Predecessor-Refined Partial (PRP) Structure if it is a partial sub-
structure of a structure inMFLSf and the following conditions hold in α for all elements
x, y ∈ α(list):

1. x � y is totally defined on α(list)
2. (x u y) ∈ α(list). Moreover, if x, y, (x u y) are three distinct elements, then there

exists x1 ∈ α(list) such that x1 � x and tail(x1) = (x u y).
3. if x 6= y, if tail(x) and tail(y) are defined and equal, then both head(x) and head(y)

are defined.

Definition 11. With each PRP structure α we associate the conjunction of literals that
are (strongly) satisfied in α. We call this formula a PRP conjunction.

Theorem 12. Each FLS formula is equivalent to an existentially quantified finite dis-
junction of PRP conjunctions.

The proof of the theorem is in Appendix B.2. We can compute the PRP structures for
an FLS formula F by using a simple modification of the decision procedure for FLS
presented in Section 6.4: instead of instantiating the axioms Ke of the theory extension
only with the ground subterms st(Ke, G) appearing in the extension axioms Ke and
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the clauses G generated from F , we instantiate the axioms with the larger set of ground
terms Ψ defined as follows:

Ψ0 = st(Ke, G) ∪ { t1 u t2 | t1, t2 ∈ st(Ke, G) }
Ψ = Ψ0 ∪ { head(t) | t ∈ Ψ0 } ∪ { pre(t1, t2), tail(pre(t1, t2)) | t1, t2 ∈ Ψ0 }

Here pre is a fresh binary function symbol, which we introduce as a Skolem function for
the existential variable x1 in property 3 of PRP structures, i.e., we constrain pre using
the following axiom:

Pre : ∀xy. x 6= y ∧ x 6= x u y ∧ y 6= x u y → pre(x, y) � x ∧ tail(pre(x, y)) = x u y

The PRP structures for F are then given by the partial models of T0∪(Ke∪{Pre})[Ψ ]∪
G in which all terms in Ψ and � are totally defined. These partial models can be com-
puted using a tool such as H-PILoT [4].

Constraints on Sets of Sublists. Define σ(y) = {x. x � y}. Our goal is to show that
extending FLS with the σ( ) operator and the set algebra of such sets yields in a decid-
able logic. To this extent, we consider an FLS formula F with free variables x1, . . . , xn
and show that the defined relation on sets ρ = {(σ(x1), . . . , σ(xn)). F (x1, . . . , xn)}
is definable as ρ = {(s1, . . . , sn). G(s1, . . . , sn)} for some quantifier-free BAPA [10]
formula G. By Theorem 12, it suffices to show this property when F is a PRP conjunc-
tion, given by some PRP structure α. Figure 12 shows the generation of set constraints
from a PRP structure. By replacing each σ(x) with a fresh set variable sx in the re-
sulting constraint we obtain a formula in set algebra. We can check the satisfiability of
such formulas following the algorithms in [9, 10] and generate explicit models or per-
form synthesis as in [8]. Soundness and completeness of the reduction in Figure 12 are
proved in Appendicies B.3 and B.4. In Appendix A we demonstrate the reduction for
the example shown in Figure 3.

Among the consequences of this reduction is NP-completeness of a logic contain-
ing atomic formulas of FLS, along with formulas s = σ(x), set algebra expressions
containing ⊆,∩,∪, \,= on sets, and the cardinality operator card(s) that computes the
size of the set s along with integer linear arithmetic constraints on such sizes. Because
the length of the list x is equal to card(σ(x)) − 1, this logic also naturally supports
reasoning about list lengths. We note that such a logic can also support a large class
of set comprehensions of the form S = {x. F (x, y1, . . . , yn)} when the atomic for-
mulas within F are of the form u � v and at least one atomic formula of the form
x � yi occurs positively in disjunctive normal form of F . Because ∀x.F is equivalent
to card({x.¬F}) = 0, sets give us a form of universal quantification on top of FLS.

