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Abstract. We present a new decidable logic called TREX for expressing con-
straints about imperative tree data structures. In particular, TREX supports a tran-
sitive closure operator that can express reachability constraints, which often ap-
pear in data structure invariants. We show that our logic is closed under weakest
precondition computation, which enables its use for automated software verifica-
tion. We further show that satisfiability of formulas in TREX is decidable in NP.
The low complexity makes it an attractive alternative to more expensive logics
such as monadic second-order logic (MSOL) over trees, which have been tradi-
tionally used for reasoning about tree data structures.

1 Introduction

This paper introduces a new decision procedure for reasoning about imperative manip-
ulations of tree data structures. Our logic of trees with reachability expressions (TREX)
supports reasoning about reachability in trees and a form of quantification, which en-
ables its use for expressing invariants of tree data structures, including the tree prop-
erty itself. Despite the expressive power of the logic, we exhibit a non-deterministic
polynomial-time decision procedure for its satisfiability problem, showing that TREX
is NP-complete. Our development is directly motivated by our experience with verify-
ing tree data structures in the Jahob verification system [15, 18, 21] in which we used
the MONA decision procedure [11] for MSOL over trees. Although MONA contributed
great expressive power to our specification language and, in our experience, works well
for programs that manipulate lists, there were many tree-manipulating programs whose
verification failed due to MONA running out of resources. It was thus a natural goal to
identify a logic that suits our needs, but can be decided much more efficiently.

There are other expressive logics supporting reachability but with lower complexity
than MSOL [4,7,10,20]. We did not find them suitable as a MONA alternative, for sev-
eral reasons. First, we faced difficulties in the expressive power: some of the logics can
only reason about sets but not individual objects, others have tree model property and
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thus cannot detect violations of the tree invariants. Moreover, the complexity of these
logics is still at least EXPTIME, and their decision procedures are given in terms of
automata-theoretic techniques or tableaux procedures, which can be difficult to combine
efficiently with existing SMT solvers. Similarly, the logic of reachable patterns [20] is
decidable through a highly non-trivial construction, but the complexity is at least NEX-
PTIME, as is the complexity of the Bernays-Schönfinkel Class with Datalog [5]. The
logic [2] can express nested list structures of bounded nesting along with constraints
on data fields and numerical constraints on paths, but cannot express constraints on
arbitrary trees. On the other hand, TREX does not support reasoning on data fields; al-
though such an extension is in principle possible. Other approaches generate induction
scheme instances to prove transitive closure properties in general graphs [14]. While
this strategy can succeed for certain examples, it gives neither completeness nor com-
plexity guarantees, and suffers from the difficulties of first-order provers in handling
transitive relations. Tree automata with size constraints can express properties such as
the red-black tree invariant [8]. However, this work does not state the complexity of
the reasoning task and the presented automata constructions appear to require running
time beyond NP. Regular tree model checking with abstraction has yielded excellent
results so far [3] and continues to improve, but has so far not resulted in a logic whose
complexity is in NP, which we believe to be an important milestone.

The primary inspiration for our solution came from the efficient SMT-based tech-
niques for reasoning about list structures [13], as well as the idea of viewing single-
parent heaps as duals of lists [1]. However, there are several challenges in relying on
this immediate inspiration. For integration with other decision procedures, as well as
for modular reasoning with preconditions and postconditions, it was essential to obtain
a logic and not only a finite-model property for the analysis of systems as in [1]. Fur-
thermore, the need to support imperative updates on trees led to technical challenges
that are very different than those of [13]. To address these challenges, we introduced
a reachability predicate that is parametrized by a carefully chosen class of formulas to
control the reachability relation. We show that the resulting logic of trees is closed under
weakest preconditions with respect to imperative heap updates, which makes it suitable
for expressing verification conditions in imperative programs. We devised a four-step
decision procedure that contains formula transformations and ultimately reduces to a
Ψ -local theory extension [9, 16]. Consequently, our logic can be encoded using a quan-
tifier instantiation recipe within an SMT solver. We have encoded the axiomatization of
TREX in Jahob and used Z3 [6] with a default instantiation strategy to verify tree and
list manipulating programs. We have obtained verification times of around 1s, reducing
the running times by two orders of magnitude compared to MONA.

Motivating Example. We next show how to use our decision procedure to verify func-
tional correctness of a Java method that manipulates a binary tree data structure.

Fig. 1 shows a fragment of Java code for insertion into a binary search tree, factored
out into a separate insertLeftOf method. In addition to Java statements, the example in
Fig. 1 contains preconditions and postconditions, written in the notation of the Jahob
verification system [12, 15, 17, 18, 21].

The search tree has fields (l, r) that form a binary tree, and field p, which for each
node in the tree points to its parent (or null, if the node is the root of the tree). This
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class Node {Node l, r, p;}
class Tree {

private Node root;
invariant ”ptree p [ l , r ] ” ; invariant ”p root = null ” ;
private specvar content :: objset ;
vardefs ”content=={x. root 6= null ∧ (x,root) ∈ {(x,y). p x = y}∗}”;
public void insertLeftOf(Node pos, Node e)

requires ”pos ∈ content ∧ pos 6= null ∧ l pos = null ∧
e /∈ content ∧ e 6= null ∧ p e = null ∧ l e = null ∧ r e = null”

modifies content,l,p
ensures ”content = old content ∪ {e}”

{ e.p = pos; pos.l = e; } }

Fig. 1. Fragment of insertion into a tree

property is expressed by the first class invariant using the special predicate ptree, which
takes the parent field and a list of successor fields of the tree structure as arguments.
The second invariant expresses that the field root points to the root node of the tree. The
vardefs notation introduces the set content denoting the useful content of the tree. Note
that if we are given a program that manipulates a tree data structure without explicit
parent field then we can always introduce one as a specification variable that is solely
used for the purpose of verification. This is possible because the parent field in a tree is
uniquely determined by the successor fields.

