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Abstract. The behavior of timed automata consists of idleness and ac-
tivity, i.e. delay and action transitions. We study a class of timed au-
tomata with periodic phases of activity. We show that, if the phases
of activity of timed automata in a network are disjoint, then location
reachability for the network can be decided using a concatenation of
timed automata. This reduces the complexity of verification in Uppaal-
like tools from quadratic to linear time (in the number of components)
while traversing the same reachable state space. We provide templates
which imply, by construction, the applicability of sequential composition,
a variant of concatenation, which reflects relevant reachability properties
while removing an exponential number of states. Our approach covers
the class of TDMA-based (Time Division Multiple Access) protocols,
e.g. FlexRay and TTP. We have successfully applied our approach to
an industrial TDMA-based protocol of a wireless fire alarm system with
more than 100 sensors.

1 Introduction

Timed real world applications may include a large number of components. These
components can often be modeled using timed automata [1] and their composi-
tion. The behavior of timed automata consists of idleness and activity, i.e. delay
and action transitions. In many cases the activity of the timed automata (which
model an application) is disjoint i.e. one automaton is active while the other
ones are idle, except at time points where they may synchronize. In timed au-
tomata with disjoint activity their parallel product will introduce many edges
and locations which are not relevant given the disjoint activity assumption (un-
reachable locations). These many edges are unnecessarily evaluated and increase
the verification costs in tools like Uppaal [3].

In this paper, we formalize a notion of timed automata with disjoint activity
and characterize a class of timed automata with periodic cycles of activity. Then,
we define a semantic concatenation operator which, when applied to timed au-
tomata with disjoint activity, produces automata bisimilar to the one obtained
by their parallel composition. The automaton obtained by the concatenation
operator has a reduced number of edges and locations than the one obtained
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by the parallel composition operator. Identifying the periodic cyclic phases of
activity of a timed automata, and if these activity phases are disjoint can be
as hard as verifying a property. Therefore, we introduce templates for timed
automata which by construction ensure periodic phases of activity. In addition,
a syntactic check in the instances of the templates suffices to ensure that their
corresponding phases of activity are disjoint. We used our approach for verifying
a real world wireless fire alarm system with up to 125 sensors. By using our
approach in Uppaal the verification times decreased from quadratic to linear on
the number of sensors.

An important class of systems which can be verified using our approach is
the class of real-time network protocols which use the Time Division Multiple
Access design principle. Well-known examples in this class of TDMA protocols
include the Bluetooth protocol of [6], the time triggered protocol of [12], and the
time triggered architectures of [11, 7, 10].

1.1 Related work

Since the cost of model checking for a network of timed automata increases
exponentially in the number of components, much research has been directed
towards techniques that demonstrate a potentially exponential speedup in in-
teresting applications (see, e.g., [2]). It turns out that, for the class of timed
automata with disjoint activity , the cost increases quadratically in the number
of components (which, as confirmed in our experiments, can be bad enough with
an increasing number of components); thus, the best one can hope for, is to be
able to demonstrate a potentially linear speedup (see Figure 1, page 202). Lit-
tle research has been devoted to the (comparatively modest, albeit occasionally
relevant) goal of a linear speedup; in particular, we are not aware of techniques
that are directly related to our approach. Still, let us note that the technique of
active clock reduction of [4] and its generalisation in [2], which may seem relevant
in this context, are orthogonal to our approach; in fact, when we present our
experimental evaluation, we evaluate the improvement obtained by the syntactic
transformation (for a non-optimized model) with respect to the execution time
for an optimized model which has only one clock.

In [5, 9, 14] Communication-Closed Layers and timed automata are studied.
The approach presented in [14] and ours are complementary. The main differ-
ences are that the approach in [14] is action based, whereas our approach is time
based. In addition, we consider cyclic timed automata, whereas in [14], automata
can not perform actions after reaching their corresponding final location.

In Section 6 we introduce sequential timed automata and present in Defini-
tion 9 the notion of an overclock for two clocks. We use this notion to reduce
the number of clocks in sequential timed automata. In [8] this notion is general-
ized to quasi-equal clocks and a more general reduction method for quasi-equal
clocks is presented. However, we show that for the context of sequential timed
automata, the Sequentialisation method proposed in Section 6 yields an Au-
tomaton in which verification can be carried out in linear time on the number
of sequential timed automata, whereas by using the method proposed in [8] the
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Fig. 1. Timed automata A1 and A2 modeling the behavior of two simplified sensors.
The constants 10, 20 and 30, 40 denote the start resp. the end of the i-th time slot
interval. The i-th sensor waits for the start of its designated time slot, sends its alive
signal and waits for the ack signal from the central unit to arrive before the end.

verification will be carried out in quadratic time. This is illustrated in our case
study in Section 7.

2 Applications

First, we elucidate our method by explaining it through an example. Next, we
describe how our method could be applied to a Time-Triggered Architecture
system.