Additional Constraints on List Content. We next extend the previous constraints to
impose set constraints not only on the set of sublists σ(x) but also on the images
of such sets under the head function. We define the list content function by τ(x) =
head[σ(x) \ {nil}] where we define head[s] = {head(x) | x ∈ s}. We then obtain our
full logic FLS2 shown in Figure 8 that introduces constraints of the form head[s] = v
on top of FLS and constraints on sets of sublists. To show decidability of this logic, we
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Input: a PRP structure α. Output: a set constraint Gα.
Step 1: Define the relation �1 as irreflexive transitive reduct of � without the tail

relation. Formally, for all x, y ∈ α(list), define x �1 y iff all of the following
conditions hold: (1) x � y, (2) x 6= y, (3) tail(y) is undefined, and (4) there is no z
in α(list) such that x, y, z are distinct, x � z, and z � y.

Step 2: Introduce sets Sx,y with the meaning Sx,y = (σ(y) \ σ(x)) \ {y} and define
Segs = {Sx,y | x �1 y}.

Step 3: Generate the conjunction Ĝα of the following constraints:
1. σ(nil) = {nil}
2. σ(y) = {y} ∪ σ(x), for each x, y such that α satisfies tail(y) = x
3. σ(y) = {y} ∪ Sx,y ∪ σ(x), for each x, y such that α satisfies x �1 y
4. disjoint((S)S∈Segs, ({x})x∈α(list))

Step 4: Existentially quantify over all Segs variables in Ĝα. If the goal is to obtain a
formula without Segs variables, replace each variable Sx,y with (σ(y)\σ(x))\{y}.

Step 5: Return the resulting formula Gα.
Fig. 12: Generation of set constraints from a PRP structure

use techniques inspired by [26] to eliminate the image constraints. The elimination pro-
cedure is shown in Figure 13. We use the properties of PRP structures that the elements
for which tail(xL) = tail(xR) holds have defined values head(xL) and head(xR). This
allows us to enforce sufficient conditions on sets of sublists and sets of their heads to
ensure that the axiom Pure can be enforced. The elimination procedure assumes that we
have head(s) expressions only in the cases where s is a combination of sets of the form
σ(x) and {x}, which ensures that s is a disjoint combination of polynomially many par-
titions. This restriction is not necessary [26], but is natural in applications and ensures
the membership in NP.

8 Conclusion

We presented a new decidable logic that can express interesting properties of functional
lists and has a reasonably efficient decision procedure. We showed that this decision
procedure can be a useful to increase the degree of automation in verification tools and
interactive theorem provers.
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A BAPA Reduction for Drop Example

We use the procedure given in Section 7 to reduce the FLS conjunct shown in Figure 3 to
a BAPA formula over the set variables Xs,Ys,Zs . Figure 14 depicts the PRP structures
that are equivalent to the FLS conjunct in Figure 3. Every node denotes an element of
sort list. The square nodes denote the nil element.

ys

zsxs tail tail∗

zsysxs tail tail∗tail∗

zsysxs tail tail∗

ys

zs

xs tail

Fig. 14: PRP structures for the FLS conjunct in Figure 3

Figure 15 shows the set constraints generated from the four PRP structures. There
is one disjunct for each PRP in Figure 14. In each disjunct we can now replace the sets
σ(xs), σ(ys), and σ(zs) by the shared set variables Xs , Ys , and Zs . Existentially quan-
tifying over all remaining variables and applying quantifier elimination to the resulting
disjunction then yields the BAPA formula

Zs ⊆ Ys ∧ Ys ⊆ Xs ∧ card(Xs) > 1 ∧ card(Xs) = card(Ys) + 1 .
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This formula is the projection onto the shared set variables shown in Figure 3.

∃Snil,ys. σ(nil) = {nil} ∧ σ(ys) = {ys} ∪ Snil,ys ∪ σ(nil) ∧ σ(zs) = σ(ys) ∧
σ(xs) = {xs} ∪ σ(ys) ∧ Snil,ys = (σ(ys) \ σ(nil)) \ {ys} ∧
disjoint(Snil,ys, {xs}, {ys}, {nil})

∨ ∃Snil,ys. σ(nil) = {nil} ∧ σ(zs) = σ(nil) ∧ σ(ys) = {ys} ∪ Snil,ys ∪ σ(nil) ∧
σ(xs) = {xs} ∪ σ(ys) ∧ Snil,ys = (σ(ys) \ σ(nil)) \ {ys} ∧
disjoint(Snil,ys, {xs}, {ys}, {nil})