The insertLeftOf method is meant to be invoked when the insertion procedure has
traversed the tree and found a node pos that has no left child. The node e then becomes
the new left child of pos. Our system checks that after each execution of the method
insertLeftOf the specified class invariants still hold and that its postcondition is satisfied.
The postcondition states that the node e has been properly inserted into the tree.

The full verification condition of method insertLeftOf can be expressed in our logic.
Figure 2 shows one of the subgoals of this verification condition. It expresses that after
execution of method insertLeftOf the heap graph projected to field p is still acyclic. This
is a subgoal for checking that the ptree invariant is preserved by method insertLeftOf.
Note that our logic supports field update expressions upd(p, e, pos) so that we can ex-
press the verification condition directly in the logic. Note further that the precondition
stating that the ptree invariant holds at entry to the method is not explicitly part of the
verification condition. It is implicit in the semantics of our logic.

Our logic also supports reasoning about forward reachability 〈l, r〉∗ in the trees (i.e.,
transitive closure of the successor fields rather than the parent field) and quantification
over sets of reachable objects. The latter is used, e.g., to prove the postcondition of
method insertLeftOf stating that the node e was properly inserted and that no elements
have been removed from the tree.

While we only consider a logic of binary trees in this paper; the generalization to
trees of arbitrary finite arity is straightforward. In particular, an acyclic doubly-linked
list is a special case of a tree with parent pointers, so reasoning about such structures is
also supported by our decision procedure.
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p(root) = null ∧ root 6= null ∧ 〈p〉∗(pos, root) ∧ ¬〈p〉∗(e, root) ∧
e 6= null ∧ p(e) = null ∧ l(e) = null ∧ r(e) = null
→ (∀z.〈upd(p, e, pos)〉∗(z, null))

Fig. 2. Verification condition expressing that, after execution of method insertLeftOf,
the heap graph projected to field p is still acyclic

p(root) = null ∧ root 6= null ∧ 〈p〉∗(pos, root) ∧ ¬〈p〉∗(e, root) ∧ e 6= null ∧ p(e) = null∧
l(e) = null ∧ r(e) = null ∧ ¬(∀z.〈p〉∗(x 6=e)(z, null) ∨ 〈p〉∗(z, e) ∧ 〈p〉∗(x 6=e)(pos, null))

Fig. 3. Negated verification condition from Fig. 2 after function update elimination

2 Decision Procedure Through an Example

We consider the negation of the verification condition shown in Figure 2, which is
unsatisfiable in tree structures. Our decision procedure is described in Section 5 and
proceeds in four steps.

The first step (Section 5.1) is to eliminate all function update expressions in the
formula. The result of this step is shown in Figure 3. Our logic supports so called con-
strained reachability expressions of the form 〈p〉∗Q where Q is a binary predicate over
dedicated variables x, y. The semantics of this predicate is that 〈p〉∗Q(u, v) holds iff
there exists a p-path connecting u and v and between every consecutive nodes w1, w2

on this path, Q(w1, w2) holds. Using these constrained reachability expressions we can
reduce reachability expressions over updated fields to reachability expressions over the
non-updated fields, as shown in the example. This elimination even works for updates
of successor functions below forward reachability expressions of the form 〈l, r〉∗.

The second step (Section 5.2) eliminates all forward reachability constraints over
fields l, r from the formula and expresses them in terms of the relation 〈p〉∗. Since there
are no such constraints in our formula, we immediately proceed to Step 3.

The third step (Section 5.3) reduces the formula to a formula in first-order logic,
whose finite models are exactly the models of the formula from the previous step, which
is still expressed in TREX. For the purpose of the reduction, all occurrences of the
reachability relation 〈p〉∗ are replaced by a binary predicate symbol P , which is then
axiomatized using universally quantified first-order axioms so that 〈p〉∗ and P coincide
in all finite models. All remaining reachability constraints are of the form 〈p〉∗Q. We
can express these constraints in terms of P by introducing a unary function bpQ (called
break point function) that maps each node u to the first p-reachable node v of u for
which Q(v, p(v)) does not hold, i.e., bpQ(u) marks the end of the segment of nodes
w that satisfy 〈p〉∗Q(u,w). The function bpQ can be axiomatized in terms of P and Q.
Figure 4 shows the resulting formula (including only the necessary axioms for proving
unsatisfiability of the formula).

The fourth step (Section 5.4) computes prenex normal form and skolemizes re-
maining top-level existential quantifiers. Then we add additional axioms that ensure
Ψ -locality of the universally quantified axioms in the formula obtained from Step 3.
The key property of the resulting formula is that its universal quantifiers can be instan-
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p(root) = null ∧ root 6= null ∧ P (pos, root) ∧ ¬P (e, root) ∧
e 6= null ∧ p(e) = null ∧ l(e) = null ∧ r(e) = null ∧
¬(∀z.P (z, null) ∧ P (null, bp(x 6=e)(z)) ∨ P (z, e) ∧ P (pos, null) ∧ P (null, bp(x 6=e)(pos))) ∧
(∀z. P (z, null)) ∧ (∀z. P (z, z)) ∧ (∀wz. P (w, z) ∧ P (z, w) → z = w) ∧
(∀vwz. P (v, w) ∧ P (v, z) → P (w, z) ∨ P (z, w)) ∧
(∀wz. P (w, z) → w = z ∨ P (p(w), z)) ∧
(∀z. P (z, bp(z 6=e)(z))) ∧ (∀z. bp(x 6=e)(z) 6= e→ bp(x 6=e)(z) = null) ∧
(∀wz. P (w, z) ∧ P (z, bp(x 6=e)(w)) → z 6= e ∨ z = bp(x 6=e)(w)) ∧ . . .