2.1 Example: Fire alarm system

In the simplified (and simplistic) version that we consider for the example of a
TDMA protocol, the wireless fire alarm system is a network of a central unit and
a number n of sensors; here, n = 10. Figure 1 shows two timed automata which
model two (simplified) sensors. The protocol operates in cycles of fixed length of
time, say 100. The cycle is split in n time slot intervals, each of the same length
of time. In each cycle, the central unit listens at the i-th time slot to an alive
message from the i-th sensor. If the alive message is received, the central unit
replies with an ack message.

Figure 2 shows the timed automaton that is ‘equivalent’ to the parallel prod-
uct of the timed automata A1 and A2; it is obtained from applying the operation
that we will introduce in Section 6. We note three phenomena that we observe
on the example (and describe the concepts that we will introduce in the cor-
responding section in order to investigate the phenomena). These phenomena
constitute the premises of our approach.

(1) The initial location of Ai is visited infinitely often, with a regular period
(in Section 4, we define notions of cyclicity and periodicity of timed automata).

(2) The i-th sensor mostly (but not exclusively!) performs action transitions
at the i-th time slot (in Section 5, we formally characterize the notion of activity
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ô ≥ 10
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Fig. 2. The timed automaton A1 #A2 that is ‘equivalent’ to the parallel product of the
timed automata A1 and A2 from Figure 1, obtained from applying the operation that
we will introduce in Section 6.

for timed automata, give a semantics-based definition of two timed automata
being sequentialisable, and introduce the concatenation ‘·’ of sequentialisable
timed automata).

(3) In the interleaving semantics of the parallel composition of the automata
A1 and A2, the two different (zero-time) action transitions with the reset of the
clock x1 resp. the reset of the clock x2 diverge, i.e., they lead to states where the
values for x1 and x2 are different (in Section 6, when we define the sequential
composition ‘#’ of sequentialisable timed automata, we recover the determinacy
of the behavior of the parallel product through the concept of the overclock, i.e.,
the introduction of a new clock ô).

In addition, we observe that the automaton A1||A2, has an increased number
of edges in comparision to A1 #A2. The reduced number of edges yield a linear
reduction in the verification time, justified by Lemma 3.

2.2 Potential Application: Steer-by-wire architecture using TTP/C

In order to illustrate the applicability of our method, we propose an informal
model for a system based on the Time-Triggered Architecture.

In the Time-Triggered Architecture every node consist of a local cpu, a Com-
munication Network Interface and a TTP/C controller. The data communication
over TTP/C is organized in TDMA rounds. A TDMA round is divided into slots
and every node is assigned to a slot. A recurring sequence of TDMA rounds con-
stitutes a cluster. The system can be globally monitored based on bus tracing.

A steer-by-wire system would require from 8 to 30 nodes. Interesting proper-
ties to verify might include: If a node fails, is this node detected as malfunctioning
in within a TDMA round; or if a node fails, does the system still satisfy a given
property.

Let us consider that the system has n nodes and one global monitor. The
monitor could be modeled by one timed automaton Am. Every node could be
modeled by Two timed Automata; one for the cpu Acpu and one for the TTP/C
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communication ATTP . The automata corresponding to a node could commu-
nicate via shared variables. A TDMA round would have the following form,
Am||Acpu1

|| . . . ||Acpun
||ATTP1

|| . . . ||ATTPn
. Since Automaton ATPPi

will only
perform actions on its corresponding slot for i ∈ {1, . . . , n}, we can apply our
method and obtain: Am||Acpu1 || . . . ||Acpun ||(ATTP1 # . . . # ATTPn). Which we
believe, would lead to an improvement on the verification time. Given a fixed
number of TDMA rounds we can use the above method to construct a cluster.

3 Preliminaries

The formal basis for our work are timed automata [1]. In the following, we
briefly recall the main definitions, our presentation follows [13]. Note that, in
contrast to [13], we do not distinguish transition sequences and (time-stamped)
computation paths. Here, the configurations of the labelled transition system
are already time-stamped.

Let X be a set of clocks. The set Φ(X) of simple clock constraints over X is
defined by the grammar ϕ ::= x ∼ C | x − y ∼ C | ϕ1 ∧ ϕ2 where x, y ∈ X,
C ∈ Q+

0 , and ∼∈ {<,≤,≥, >}. We assume the canonical satisfaction relation
“|=” between valuations of the clocks ν : X→ Time and simple clock constraints,
with Time = R>0.

A Timed Automaton (TA) A is a tuple (L,Σ,X, I, E, `ini), which consists
of a finite set of locations L, with typical element `, a finite set Σ of actions
comprising the internal action τ , a finite set of clocks X, a mapping I : L →
Φ(X), that assigns to each location a clock constraint, and a set of edges E ⊆
L×Σ × Φ(X)× P(X)× L. An edge e = (`, α, ϕ, Y, `′) ∈ E from ` to `′ involves
an action α ∈ Σ, a guard ϕ ∈ Φ(X), and a reset set Y ⊆ X.