∨ ∃Szs,ys, Snil,zs. σ(nil) = {nil} ∧ σ(zs) = {zs} ∪ Snil,zs ∧ σ(ys) = {ys} ∪ Szs,ys ∪ σ(zs) ∧
σ(xs) = {xs} ∪ σ(ys) ∧ Snil,zs = (σ(zs) \ σ(nil)) \ {zs} ∧
Szs,ys = (σ(ys) \ σ(zs)) \ {ys} ∧ disjoint(Snil,zs, Szs,ys, {xs}, {ys}, {zs} , {nil})

∨ σ(nil) = {nil} ∧ σ(ys) = σ(nil) ∧ σ(zs) = σ(nil) ∧ σ(xs) = {xs} ∪ σ(nil) ∧
disjoint({xs}, {nil})

Fig. 15: Set constraints generated from PRP structures in Figure 14.

B Additional Proofs

B.1 Proof of Proposition 5

Proposition 5. Every finite model of KFLSf is isomorphic to some structure inMFLSf .

Proof. Let α be a finite model of KFLSf . In the following, for a function symbol f , we
use fα as a short-hand for α(f). Similarly, we denote by tail∗α the reflexive transitive
closure of the function α(tail).

First, note that the axioms Refl, Trans, AntiSym, and GCS1, GCS2, GCS3 ensure
that (α(list),�α,uα) is a meet-semilattice. We next prove that �α is the inverse of
tail∗α.

For proving tail∗α ⊆�−1
α , let u, v ∈ α(list) such that (u, v) ∈ tail∗α. Then there exist

u1, . . . , un such that u = u1, v = un, and for all 1 ≤ i < n, tailα(ui) = ui+1. If n = 1
then u = v and by axiom Refl we immediately have v �α u. If on the other hand u 6= v
then by UnfoldL we have for all 1 ≤ i < n, tailα(ui) �α ui and thus ui+1 �α ui.
Using axiom Trans we then conclude by induction on i that for all 1 < i ≤ n, ui �α u1.
Hence, v �α u.

For proving the other direction, let u ∈ α(list) and let Su = { v | v �α u }. We
show that for all v ∈ Su, (u, v) ∈ tail∗α. Since α is finite, Su is finite, as well. Thus,
using axioms Total and AntiSym we can construct an enumeration u1, . . . , un of the
elements of Su such that for all 1 ≤ i < j ≤ n, uj �α ui but not ui �α uj . In
particular u1 = u. We prove by induction on i that for all 1 ≤ i ≤ n, (u1, ui) ∈
tail∗α. By reflexivity of tail∗α we immediately have (u1, u1) ∈ tail∗α. Now assume that
(u1, ui) ∈ tail∗α. Since ui ∈ Su, we know by UnfoldL and Trans that tailα(ui) ∈ Su.
Hence, tailα(ui) = uj for some j ≥ i. By UnfoldR we know that for all j ≥ i,
uj = ui or uj �α tailα(ui). Hence, by construction of the enumeration it follows that
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either ui = tailα(ui) or ui+1 = tailα(ui). Assume ui = tailα(ui). Then from axiom
NoCycle2 follows that ui = α(nil). However, we do not have ui+1 �α ui, which
contradicts the fact that α satisfies axiom NoCycle1. Hence, we must have ui+1 =
tailα(ui). Together with the induction hypothesis we then conclude (u1, ui+1) ∈ tail∗α.

We can now define a structure isomorphism φ between α and some structure α′ ∈
MFLSf , i.e., for each sort s, φ is a structure-preserving bijection from α(s) to α′(s).
Since all structures agree on the interpretation of sort bool, we first define φ as the
identity mapping on α(bool). For the sort data, we let φ be some injective mapping
from α(data) to the set of data terms D, such that φ(α(nil)) = d1. In order to define
φ on α(list), note that α satisfies axioms NoCycle1 and AntiSym. Thus, we know that
the inverse of the relation tail∗α is well-founded and α(nil) is the smallest element of
α(list) with respect to this relation. We can hence recursively define φ as a mapping
from α(list) to L as follows:

φ(u) =

{
nil if u = α(nil)
cons(φ(v), φ(w)) if α(tail)(u) = v and α(head)(u) = w

From axiom Pure follows that φ is an injective mapping from α(list) to L. Now define
the structure α′ as follows: for all sorts s ∈ ΣFLSf , let α′(s) = φ(α(s)), and for all
function symbols f ∈ ΣFLSf of sort s1 × · · · × sn → s, let α′(f)(u1, . . . , un) =
φ(α(f)(φ−1(u1), . . . , φ−1(un))). By construction α′ ∈ MFLSf and α′ is isomorphic
to α. ut

B.2 Proof of Theorem 12

Consider a FLS formula F . It suffices to show that each partial substructure can be
represented by finitely many PRP structures.