Fig. 4. Negated verification condition from Figure 2 after the reduction step to first-
order logic. Only the axioms that are necessary for proving unsatisfiability of the for-
mula are shown.

tiated finitely many times with terms syntactically derived from the terms within the
formula. The result is an equisatisfiable quantifier-free formula, which can be handled
by the SMT solver’s congruence closure and the SAT solver.

3 Preliminaries

In the following, we define the syntax and semantics of formulas. We further recall the
notions of partial structures and Ψ -local theories as defined in [9].

Sorted logic. We present our problem in sorted logic with equality. A signature Σ is
a tuple (S,Ω), where S is a countable set of sorts and Ω is a countable set of function
symbols f with associated arity n ≥ 0 and associated sort s1 × · · · × sn → s0 with
si ∈ S for all i ≤ n. Function symbols of arity 0 are called constant symbols. In this
paper we will only consider signatures with sorts S = {bool, node} and the dedicated
equality symbol =∈ Ω of sort node × node → bool. Note that we generally treat
predicate symbols of sort s1, . . . , sn as function symbols of sort s1× . . .× sn → bool.
Terms are built as usual from the function symbols in Ω and (sorted) variables taken
from a countably infinite set X that is disjoint from Ω. A term t is said to be ground, if
no variable appears in t. We denote by Terms(Σ) the set of all ground Σ-terms.

AΣ-atomA is aΣ-term of sort bool. We use infix notation for atoms built from the
equality symbol. A Σ-formula F is defined via structural recursion as either one of A,
¬F1, F1∧F2, or ∀x : s.F1, whereA is aΣ-atom, F1 and F2 areΣ-formulas, and x ∈ X
is a variable of sort s ∈ S. In formulas appearing in this paper we will only ever quantify
over variables of sort node, so we typically drop the sort annotation. We use syntactic
sugar for Boolean constants (>, ⊥), disjunctions (F1 ∨ F2), implications (F1 → F2),
and existential quantification (∃x.F1). For a finite index set I and Σ-formulas Fi, for
all i ∈ I, we write

∧
i∈I Fi for the conjunction of the Fi (respectively, > if I is empty)

and similarly
∨
i∈I Fi for their disjunction. We further write F [x1 := t1, . . . , xn := tn]

for the simultaneous substitutions of the free variables xi appearing in F by the terms
ti. We define literals and clauses as usual. A clauseC is called flat if no term that occurs
in C below a predicate symbol or the symbol = contains nested function symbols. A
clause C is called linear if (i) whenever a variable occurs in two non-variable terms in
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C that do not start with a predicate or the equality symbol, the two terms are identical,
and if (ii) no such term contains two occurrences of the same variable.

Total and partial structures. Given a signature Σ = (S,Ω), a partial Σ-structure
α is a function that maps each sort s ∈ S to a non-empty set α(s) and each function
symbol f ∈ Ω of sort s1 × · · · × sn → s0 to a partial function α(f) : α(s1) × · · · ×
α(sn) ⇀ α(s0). If α is understood, we write just t instead of α(t) whenever this is
not ambiguous. We assume that all partial structures interpret the sort bool by the two-
element set of Booleans {0, 1}. We therefore call α(node) the universe of α and often
identify α(node) and α. We further assume that all structures α interpret the symbol
= by the equality relation on α(node). A partial structure α is called total structure or
simply structure if it interprets all function symbols by total functions. For aΣ-structure
α where Σ extends a signature Σ0 with additional sorts and function symbols, we write
α|Σ0

for the Σ0-structure obtained by restricting α to Σ0.
Given a total structure α and a variable assignment β : X → α(S), the evaluation

JtKα,β of a term t in α, β is defined as usual. For a ground term t we typically write just
JtKα. A quantified variable of sort s ranges over all elements of α(s). From the interpre-
tation of terms the notions of satisfiability, validity, and entailment of atoms, formulas,
clauses, and sets of clauses in total structures are derived as usual. In particular, we use
the standard interpretations for propositional connectives of classical logic. We write
α, β |= F if α satisfies F under β where F is a formula, a clause, or a set of clauses.
Similarly, we write α |= F if F is valid in α. In this case we also call α a model of
F . The interpretation JtKα,β of a term t in a partial structure α is as for total structures,
except that if t = f(t1, . . . , tn) for f ∈ Ω then JtKα,β is undefined if either JtiKα,β is
undefined for some i, or (Jt1Kα,β , . . . , JtnKα,β) is not in the domain of α(f). We say
that a partial structure α weakly satisfies a literal L under β, written α, β |=w L, if (i) L
is an atom A and either JAKα,β = 1 or JAKα,β is undefined, or (ii) L is a negated atom
¬A and either JAKα,β = 0 or JAKα,β is undefined. The notion of weak satisfiability is
extended to clauses and sets of clauses as for total structures. A clause C (respectively,
a set of clauses) is weakly valid in a partial structure α if α weakly satisfies α for all
variable assignments β. We then call α a weak partial model of C.