The operational semantics of the timed automaton A is the labelled transi-
tion system T S(A) = (Conf (A),Time ∪ Σ, { λ−→ | λ ∈ Time ∪ Σ}, Cini). The set
of configurations Conf (A) = {(〈`, ν〉, t) ∈ L × (X → Time) × Time | ν |= I(`)}
consists of time-stamped pairs of a location ` ∈ L and a valuation of the clocks
ν : X → Time which satisfies the clock constraint I(`). The set of initial con-
figurations is Cini = {(〈`ini, νini〉, 0)} ∩ Conf (A) where νini(x) = 0 for all clocks
x ∈ X. There is a delay transition from configuration 〈`, ν〉, t to 〈`, ν + t′〉, t+ t′,
i.e. 〈`, ν〉, t t

′

−→〈`, ν + t′〉, t + t′, if and only if ν + t′′ |= I(`) for all t′′ ∈ [0, t′],
where ν + t′ denotes the valuation obtained from ν by time shift t′. There is an
action transition between 〈`, ν〉, t and 〈`′, ν′〉, t, i.e 〈`, ν〉, t α−→ 〈`′, ν′〉, t, if and
only if there exists an edge (`, α, ϕ, Y, `′) ∈ E with ν |= ϕ, ν′ = ν[Y := 0], and
ν′ |= I(`′), where ν[Y := 0] denotes the valuation obtained from ν by resetting
exactly the clocks in Y . We write `(c), ν(c), and t(c), to denote the location `,
valuation ν, and time-stamp t of a configuration c = 〈`, ν〉, t.

An infinite or maximally finite sequence π = c0
λ0−→ c1

λ1−→ c2 . . . is called a

computation of A if and only if c0 ∈ Cini and (ci, ci+1) ∈ λ−→ for all i ∈ N0. We
write πj to denote the j-th configuration cj = 〈`j , νj〉, tj in π, and λπj to denote
the label of j-th transition in π, or simply λj if π is clear from the context. We
write π ∈ T S(A) if and only if π is a computation of A.
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Fig. 3. Start configurations are in the initial location and have an action predecessor
and a delay successor, final configurations a delay predecessor and an action successor.
Configurations on an action-only path between a final and a start configuration are
called restart configurations.

The parallel composition of two timed automataAi = (Li, Σi,Xi, Ii, Ei, `ini,i),
i = 1, 2, with disjoint sets of clocks X1 and X2 yields the timed automa-

ton A1‖A2
def
= (L1 × L2, Σ1 ∪ Σ2,X1 ∪ X2, I, E, (`ini,1, `ini,2)) where I(`1, `2) :=

I1(`1) ∧ I2(`2), for each `1 ∈ L1, `2 ∈ L2, and where E consists of handshake
and asynchronous edges defined as follows. There is a handshake transition
((`1, `2), τ, ϕ1 ∧ ϕ2, Y1 ∪ Y2, (`

′
1, `
′
2)) ∈ E if there are complementary actions

α and ᾱ in Σ1 ∪Σ2 such that (`1, α, ϕ1, Y1, `
′
1) ∈ E1 and (`2, ᾱ, ϕ2, Y2, `

′
2) ∈ E2.

For each edge (`1, α, ϕ1, Y1, `
′
1) ∈ E1 and each location `2 ∈ L2, there is an asyn-

chronous transition ((`1, `2), α, ϕ1, Y1, (`
′
1, `2)) ∈ E, and analogously for each

transition in E2.

4 Periodic Cyclic Timed Automata

Timed automata models of, e.g., TDMA-based protocols can be cyclic and peri-
odic in the following sense. Intuitively, a timed automaton is cyclic if the initial
location is visited infinitely often on all computations, the corresponding con-
figurations are called start configuration. A timed automaton is periodic with
period pt if configurations containing the initial location are reached only at
integer multiples of the period and are reached from a unique final location.

In the following, we formally define periodic cyclic timed automata in terms
of the new notions of start, restart, and final configurations (cf. Figure 3).

Definition 1 (Start and Final Configuration). Let A = (L,Σ,X, I, E, `ini)
be a timed automaton. The set Start(A) of start configurations of A consists of
those configuration of T S(A) that are at location `ini and occur in a computation
π ∈ T S(A) as source of a delay transition and as destination of an action
transition, i.e.

Start(A)
def
= {c = 〈`ini, ν〉, t ∈ Conf (A) | ∃π ∈ T S(A),m ∈ N0 •

πm = c ∧ λm ∈ Time ∧ (λm−1 ∈ Σ ∨m = 0)}.

The set Rst(A) of restart configurations consists of those configuration of
T S(A) that occur in a computation π ∈ T S(A) as action-predecessor of a start
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configuration, i.e.

Rst(A)
def
= {c ∈ Conf (A) | ∃π ∈ T S(A),m, i ∈ N0 •m ≤ i ∧ πm = c

∧ πi ∈ Start(A) ∧ πm λm−−→ . . .
λi−1−−−→ πi ∧ ∀m ≤ j ≤ i • λj ∈ Σ}.

The set Fin(A) of final configurations consists of the maximal restart config-
urations of T S(A), that is, restart configurations which are the destination of a
delay transition, i.e.

Fin(A)
def
= {c ∈ Rst(A) | ∃π ∈ T S(A),m ∈ N0 •

πm = c ∧ (λm−1 ∈ Time ∨m = 0)}.

The set Lrst of restart locations consists of those locations that occur in a
restart configuration, i.e.