To ensure that a relation (such as x � y) is defined, we perform case analysis on
whether x � y holds or not. To ensure the remaining properties, proceed as follows.

Define an ultimately converging triple to be a triple of distinct elements (xL, y, xR)
such that y � xL and y � xR. Then define a converging triple to be an ultimately
converging triple such that there is no distinct ultimately converging triple (x′L, y

′, x′R)
with the property x′L � xL, z′ � z, x′R � xR.

An unresolved converging triple is a converging triple (xL, y, xR) such that xLuxR
is not defined in the structure. Given an unresolved converging triple (xL, y, xR), we
consider the case 1) xL u xR = y and the case 2) xL u xR = z for a fresh elements
of the structure such that xL u xR = z and y � z. In each step of this process the
number of unresolved converging triples reduces by one, so we can construct finitely
many structures where all converging triples are resolved.

In the next step, we ensure that for all converging triples (xL, y, xR) we have that
tail(xL) and tail(xR) are defined and equal to y. We call a triple for which this does not
hold non-refined. Given a non-refined triple (xL, y, xR) then it cannot be the case that
both tail(xL) or tail(xR) are undefined, otherwise there would be a converging triple
(tail(xL), y, xR) or (xL, y, tail(xR)). Suppose without loss of generality that tail(xL) is
undefined. We then consider either tail(xL) = y, or we introduce z such that tail(z) = y
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and z � xL. By repeating this process at most twice for each non-refined triple, we
ensure that all triples are both resolved and refined.

Suppose every converging triple (xL, y, xR) is refined. Then define both head(xL)
and head(yL) to be either existing or fresh elements. The Pure axiom ensures
head(xL) 6= head(yL). As a result we obtain a finite set of PRP structures. By ex-
istentially quantifying over the freshly introduced elements we obtain a disjunction of
PRP conjunctions equivalent to F . ut

B.3 Soundness of the Reduction in Figure 12

Consider a MFLSf element whose substructure if α. We show that the generated for-
mula Gα is a consequence of the PRP conjunction corresponding to α. The condition
σ(nil) = {nil} follows from the definition, as well as σ(y) = {y}∪σ(x) for tail(y) = x.
To ensure σ(y) = {y} ∪ Sx,y ∪ σ(x) we define Sx,y = (σ(y) \ σ(x)) \ {y}. It remains
to show that for this definition the sets Sx,y and the singleton sets {x} are all disjoint.
By construction {x}∩{y} = ∅ for distinct x, y. Consider two distinct set variables Sx,y
and Su,v . Let z = xu u. Then also z = y u v. By definition of σ(y) and σ(v), we have
σ(y) ∩ σ(v) = σ(z). We also have σ(z) ⊆ σ(x) and σ(z) ⊆ σ(u). This implies that
the sets σ(y) \ σ(x) and σ(v) \ σ(u) are disjoint, so Sx,y and Su,v are also disjoint.
Showing that {x} and Su,v are disjoint is similarly straightforward.

B.4 Completeness of the Reduction in Figure 12

Given a partial structure α and the values of sets that satisfy the generated formula Gα
in Figure 12, we extend α to a finite total structure inMFLSf . To do this, consider each
pair x, y in the domain of α for which x �1 y. Let k be the size of the set Sx,y . If k = 0
then let tail(y) = x. Otherwise, introduce k fresh and distinct list elements z1, . . . , zk
and extend tail such that

tail(y) = zk ∧

(
k−1∧
i=1

tail(zi+1) = zi

)
∧ tail(z1) = x

To ensure that the elements are distinct, define head(zi) = hi where hi are fresh head
elements. Extend � and u according to tail to ensure that the structure belongs to
MFLSf . This completes the construction showing the completeness of a reduction from
FLS to BAPA.
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