Ψ -local theories. The following definition is a particular special case of the more gen-
eral notion of Ψ -local theory extensions. For the general definitions of local theory
extensions, respectively, Ψ -local theory extensions, we direct the reader to [9, 16].

Let Σ = (S,Ω) be a signature. A theory T for a signature Σ is simply a set of
Σ-formulas. We consider theories T (K) defined as a set of Σ-formulas that are conse-
quences of a given set of clauses K. We call K the axioms of the theory T (K) and we
often identify K and T (K). In the following, when we refer to a set of ground clauses
G, we assume they are over the signature Σc = (S,Ω ∪ Ωc) where Ωc is a set of
new constant symbols. For a set of clauses K, we denote by st(K) the set of all ground
subterms that appear in K. Let Ψ be a function associating with a set of (universally
quantified) clauses K and a set of ground terms T a set Ψ(K, T ) of ground terms such
that (i) all ground subterms in K and T are in Ψ(K, T ); (ii) for all sets of ground terms
T, T ′ if T ⊆ T ′ then Ψ(K, T ) ⊆ Ψ(K, T ′); (iii) Ψ is a closure operation, i.e., for all
sets of ground terms T , Ψ(K, Ψ(K, T )) ⊆ Ψ(K, T ). (iv) Ψ is compatible with any map
h between constants, i.e., for any map h : Ωc → Ωc, Ψ(K, h(T )) = h(Ψ(K, T )) where
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h is the unique extension of h to terms. Let K[Ψ(K, G)] be the set of instances of K
in which all terms are in Ψ(K, st(G)), which here will be denoted by Ψ(K, G). We say
that K is Ψ -local if it satisfies condition (LocΨ ):
(LocΨ ) For every finite set of ground clauses G, K ∪G |= ⊥ iff K[Ψ(K, G)] ∪G

has no weak partial model in which all terms in Ψ(K, G) are defined.

4 TREX: Logic of Trees with Reachability Expressions

We now formally define the formulas of our logic of trees with reachability expressions
(TREX), whose satisfiability we study. For simplifying the exposition in the remainder
of this paper, we restrict ourselves to binary trees. The decidability and complexity
result carries over to trees of arbitrary finite arity in a straightforward manner.
Syntax of TREX formulas. Figure 5 defines the TREX formulas. A TREX formula is a
propositional combination of atomic formulas. An atomic formula is either an equality
between terms, a reachability expression, or a restricted quantified formula. A term t is
either a constant c ∈ Γ or a function term f applied to a term t. The set of constants
Γ is an arbitrary countably infinite set of symbols disjoint from all other symbols used
in the syntax of formulas. However, we assume that Γ contains the special constant
symbol null. A function term is either one of the function symbols l, r (standing for the
two successor functions of a tree), and p (standing for the parent function of a tree), or
an update upd(f, t1, t2) of a function term f . In the latter case we call t1 the index of
the update and t2 the target. A forward reachability expression relates two terms by a
relation 〈fl, fr〉∗Q where fl and fr are the possibly updated successor functions and Q
is a predicate built from boolean combinations of equalities between constants and the
dedicated variables x and y. The syntactic restrictions on Q ensure that if one computes
the disjunctive normal form of Q then the resulting formula will contain a disjunct that
is a conjunction of disequalities between constants and variables. A backward reacha-
bility expression is similar but refers to the possibly updated parent function. We call
the relations 〈fl, fr〉∗Q descendant relations and the relations 〈fp〉∗Q ancestor relations.
Finally, the formulas below restricted quantified formulas are almost like TREX formu-
las, except that the quantified variable may only appear at particular positions below
function symbols and only as arguments of ancestor relations. For a predicate Q and
terms t1, t2, we typically write Q(t1, t2) for the formula Q[x := t1, y := t2]. Finally,
we simply write p∗ as a shorthand for 〈p〉∗>.
Semantics of TREX formulas. TREX formulas are interpreted over finite forests of
finite binary trees. We formally define these forests as first-order structures αF over the
signature ΣF of constant symbols Γ and the unary function symbols l, r and p. To this
end define the set of tree nodes N as the set of strings consisting of the empty string ε
and all strings over alphabet N∪{L,R} that satisfy the regular expression N · (L | R)∗,
i.e., we enumerate the trees comprising a forest by attaching a natural number to the
nodes in each tree. A forest αF is then a structure whose universe is a finite prefixed-
closed subset of tree nodes. The interpretation of the special constant symbol null ∈ Γ
and the function symbols l, r, and p are determined by the universe of αF as in Figure 6.
The remaining constant symbols in Γ may be interpreted by any tree node in αF . Let F
be the set of all forests and letMF be the set of all first-order structures over signature
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F ::= A | F ∧ F | ¬F
A ::= t = t | 〈fl, fr〉∗Q(t, t) | 〈fp〉∗Q(t, t) | F∀
t ::= c | f(t)
f ::= fl | fr | fp
fl ::= upd(fl, t, t) | l
fr ::= upd(fr, t, t) | r
fp ::= upd(fp, t, t) | p
Q ::= v = c→ R | Q ∧Q
R ::= tR = tR | R ∧R | ¬R
tR ::= v | c

F∀ ::= ∀z.Gin

Gin ::= f(z) = t→ Gin | Fin

Fin ::= Ain | Fin ∧ Fin | ¬Fin

Ain ::= tin = tin | 〈fp〉∗Q(tin, tin)
tin ::= z | t

terminals:
c ∈ Γ - constant symbol
l, r, p - function symbols
v ∈ {x, y} - dedicated variable
z ∈ X - variable

Fig. 5. Logic of trees with reachability TREX

αF (null) = ε αF (l)(n) =

{
nL if nL ∈ αF

ε otherwise
αF (r)(n) =

{
nR if nR ∈ αF

ε otherwise

αF (p)(n) =

{
n′ if n = n′s for some s ∈ N ∪ {L,R} and n′ ∈ αF

ε otherwise

Fig. 6. Semantics of functions and constants in the forest model.