Lrst
def
= {` ∈ L | ∃ν : X→ Time, t ∈ Time • 〈`, ν〉, t ∈ Rst(A)}.

Definition 2 (Periodic Cyclic). A timed automaton A = (L,Σ,X, I, E, `ini)
is called periodic cyclic with period pt ∈ Time if and only if each computation
comprises infinitely many start configurations which occur at a regular period of
time and if there is a unique final location `fin, i.e.

peCy(A, pt)
def⇐⇒ ∀π ∈ T S(A), p ∈ N0 ∃c = (〈`, ν〉, t) ∈ Start(A), i ∈ N0•

πi = c ∧ t = pt · p ∧
∀π ∈ T S(A), c = (〈`, ν〉, t) ∈ Start(A), i ∈ N0 •
πi = c⇒ ∃p ∈ N0 • t = pt · p ∧

∃`fin ∈ L ∀(〈`, ν〉, t) ∈ Fin(A) • ` = `fin.

Theorem 1. Let A1 and A2 be periodic cyclic timed automata with period pt ∈
Time. Then A1‖A2 is periodic cyclic with period pt.

5 Concatenation of Sequentialisable Timed Automata

We say a timed automaton is active at a point in time if there exists a computa-
tion where an action transition is taken at that time. Two periodic cyclic timed
automata A1 and A2 are called sequentialisable if, they have the same period
and within each period, all activity of A1 lies strictly before all activity of A2,
except for integer multiples of the period. In the following, we formally define
activity and sequentialisability. We define the concatenation of two sequential-
isable timed automata and show in Theorem 2 that the result satisfies exactly
the same reachability and leads-to properties as the parallel composition of the
two. In Lemma 3, we discuss the relation between outgoing and enabled edges
in the parallel composition and our concatenation.
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Definition 3 (Activity). The set of activity points Active(A) ⊆ Time of a
timed automaton A = (L,Σ,X, I, E, `ini) consists of those points in time at which
action transitions take place in some computation, i.e.

Active(A)
def
= {t ∈ Time | ∃π ∈ T S(A), j ∈ N • λj ∈ Σ ∧ t(πj) = t}.

Definition 4 (Sequentialisable). Two timed automata A1 and A2 are called
sequentialisable if and only if

1. A1 and A2 have disjoint sets of clocks,
2. A1 and A2 are periodic cyclic with period pt ∈ Time, and
3. for each p ∈ N0, within the p-th period, A1 is active strictly before A2, i.e.

sup(Activep(A1)) < inf (Activep(A2))

where Activep(Ai) def
= Active(Ai) ∩ ]pt · p, pt · (p+ 1)[, i = 1, 2.

Note 1. Within the p-th period, p ∈ N0, the activity points of two sequentialis-
able timed automata A1 and A2 are disjoint, i.e.

Active(A1) ∩ Active(A2) ∩ ]pt · p, pt · (p+ 1)[ = ∅.

If A1 and A2 are sequentialisable. Then on each period, first A1 is active and
reaches its final location while A2 is at its initial location. Subsequently, A2 is
active and reaches its final location while A1 is at its final location. At the end
of the period both A1 and A2 are active at locations corresponding to their reset
configurations.

Lemma 1. Let A1 and A2 be sequentialisable timed automata with period pt.

1. For all points of time different than the integer multiples of pt and within
the activity of A1, A2 is in its initial location `ini2 , i.e.

∀p ∈ N0, t ∈ Time • t ∈ [inf (Activep(A1)), sup(Activep(A1))]

=⇒ ∀π ∈ T S(A1‖A2) ∃〈(`1, `2), ν〉, t ∈ Conf (A1‖A2), j ∈ N0 •
πj = 〈(`1, `2), ν〉, t ∧ `2 = `ini2 .

2. For all points of time different than the integer multiples of pt and within
the activity of A2, A1 is in its final location `fin1

, i.e.

∀p ∈ N0, t ∈ Time • t ∈ [inf (Activep(A2)), sup(Activep(A2))]

=⇒ ∀π ∈ T S(A1‖A2) ∃〈(`1, `2), ν〉, t ∈ Conf (A1‖A2), j ∈ N0 •
πj = 〈(`1, `2), ν〉, t ∧ `1 = `fin1

.

3. In each computation, both, A1 and A2, are simultaneously at a restart loca-
tion at integer multiples of pt, i.e.

∀p ∈ N0, t ∈ Time • t = pt · p
=⇒ ∀π ∈ T S(A1‖A2) ∃〈(`1, `2), ν〉, t ∈ Conf (A1‖A2), j ∈ N0 •

πj = 〈(`1, `2), ν〉, t ∧ `1 ∈ Lrst ∧ `2 ∈ Lrst.
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For sequentialisable automata A1 and A2 with period pt , Lemma 1 suggests
that for time points different than pt ·p for some p. It is not necessary to compute
the product of the locations on A1 and A2. The following concatenation operator
exploits this fact and computes the product of locations only if both A1 and A2

are active. i.e. at time points pt · p.