ΣF that are isomorphic to some structure in F . We extend the term forest to all the
structures inMF .

For defining the semantics of TREX formulas, let αF ∈ MF . We only explain the
interpretation of terms, function terms, and reachability expressions in detail, the re-
maining constructs are interpreted as expected. The notions of satisfiability, entailment,
etc. for TREX formulas are defined as in Section 3.

The interpretation of terms and function terms in αF under a variable assignment β
recursively extend the interpretation of ΣF -terms as follows:

JfKαF ,β
def
= αF (f), for f ∈ {l, r, p}

Jupd(f, t1, t2)KαF ,β
def
= JfKαF ,β [Jt1KαF ,β 7→ Jt2KαF ,β ]

Jf(t)KαF ,β
def
= JfKαF ,β(JtKαF ,β)

In order to define the semantics of reachability expressions compactly, we write
〈Fn〉∗Q(t1, t2) for either a forward reachability expression 〈fl, fr〉∗Q(t1, t2) or a back-
ward reachability expression 〈fp〉∗Q(t1, t2). In the first case, the meta variable Fn de-
notes the set of function terms {fl, fr} and in the second case the set {fp}. We also
use the notation 〈f,Fn〉∗Q(t1, t2), which denotes: 〈fp〉∗Q(t1, t2) if f = fp and Fn = ∅,
and denotes 〈fl, fr〉∗Q(t1, t2) if Fn = {fr} and f = fl or Fn = {fl} and f = fr.
A reachability expression 〈Fn〉∗Q(t1, t2) expresses that the node defined by t2 can
be obtained from the node defined by t1, by successively applying the functions de-
fined by the function terms in Fn , where at each step Q holds between the current
node and its image. Formally, we define the binary predicate RQ,Fn by the formula(∨

f∈Fn f(x) = y
)
∧ Q and interpret the reachability relation 〈Fn〉∗Q as the reflexive
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transitive closure of RQ,Fn :

J〈Fn〉∗QKαF ,β
def
=
{
(u, v) ∈ αF × αF | JRQ,FnKαF ,β[x7→u,y 7→v]

}∗
The interpretation of 〈Fn〉∗Q(t1, t2) is then defined as expected.

Definition 1 (Satisfiability Problem for TREX). The satisfiability problem for TREX
asks whether, given a TREX formula F , there exists a forest αF that satisfies F .

5 Decision Procedure for TREX

The logic TREX is a proper subset of MSOL over finite trees. Thus, decidability of the
satisfiability problem for TREX follows from the decidability of MSOL over trees. In
fact TREX formulas can be expressed in terms of MSOL formulas with at most two
quantifier alternations, which gives a 2-EXPTIME upper-bound for the complexity. In
the following, we show that the satisfiability problem for TREX is actually in NP.

For the remainder of this section we fix a TREX formula F0. Our decision proce-
dure proceeds in four steps. The first two steps eliminate function updates and forward
reachability expressions from F0, resulting in equisatisfiable TREX formulas F1 and
then F2. In the third step the formula F2 is reduced to a first-order formula F3 that has
the same finite models as the original formula F . We then use results on local theo-
ries [9,16] to prove a small model property for the obtained formulas. This allows us to
use an existing decision procedure to check satisfiability of F3 in the final step of our
algorithm and obtain NP completeness.

5.1 Elimination of Function Updates

We first describe the elimination of function updates from the input formula F0. The
algorithm that achieves this is as follows:

1. Flatten the index and target terms of function updates in F0 by exhaustively apply-
ing the following rewrite rule:
C[upd(f, i, t)] ; C[upd(f, ci, ct)] ∧ ci = i ∧ ct = t
where i, t are non-constant terms and ci, ct ∈ Γ are fresh constant symbols

2. Eliminate function updates in reachability expressions by exhaustively applying the
following rewrite rule:
C[〈upd(f, ci, ct),Fn〉∗Q(t1, t2)] ; C[H] ∧

∧
f ′∈Fn cf ′ = f ′(ci)

where the cf ′ are fresh constant symbols and
H

def
= 〈f,Fn〉∗R(t1, t2) ∨ 〈f,Fn〉∗Q(t1, ci) ∧ 〈f,Fn〉∗R(ct, t2) ∧ Q(ci, ct)

R
def
= Q ∧ (x = ci →

∨
f ′∈Fn y = cf ′)

3. Eliminate all remaining function updates by exhaustively applying the following
rewrite rule:
t1 = C[upd(f, ci, ct)(t2)] ; t2 = ci ∧ t1 = C[ct] ∨ t2 6= ci ∧ t1 = C[f(t2)]

Note that the exhaustive application of the rule in each of the steps 1. to 3. is guaranteed
to terminate. Thus, let F1 be any of the possible normal form formulas obtained after
exhaustive application of these rules to F0.

Lemma 2. F1 is a TREX formula and is equisatisfiable with F0.
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5.2 Elimination of Descendant Relations

We next describe the second step of our decision procedure, which eliminates all de-
scendant relations from the formula F1. The elimination is performed using the follow-
ing rewrite rule:

〈l, r〉∗Q(s, t) ; s= t ∨ s 6=null ∧ (∃z. (l(z)= t ∨ r(z)= t) ∧ 〈p〉∗Q−1(z, s) ∧Q(z, t))

where Q−1 def
= Q[x := y, y := x]. Let F2 be any of the normal form formulas obtained

by exhaustively applying this rewrite rule to F1.

Lemma 3. F2 is a TREX formula and is equisatisfiable with F1.

5.3 Reduction to First-Order Logic

In the third step of our decision procedure we reduce the formula F2 obtained after the
second step to a formula F3 in first-order logic. The idea of the reduction is to provide a
first-order axiomatization of the unconstrained ancestor relation p∗ whose finite models
are precisely the forests MF defined in Section 4. For this purpose we introduce a
fresh binary predicate symbol P representing p∗. The axioms defining P are given in
Figure 7. We can then axiomatize each constrained ancestor relation 〈p〉∗Q in terms of
p∗. To achieve thism we exploit that the relations 〈p〉∗Q can be characterized as follows:

∀xy. 〈p〉∗Q(x, y)↔ p∗(x, y) ∧ p∗(y, bpQ(x)) (1)

where bpQ is the function that maps a node x to the first ancestor z of x such that
Q(z, p(z)) does not hold (or null if such a node does not exist). We call bpQ the break
point function for 〈p〉∗Q. The intuition behind the above definition is that for 〈p〉∗Q(x, y)
to be true, the break point for the path of ancestor nodes of xmust come after y has been
reached (respectively, y itself is the break point of x). Note that this definition exploits
the fact that forests are acyclic graphs. The axioms defining bpQ are given in Figure 8.

Formally, the reduction of F2 to a first-order logic formula F3 is defined as fol-
lows: Let P be a fresh binary predicate symbol and let F3,1 be the formula obtained
by conjoining F2 with the axioms shown in Figure 7. Let Q be the set of predicates Q
appearing in reachability expressions 〈p〉∗Q(t1, t2) in F2. For each Q ∈ Q, let bpQ be
a fresh unary function symbol. For each Q ∈ Q, replace all occurrences of the form
〈p〉∗Q(t1, t2) in F2 by P (t1, t2) ∧ P (t2, bpQ(t1)). Let the result be F3,2. Finally, for
each Q ∈ Q, conjoin F3,2 with the axioms shown in Figure 8. Let F3 be the resulting
formula and let ΣP be the extension of the signature ΣF with the symbols P , and bpQ,
for all Q ∈ Q.

Lemma 4. For every finite ΣP -model α of the axioms in Figure 7, α(P ) = α(p)∗ and
α|ΣF ∈MF .

Lemma 5. The TREX formula F2 has a model in MF iff the ΣP -formula F3 has a
finite ΣP -model.
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l-Child : p(l(x)) = x ∨ l(x) = null p-Loop : p(x) = x→ x = null
r-Child : p(r(x)) = x ∨ r(x) = null NullTerm : P (x, null)
Parent : l(p(x))=x ∨ r(p(x))=x ∨ p(x)=null Refl : P (x, x)
lr-Diff : l(x) = y ∧ r(x) = y → y = null Trans : P (x, y) ∧ P (y, z) → P (x, z)
l-Root : p(x) = null ∧ l(z) = x→ x = null AntiSym : P (x, y) ∧ P (y, x) → x = y
r-Root : p(x) = null ∧ r(z) = x→ x = null p-Step : P (x, p(x))

Total : P (x, y) ∧ P (x, z) → P (z, y) ∨ P (y, z) p-Unfold : P (x, y) → x = y ∨ P (p(x), y)

Fig. 7. First-order axioms for the unconstrained ancestor relation p∗ (represented by the
binary predicate symbol P ) and the functions l, r, and p in a forest

bpQ-Def1 : P (x, bpQ(x)) bpQ-Def2 : Q(bpQ(x), p(bpQ(x))) → bpQ(x) = null
bpQ-Def3 : P (x, y) ∧ P (y, bpQ(x)) → Q(y, p(y)) ∨ y = bpQ(x)

Fig. 8. First-order axioms defining the break point functions bpQ

5.4 Ψ -Locality

Now let F4 be the formula obtained by transforming F3 into prenex normal from and
skolemizing all existential quantifiers. Note that our syntactic restrictions on TREX for-
mulas ensure that there are no alternating quantifiers appearing in the formulas F0, F1,
F2, and hence F3. So skolemization only introduces additional Skolem constants, but
no additional function symbols.

Let C be the set of clauses obtained by transforming F4 into clausal normal form.
Then partition C into sets of ground clauses G and non-ground clauses KP in which all
terms have been linearized and flattened. The idea is now to define a closure operator
Ψ such that condition (LocΨ ) from Section 3 holds for the particular pair KP , G. To
ensure that we can extend finite weak partial models of KP [Ψ(KP , G)] ∪ G to finite
total models of KP ∪ G, we have to make sure that Ψ(KP , G) contains sufficiently
many ground terms.