Definition 5 (Concatenation).
Let A1 = (L1, Σ1,X1, I1, E1, `ini1) and A2 = (L2, Σ2,X2, I2, E2, `ini2) be sequen-
tialisable timed automata with period pt ∈ Time. Let `fini

denote the final location
and let Lrsti denote the set of restart locations of automaton Ai, i ∈ {1, 2}.

The concatenation of A1 and A2 yields the timed automaton

A1 · A2
def
= (L,Σ1 ∪Σ2,X1 ∪ X2, I, E, `ini)

where

– L = (L1 × {`ini2}) ∪ ({`fin1
} × L2) ∪ (Lrst1 × Lrst2)

– I(`1, `2) = I1(`1) ∧ I2(`2), `1 ∈ L1, `2 ∈ L2,
– E = {((`1, `2), α, ϕ1, Y1, (`

′
1, `2)) | (`1, α, ϕ1, Y1, `

′
1) ∈ E1 ∧ `2 ∈ Lrst2}

∪ {((`1, `2), α, ϕ2, Y2, (`1, `
′
2)) | (`2, α, ϕ2, Y2, `

′
2) ∈ E2 ∧ `1 ∈ Lrst1}, and

– `ini = (`ini1 , `ini2).

Definition 6 (Bisimulation). Let A1 and A2 be timed automata and

T Si(Ai) = (Conf (Ai),Time ∪Σi, { λ
i

−→| λi ∈ Time ∪Σi}, Cinii)

the corresponding labelled transition systems. A relation R ⊆ Conf (A1)×Conf (A2)
is called bisimulation of A1 and A2 if and only if it satisfies the following con-
ditions.

1. ∀c1 ∈ Cini1 ∃c2 ∈ Cini2 • (c1, c2) ∈ R and ∀c2 ∈ Cini2 ∃c1 ∈ Cini1)• (c1, c2) ∈ R
2. for all (c1 = (〈`1, ν1〉, t1), c2 = (〈`2, ν2〉, t2)) ∈ R,

(a) ν1 = ν2, t1 = t2,

(b) ∀c1 λ1

−→ c′1 ∃c2
λ2

−→ c2 • (c′1, c
′
2) ∈ R

(c) ∀c2 λ2

−→ c′2 ∃c1
λ1

−→ c′1 • (c′1, c
′
2) ∈ R.

A1 is called bisimilar to A2 iff there exists a bisimulation of A1 and A2.

For sequentialisable timed automata A1 and A2, the implications of Lemma 1
and the definition of the concatenation operator imply that the transition system
T S(A1 · A2) corresponds to the reachable part of T S(A1‖A2).

Theorem 2. Let A1 and A2 be sequentialisable timed automata.
Then T S(A1 · A2) is bisimilar to T S(A1‖A2).

Theorem 2, ensures that the start configurations of T S(A1‖A2) are in T S(A1·
A2). Therefore, the following theorem holds.
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Theorem 3. Let A1 and A2 be sequentialisable timed automata with period pt.
Then A1 · A2 is periodic cyclic with period pt.

Lemma 2 (Bisimulation). Reachability properties are preserved under bisim-
ulation, i.e. given bisimilar timed automata A1 and A2 and a state assertion ϕ,
i.e., an expression over clock constraints and locations, we have

(∃π ∈ T S(A1) ∀j ∈ N0 • πj |= ϕ) ⇐⇒ (∃π ∈ T S(A2) ∀j ∈ N0 • πj |= ϕ)

(∀π ∈ T S(A1) ∀j ∈ N0 • πj |= ϕ) ⇐⇒ (∀π ∈ T S(A2) ∀j ∈ N0 • πj |= ϕ).

Definition 7 (Enabled Edges). Let A = (L,Σ,X, I, E, `ini) be a timed au-
tomaton and c ∈ Conf (A) a configuration.

We use out(c) to denote the set of outgoing edges in c, i.e. the edges e =
(`, α, ϕ, Y, `′) ∈ E where ` = `(c).

Edge e is called enabled if and only if its guard is satisfied and the effect of
resets satisfies the clock constraint of the destination of e, i.e., if ν(c) |= ϕ and
ν(c)[Y := 0] |= I(`′). We use enab(c) to denote the set of edges enabled in c.

Note 2. Let A1, . . . ,An be timed automata with pairwise disjoint edge sets and
let c = 〈(`1, . . . , `n), ν〉, t ∈ Conf (A1‖ . . . ‖An) be a configuration.

1. Enabled edges are in particular outgoing, i.e. enab(c) ⊆ out(c).
2. The set of outgoing edges in the parallel composition is determined by the

components, i.e.

out(c) =
⋃

1≤i≤n
out(〈`i, ν|Xi〉, t), enab(c) =

⋃

1≤i≤n
enab(〈`i, ν|Xi〉, t),

thus (with disjoint edge sets)

|out(c)| = Σ1≤i≤n|out(〈`i, ν|Xi
〉, t)|, |enab(c)| = Σ1≤i≤n|enab(〈`i, ν|Xi

〉, t)|.

Since, outgoing edges are evaluated, a reduction on the number of outgo-
ing edges yields a reduction on time complexity. This reduction can go from
quadratic to linear time, as the following lemma shows.