We will define Ψ such that in every finite weak partial model ofKP [Ψ(KP , G)]∪G,
both P and the break point functions are already totally defined. However, for this we
have to bound the possible values of the break point functions. In fact, each predicate
Q ∈ Q bounds the possible values that bpQ can take. Let Γ (Q) be the set of constants
appearing in Q and let α be a finite total model of KP , then for all u ∈ α, bpQ(u) is
one of null, c, l(c), or r(c) for some c ∈ Γ (Q). Thus, for each predicate Q ∈ Q define
the set of its potential break points BP(Q) as follows. For sets of ground terms T and
a k-ary function symbol f , let f(T ) be the set of all (properly sorted) ground terms
f(t1, . . . , tk) for some t1, . . . , tk ∈ T . Then define

BP(Q)
def
= Γ (Q) ∪ l(Γ (Q)) ∪ r(Γ (Q)) ∪ {null}

Let further BP(Q) be the union of all sets BP(Q) for Q ∈ Q. This leads us to our first
approximation Ψbp of Ψ . To this end let f i(T ) be the set f(T ) restricted to the terms
in which the function symbol f appears at most i times, and let bp−(T ) be the set of
ground terms obtained by removing from each ground term in T all appearances of the
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bpQ-Def4 : P (x, y) ∧ P (y, bpQ(x)) → bpQ(x) = bpQ(y)
bpQ-Def5 :

∨
t∈BP(Q) bpQ(x) = t

Fig. 9. Additional first-order axioms for bounding the break point functions

fca-Def1 : P (x, fca(x, y)) fca-Def2 : P (y, fca(x, y))
fca-Def3 : P (x, z) ∧ P (y, z) → P (fca(x, y), z)
fca-Def4 : fca(x, y)=w ∧ fca(x, z)=w ∧ fca(y, z)=w → x=y ∨ x=z ∨ y=z ∨ w=null

Fig. 10. Axioms defining the first common ancestor of two nodes in a forest

function symbols
{
bpQ | Q ∈ Q

}
. Then define

Ψ0(T )
def
= T ∪ { p(t) | t ∈ T, ∃t′. t = l(t′) ∨ t = r(t′) } ∪ BP(Q) ∪ p(BP(Q))

Ψ4(T )
def
= T ∪

⋃
Q∈Q bpQ(bp

−(T ))

Ψ5(T )
def
= T ∪ P (T )

Ψbp(K, T )
def
= Ψ5 ◦ Ψ4 ◦ Ψ0(st(K) ∪ T )

Let Kbp be the set of clauses obtained from KP by adding the linearized and flattened
clauses corresponding to the axioms shown in Figure 9. These additional axioms ensure
that the interpretation of the break point functions in weak partial models of KP are
consistent with those in total models of KP .

However, the above definition is not yet sufficient to ensure Ψ -locality. Assume
that a clause of the form z = c ∨ z = d appears in Kbp that results from a restricted
quantified formula ∀z.z = c ∨ z = d in F0. Then this clause imposes an upper bound
of 2 on the cardinality of the models of F4. We thus have to make sure that for any
weak partial model of Kbp [Ψbp(Kbp , G)] ∪ G, we can find a total model of the same
cardinality. We can ensure that total models of matching cardinality exist by enforcing
that every weak partial model already determines the first common ancestor of every
pair of nodes. We axiomatize the first common ancestor of two nodes by introducing a
fresh binary function symbol fca and then adding the axioms shown in Figure 10. Let
Σfca be the signature ΣP extended with the binary function symbol fca and let Kfca

be the set of clauses obtained by adding to Kbp the linearized and flattened clauses
corresponding to the axioms in Figure 10. Our second attempt at defining Ψ is then:

Ψ3(T )
def
= T ∪ fca1(T ) ∪ fca2(T ∪ fca1(T ))

Ψfca(K, T )
def
= Ψ5 ◦ Ψ4 ◦ Ψ3 ◦ Ψ0(st(K) ∪ T )

Unfortunately, the operator Ψfca is still not good enough to ensure Ψ -locality. As-
sume that a clause of the form f(z) = t → H appears in Kfca that resulted from a
restricted quantified formula in F0 of the form ∀z. f(z) = t→ H and where f is either
one of p, l, or r. Assume that f = p. To ensure that this clause remains valid whenever
we complete p to a total function in some weak partial model α, we have to ensure that
we never have to define p(u) = t, for any u ∈ α for which p is undefined. Consider
first the case that in said model t is not null, then we can guarantee that we never have
to define p(u) = t by making sure that α is already defined on the ground terms p(l(t))
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Root1 : P (x, y) → P (y, root(x)) ∨ y = null Root2 : root(x) = null ↔ x = null
l-Leaf1 : P (lleaf (x), x) ∨ lleaf (x) = null r-Leaf1 : P (rleaf (x), x) ∨ rleaf (x) = null
l-Leaf2 : P (lleaf (x), l(x)) r-Leaf2 : P (rleaf (x), r(x))
l-Leaf3 : lleaf (lleaf (x)) = null r-Leaf3 : rleaf (rleaf (x)) = null
l-Leaf4 : lleaf (rleaf (x)) = null r-Leaf4 : rleaf (rleaf (x)) = null

Leaves1 : fca(lleaf (x), rleaf (x)) = x ∨ lleaf (x) = null ∨ rleaf (x) = null
Leaves2 : (lleaf (x) = null ∨ rleaf (x) = null) ∧ fca(y, z) = x→ x = y ∨ x = z ∨ x = null
Leaves3 : lleaf (x) = null ∧ rleaf (x) = null ∧ P (y, x) → y = x ∨ x = null

Fig. 11. Axioms for the auxiliary function symbols root , lleaf , and rleaf

and p(r(t)). This suggests that we should add the following additional ground terms to
the set of ground terms generated by Ψ0(T ):

Ψ1(T )
def
= T ∪ { l(t), p(l(t)), r(t), p(r(t)) | (p, t) ∈ Grd }

∪ { p(t), l(p(t)), p(l(p(t))) | (l, t) ∈ Grd }
∪ { p(t), r(p(t)), p(r(p(t))) | (r, t) ∈ Grd }

where Grd is the set of all pairs (f, t) of function symbols and ground terms appearing
in guards of clauses of the form f(z) = t→ H in Kfca .