Lemma 3. Let A1, . . . ,An be sequentialisable timed automata with period pt
with disjoint edge sets and with exactly one outgoing edge per location.

1. Let c ∈ Conf (A1‖ . . . ‖An) be a configuration of the parallel composition of
A1, . . . ,An where the time-stamp is not an integer multiple of the period pt,
i.e. where @p ∈ N0 • t(n) = p · pt.
Then |out(c)| = n and |enab(c)| = 1.

2. Let c ∈ Conf (A1·. . .·An) be a configuration of the concatenation of A1, . . . ,An
where the time-stamp is not an integer multiple the period pt.
Then |out(c)| = |enab(c)| = 1.
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6 Sequential Composition of Sequential Timed Automata

As the decision whether a given pair of timed automata is sequentialisable is
in general at least as difficult as the considered analysis problem, we provide a
syntactical pattern such that instances of the pattern are sequentialisable and
such that a specialized sequential composition applies.

Definition 8 (Sequential Timed Automaton). A sequential timed automa-
ton (STA) is a tuple

A = (L,Σ,X, I, E, `ini, `fin, sta, fin, pt , efin, x̂)

where A0
def
= (L,Σ,X, I, E, `ini) is a timed automaton, `fin is a final location,

sta, fin ∈ Q+
0 are start and final time, pt ∈ Q+

0 is a period, efin ∈ E is an edge
of the form (`fin,∅, x̂ ≥ pt , Y ∪ {x̂}, `ini) x̂ ∈ X is a master clock, which satisfies
the following syntactical constraints:

– the start time is positive and strictly smaller than the final time, which is
strictly smaller than the period, i.e.

0 < sta ∧ sta < fin ∧ fin < pt , (saActive)

– the initial location is left if x̂ reaches the start time, i.e.

I(`ini) = x̂ ≤ sta, (saStart)

∀(`, α, ϕ, Y, `′) ∈ E • ` = `ini =⇒ ϕ = x̂ ≥ sta, (saStartTime)

– locations connected by an edge to the final location are only assumed until x̂
reaches the final time, i.e.

∀(`, α, ϕ, Y, `′) ∈ E • `′ = `fin ⇒ I(`) = x̂ ≤ fin, (saFinalTime)

– the final location is only assumed until x̂ reaches the period, i.e.

I(`fin) = x̂ ≤ pt , (saPeriod)

– the master clock is reset exactly on edge efin, i.e.

∀(`, α, ϕ, Y, `′) ∈ E • x̂ ∈ Y ⇒ (`, α, ϕ, Y, `′) = efin, (saOneReset)

– `fin and `ini are connected exactly by edge efin, i.e.

∀(`, α, ϕ, Y, `′) ∈ E • ` = `fin∧ `′ = `ini =⇒ (`, α, ϕ, Y, `′) = efin, (saOneFin)

and the following semantical constraint:

– whenever the initial location is assumed, the final location is finally reached,
i.e.

∀π ∈ T S(A0), j ∈ N0, 〈`, ν〉, t ∈ Conf (A0) • πj = 〈`, ν〉, t ∧ ` = `ini

=⇒ ∃k ∈ N0, 〈`′, ν′〉, t′ ∈ Conf (A0) •
k ≥ j ∧ πk = 〈`′, ν′〉, t′ ∧ `′ = `fin

(saCyclic)
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`ini

`2 `3

`4

`i

`fin

x̂ ≤ sta x̂ ≤ pt

x̂ ≤ c2 x̂ ≤ c3

x̂ ≤ c4

x̂ ≤ fin

x̂ ≥ sta

x̂ ≥ c21

x̂ ≥ c22

x̂ ≥ ci

x̂ ≥ cj

x̂ ≥ pt

x̂ := 0

Fig. 4. A syntactical pattern for sequential timed automata.

Let A′ be the automaton obtained by replacing synchronization transitions
in A by internal transitions. Then, saCyclic can be checked for A′ in a model
checker. Figure 4 depicts a purely syntactically restricted template which ensures
the instances to be sequential automata.

Theorem 4. Let (L,Σ,X, I, E, `ini, `fin, sta, fin, pt , efin, x̂) be a sequential timed
automaton. Then (L,Σ,X, I, E, `ini) is periodic cyclic with period pt.

Before applying the sequential operator we must be sure that the activity
phases of the automata are disjoint. In sequential automata sequentialisability
can be syntacticaly proven, as the following lemma shows.

Lemma 4. Let A1 and A2 be sequential timed automata with the same period
pt and final time fin1 of A1 strictly smaller than the start time sta2 of A2, i.e.
fin1 < sta2. Then A1 and A2 are sequentialisable.

Consider the parallel product or the concatenation of n sequential automata
(see Figure 4) which are sequentialisable. The automaton will include a diamond
like structure corresponding to the product of the n final locations. This structure
will have 2n locations. In this locations the master clocks x̂1, . . . , x̂n will not be
equal, but note that this happends in zero time. Therefore, we define a new
clock overclock ô which preserves the quasi-equalitiy of the clocks, and allows to
further optimize the resulting automaton.