If for some (f, t) ∈ Grd the weak partial model α satisfies t = null then the situa-
tion is not quite so simple. We have to make sure that α already explicitly determines
which nodes u ∈ α satisfy f(u) = null, even if f is not defined on u. However, there is
no finite set of ground terms T over the signature Σfca such that instantiation of Kfca

with the terms in T will ensure this. To enable the construction of such a finite set of
terms, we introduce auxiliary functions root , lleaf , and rleaf that determine the root, a
left child, and a right child of every node in a forest. More precisely, the semantics of
these functions is as follows: for each u ∈ α, root(u) determines the root of the tree
in α to which u belongs (i.e., in all total models α of Kfca and u ∈ α, p(u) = null iff
root(u) = u). Similarly, lleaf (u) is some leaf of the tree to which u belongs such that
lleaf (u) is descendant of l(u), or null if l(u) is null (i.e., in all total models α of Kfca

and u ∈ α, l(u) = null holds iff lleaf (u) = null). The semantics of rleaf is analogous.
Let Σ be the signature Σfca extended with fresh unary function symbols root , lleaf ,
and rleaf . The axioms capturing this semantics are given in Figure 11. We can then
replace every clause f(z) = t→ H in Kfca by the two clauses

f(z) = t→ t = null ∨H and t = null ∧Nf (z)→ H

where Nf (z) is root(z) = z if f is p, lleaf (z) = null if f is l, and rleaf (z) = null if
f is r. Let K be the resulting set of clauses extended with the linearized and flattened
clauses obtained from the axioms in Figure 11. After this final rewriting step no non-
ground occurrences of function symbols l, r, p remain in the clauses that resulted from
quantified subformulas in the original formula F0.

Lemma 6. The formula F3 has a finite ΣP -model iff K ∪G has a finite Σ-model.
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The final definition of the closure operator Ψ is then as follows:

Roots(T )
def
= root1(T ) ∪ root(root1(T ))

Leaves(T )
def
= lleaf 1(T ∪ root1(T )) ∪ rleaf 1(T ∪ root1(T ))

Ψ2(T )
def
= T ∪ Roots(T ) ∪ Leaves(T ) ∪ lleaf (Leaves(T )) ∪ rleaf (Leaves(T ))

Ψ(K, T ) def
= Ψ5 ◦ Ψ4 ◦ Ψ3 ◦ Ψ2 ◦ Ψ1 ◦ Ψ0(st(K) ∪ T )

One can easily check that Ψ satisfies the conditions (i) to (iv) on the closure operator of
a Ψ -local theory, as defined in Section 3.

Lemma 7. If there exists a weak partial model of K[Ψ(K, G)] ∪ G in which all terms
in Ψ(K, G) are defined, then there exists a finite total model of K ∪G.

Lemma 7 implies that we can decide satisfiability of K ∪G using the decision pro-
cedure described in [9, Section 3.1]. Together with the previous Lemmas we conclude
that the combination of the steps described in this section result in a decision procedure
for the satisfiability problem of TREX.
Complexity. Note that the number of terms in Ψ(K, G) is polynomial in the size of
K ∪ G. From the parametric complexity considerations for Ψ -local theories in [9, 16]
follows that satisfiability of K ∪G can be checked in NP. Further note that all steps of
the reduction, except for the elimination of function updates, increase the size of the
formula at most by a polynomial factor. The case splits in the rewrite steps 2. and 3. of
the function update elimination may cause that the size of the formula increases expo-
nentially in the nesting depth of function updates in the original formula F0. However,
this exponential blowup can be easily avoided using standard techniques that are used,
e.g., for efficient clausal normal form computation.

Theorem 8. The satisfiability problem for TREX is NP-complete.

Implementation and experiments. We started implementation of our decision proce-
dure in the Jahob system. Our current prototype implements the first three steps of our
decision procedure and already integrates with the verification condition generator of
Jahob. Instead of manually instantiating the generated axioms, as described in the fourth
step of our decision procedure, we currently give the generated axioms directly to the
SMT solver and use triggers to encode some of the instantiation restrictions imposed
by Ψ . While this implementation is not yet complete, we already successfully used it to
verify implementations of operations on doubly-linked lists and a full insertion method
on binary search trees (including the loop traversing the tree). The speedup obtained
compared to using the MONA decision procedure is significant. For instance, using our
implementation the verification of all 16 subgoals for the insert method takes about 1s
in total. Checking the same subgoals using MONA takes 135s. We find these initial
results encouraging and consistent with other success stories of using SMT solvers to
encode NP decision procedures.

6 Conclusion

This paper introduced the logic TREX for reasoning about imperative tree data struc-
tures. The logic supports a transitive closure operator and a form of universal quantifi-
cation. It is closed under propositional operations and weakest preconditions for heap
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manipulating statements. By analyzing the structure of partial and finite models, we
exhibited a particular Ψ -local axiomatization of TREX, which implies that the satis-
fiability problem for TREX is in NP. It also yields algorithms for generating model
representations for satisfiable formulas, respectively, proofs of unsatisfiability.
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