Definition 9 (Overclock). Let A1 and A2 be timed automata with clocks x1

and x2, respectively. A clock ô of A1 or A2 is an overclock for x1 and x2 in
A1‖A2 if and only if

∀π ∈ T S(A1‖A2), j ∈ N0〈(`1, `2), ν〉, t ∈ Conf (A1‖A2) • πj = 〈(`1, `2), ν〉, t
=⇒ ν |= (x1 = ô ∧ x2 = ô) ∨ `1 ∈ Lrst1 ∨ `2 ∈ Lrst2 .

Lemma 5. Given sequential timed automata, A1,A2 with period pt and mas-
terclocks x̂1, x̂2 respectively. Then, there exist an overclock ô for x̂1 and x̂2.
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The diamond structure which we described above, will have 2n locations and
n! zero time interleaving sequences, which occur at time points pt ·p for p ∈ N+.
Note that clocks x̂1, . . . , x̂n are always equal up to the time points pt · p. The
sequential composition operator which we define below, will remove this diamond
structure and will replace all the clocks by an overclock.

Definition 10 (Sequential Composition). Let Ai,
Ai = (Li, Σi,Xi, Ii, Ei, `inii , `fini

, stai, fini, pt , efini
, x̂i), i = 1, 2,

be sequential timed automata.
Then the sequential composition of A1 and A2 yields the tuple

A1 #A2
def
= (L,Σ1 ∪Σ2,X1 ∪ X2, I, E, (`ini1 , `ini2), (`fin1 , `fin2), sta1, fin2, pt , efin, ô)

where

– the master clock ô is an overclock for x̂1, x̂2.
– the set of locations consists of pairs where A2 assumes an initial or A1

assumes a final location, i.e.

L = ((L1 \ {`fin1})× {`ini2}) ∪ ({`fin1} × L2),

– the final edge efin is

((`fin1
, `fin2

),∅, ϕ1 ∧ ϕ2, Y1 ∪ Y2, (`ini1 , `ini2))

given the final edges efini = (`fini ,∅, ϕi, Yi, `inii), i = 1, 2,
– the clock constraint of location (`1, `2) is the conjunction of the corresponding

clock constraints in A1 and A2 where substitute each x̂1 and x̂2 is syntacti-
cally substituted by ô, i.e.

I(`1, `2) = (I1(`1) ∧ I(`2))[x̂1/ô, x̂2/ô],

– the set of edges comprises efin and compositions of A1 and A2 edges where
x̂1 and x̂2 are substituted by x̂ in guards and reset sets, i.e.

E = {efin} ∪ {((`1, `ini2), α, ϕ̃1, Ỹ1, (`
′
1, `ini2)) | (`1, α, ϕ1, Y1, `

′
1) ∈ E1 \ {efin1

}}
∪ {((`fin1 , `2), α, ϕ̃2, Ỹ2, (`fin1 , `

′
2)) | (`2, α, ϕ2, Y2, `

′
2) ∈ E2 \ {efin2}}

where ϕ̃i = ϕi[x̂1/ô, x̂2/ô], i = 1, 2, and Ỹi = Yi[x̂1/ô, x̂2/ô], i = 1, 2.

Theorem 5. Let A1 and A2 be sequential timed automata with the same period
pt and final time fin1 of A1 strictly smaller than the start time sta2 of A2, i.e.
fin1 < sta2. Then A1 #A2 is periodic cyclic with period pt.

In Section 5, we have shown that For sequential automata A1, . . . ,An which
are sequentialisable A1|| . . . ||An and A1 · · · · · An are bisimilar. In what follows,
we will show that A1|| . . . ||An and A1 # . . . #An are weak-bisimilar (which reflects
the effect of removing the diamond like structure in the sequential composition of
the n sequential automata). We use the following definition in order to simplify
a definition of weak-bisimulation.
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Definition 11 (Action Reachability). Let A be a timed automaton and c, c′ ∈
Conf (A) configurations. We say c′ is reachable in A from c via action transi-
tions, denoted by actReach(c, c′,A), if and only if

actReach(c, c′,A)
def⇐⇒ ∃c0, c1, c2, . . . , cn ∈ Conf (A), i ∈ N0 • c0 = c ∧ cn = c′

∧ ∀0 ≤ j < n ∈ N0 • cj
λj−→ cj+1 ∧ λj ∈ Σ.

Definition 12 (Weak-bisimulation). Let A1 and A2 be sequential automata
with ô ∈ X1 and x̂1, x̂2 ∈ X2 such that ô is an overclock for x̂1, x̂2 and let

T Si(Ai) = (Conf (Ai),Time ∪Σi, { λ
i

−→| λi ∈ Time ∪Σi}, Cinii), i = 1, 2,

be the corresponding labelled transition systems.
A relation W ⊆ Conf (A1)×Conf (A2) is called weak-bisimulation of A1 and

A2 if and only if it satisfies the following conditions.

1. ∀c1 ∈ Cini1 ∃c2 ∈ Cini2•(c1, c2) ∈ W and ∀c2 ∈ Cini2 ∃c1 ∈ Cini1)•(c1, c2) ∈ W
2. for all (c1 = (〈`1, ν1〉, t1), c2 = (〈`2, ν2〉, t2)) ∈ W,

(a) β(ν1) = ν2, t1 = t2 with β(ν) = ν|ô ∪ {νx̂1
7→ ν(ô), νx̂2

7→ ν(ô)},
(b) ∀c1 λ1

−→ c′1 • (∃c2 λ2

−→ c′2 • (c′1, c
′
2) ∈ W) ∨ (`(c1) = `fin1

∧

∃c′′2 • actReach(c2, c
′′
2 ,A2) ∧ `(c′′2) = `ini2 ∧ (c′1, c

′′
2) ∈ W),

(c) ∀c2 λ2

−→ c′2 ∃c1
λ1

−→ c′1 • (c′1, c
′
2) ∈ W ∨ (`(c2) = `fin2

∧

∃c′′2 • actReach(c2, c
′′
2 ,A2) ∧ `(c′′2) = `ini2 ∧ (c′1, c

′′
2) ∈ W),

A1 is called weak-bisimilar to A2 iff there is a weak-bisimulation of A1 and A2.

Theorem 6. Let A1 and A2 be sequential timed automata with the same period
pt and final time fin1 of A1 strictly smaller than the start time sta2 of A2, i.e.
fin1 < sta2. Then A1 #A2 is weak-bisimilar to A1‖A2.

7 Case Study

For the example in Section 2.1, we have used a simplified version of a fire alarm
system which monitors the well functioning of n sensors by sending and receiving
alive messages. For our case study, we consider a real world fire alarm system
which we denote by FAS (the system is being developed by a German company;
an anonymized version of a model of the system will be made public). The FAS
monitors n sensors using m channels. In order, for FAS to obtain an EU quality
certificate it has to be conform, among others, with the following condition: If
a sensor is malfunctioning, it has to be recognized in less than 300 seconds. We
denote this property by AG less300 .
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System Q
Broadcast Sequential
t (s) states t (s) states

FAS -CB-SW
ϕ1 1103.9 5947.4k 318.1 5971.5k
ϕ2 2240.5 11508.3k 704.2 11614.5k

FAS -CB
ϕ1 196.4 1184.7k 120.3 1189.5k
ϕ2 272.6 165.7k 150.3 1666.9k

FAS -SW
ϕ1 13.7 104.1k 87.4 104.7k
ϕ2 10.62k 145.5 87.4 146.4k

FAS
ϕ1 2.5 20.7k 87.5 20.8k
ϕ2 1.3 20.7k 85.6 20.8k

0 20 40 60 80 100 120

0

500

1,000

1,500

2,000

number of sensors

se
c

BroadCast300 Sequential300

Table 1. Verification times (AMD Opteron 6174 2.2GHz, 64Gb RAM) and visited
states for satisfied properties ϕ1 = (AG not deadlock) and ϕ2 = (AG less300) for the
fire alarm system with 125 sensors using Uppaal, and verification times of FAS -CB-SW
for property (AG less300) over number of sensors.

In addition, the certifying institution is able to (i) block an arbitrary channel
for any number of seconds, then (ii) release the blocked channel for at least 1
second and repeat (i), (ii) any number of times.

In order to model the above mentioned situations, we constructed a sensor
switcher SW which non-deterministically turns off any sensor. We constructed a
channel blocker CB, which models the blocking of channels as described above.
Now, let FAS -CB denote the fire alarm system together with the channel blocker
CB. Let FAS -SW be FAS together with the sensor switcher. Let FAS -CB-SW
be FAS together with the channel blocker and a sensor switcher.

Table 1, show the verification results for the satisfied properties AG not dead-
lock and AG less300 for the corresponding system with 125 sensors by using
Uppaal. The times include the parsing time of Uppaal templates. The attempt
of modeling a sensor, with its own clock, did not scale to more than 10 sen-
sors. Therefore, our modelers manually optimized the system, such that all 125
sensors share one clock, and synchronizations are performed via a broadcast
channel. This optimized systems correspond to the column Broadcast. In addi-
tion, the system FAS -CB-SW Broadcast corresponds to the system obtained by
applying the technique presented in [8].

We observe that for a large state space, sequential is much faster that broad-
cast as expected by Lemma 3. However, for small state space such as FAS broad-
cast is faster; in this context, note that the parsing time for the large template
consisting of 125 sequentialized automata is taking about 85 sec.

Considering the verification times of the system FAS -CB-SW and property
AG less300 for 10, 20, . . . , 120, and finally 125 sensors, the curve for broadcast
is comparable with the statement of Lemma 3 (cf. Table 1).
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8 Conclusion and Future Work

We have presented an approach for optimizing the timed model checking method
for the class of timed automata with disjoint activity. We have presented a syn-
tactic transformation, by which parallel composition of its component automata
is replaced by the application of a new sequential composition operator. The
approach uses the syntactic transformation as a preprocessing step with an ex-
isting timed model checking method. We have implemented the approach (using
Uppaal) and applied it to verify a wireless fire alarm system with more than
100 sensors. The experimental evaluation indicates the practical potential of the
approach for improving upon the time cost in a useful manner.

For future work we may consider richer forms of expressing the property of
sequentialisability, for example by means of handshaking communication.
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