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Abstract. In theorem prover or SMT solver based verification, the pro-
gram to be verified is often given in an intermediate verification language
such as Boogie, Why, or CHC. This setting raises new challenges. We in-
vestigate a preprocessing step which takes the similar role that alias
analysis plays in verification, except that now, a (mathematical) map is
used to model the memory or a data object of type array. We present
a program transformation that takes a program P to an equivalent pro-
gram P ′ such that, by verifying P ′ instead of P , we can reduce the
burden of the exponential explosion in the number of case splits. Here,
the case splits are according to whether two statements using the same
map variable are independent or not; if they are independent, we might
as well employ two different map variables and thus remove the need
for a case split (this is the idea behind the program transformation).
We have implemented the program transformation and show that, in an
ideal case, we can avoid the exponential explosion.

1 Introduction

In theorem prover or SMT solver based verification, the program to be verified is
often given in an intermediate verification language (such as Boogie [10], Why [6],
or CHC [7]). This setting is useful in many aspects but it raises its proper
challenges; see, e.g., [2] for the investigation of axiomatic semantics. Here, we
investigate a novel problem that arises in this setting where a (mathematical)
map is used to model the memory or a data object of type array. The problem
is to transform a program into an equivalent program such that statements with
independent uses of a given map variable become statements with different map
variables. In a way, we lift the alias problem from programming languages to
intermediate verification languages. We will next explain the problem and the
new challenge that it raises. The explanation is subtle and will need a large
chunk of the introduction.

The idea behind an intermediate verification language is the one of a lingua
franca for verification. Once a C or Java program has been translated to inter-
mediate code, we are no longer bothered with the intricacies and ambiguities of
definitions of programming language semantics. There are no hidden assump-
tions (such as, e.g., the absence of undefined behavior); the program is taken



as is, i.e., all assumptions appear in the program text (e.g., in ensure state-
ments). This is one reason why it has been advocated to present benchmarks in
an intermediate programming language for software verification competitions;
see, e.g., [1]. Note that there are several scenarios where the program in the
intermediate verification language comes without a corresponding program in a
programming language. For example, it may have been constructed by a specific
module of the verification method; see, e.g., the construction of path programs
in [3] and [8].

The data manipulated by a program in an intermediate verification language
are mathematical objects (in the same domains and logical theories that underly
the theorem prover or SMT solver used for the verification). In particular, an
object of type array in the intermediate verification language is, in fact, a map
in the mathematical sense (i.e., it is manipulated like a mathematical map).

The importance of maps in intermediate verification languages is inherited
directly from the importance of arrays in programming languages. The impor-
tance is amplified by the fact that in verification it is often convenient to view
the memory (or, the heap) as a special case of an array.

What is also inherited is, unfortunately, a notorious practical issue in program
verification: the need of case splits according to whether two statements with a
write resp. read access to a given array (or, to the memory) refer to the same
position, or not. A well-known consequence of such case splits is that they can
lead to the exponential explosion of the size of the verification condition. If before
we had the exponential explosion in the number of statements in the program
that access a given array (or the memory), we have now have the exponential
explosion in the number of statements that use a given map. We thus need to
address an analogous issue in the context of intermediate verification languages.

The standard solution to address the notorious practical issue is a prepro-
cessing step with an alias analysis. Roughly speaking, the alias analysis can help
to infer which case splits are redundant. In some cases, the alias analysis can
thus alleviate the burden of the exponential explosion in the number of case
splits.

Unfortunately, an alias analysis for programming languages cannot readily
be transferred to a solution for intermediate verification languages. The new
challenge stems from the fact that we assume that a program in the intermediate
verification language will encode every assumption in the program text; i.e., we
are not allowed to use any assumption that does not appear in the program text.

We give an example to illustrate this point. The example program is depicted
in Figure 3 in Section 10. We here use the map-valued variable mem to model the
memory and the procedure malloc to model allocation (which we can specify
together with ensure statements that encode our assumptions about alloca-
tion). A statement that uses the map mem at position p intuitively models the
access of memory (by a write or by a read) via the pointer variable p. We take
a program that contains two statements which use mem at position p and po-
sition q, respectively. We would like to infer that the uses of mem in the two
statements are independent. The term independent here means that the value
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of p in the execution of the one statement is different from the value of q in
the execution of the other statement (in every execution of the program). In our
setting, we are not allowed to use any hidden assumption (such as the absence
of undefined behavior). For example, we are not allowed to assume that there
is no execution in which the two statements are executed when the value of p
and q is null. Thus, we are not allowed to conclude that the two uses of mem
in the two statements are independent even if we can infer that p has not been
assigned to q, and vice versa. This would not be sound.

Note that in the context of programming languages, where it is common to
use the assumption of the absence of undefined behavior, it would be considered
sound to conclude “p and q do not alias” if the analysis can infer from the
property that there is no execution in the program that assigns p to q, and
vice versa. In this sense, the hidden assumption is the basis for the existence
of very efficient (and effective) alias analyses. A static analysis can infer the
property by checking a strong sufficient condition for the property (e.g., that
the corresponding statements simply do not occur in the program).

Contributions The overall contribution of this paper is to investigate the the-
oretical foundations and a preliminary solution for a novel research question
which may be relevant for the practical potential of intermediate verification
languages.

The question concerns a preprocessing step for intermediate verification lan-
guages which takes the similar role that alias analysis plays in the verification
for programming languages. Since it is convenient to implement an optimization
as a program transformation (in particular for intermediate code), we consider
a program transformation that takes a program P to an equivalent program P ′

such that, by verifying P ′ instead of P , we can reduce the burden of the expo-
nential explosion in the number of case splits. Here, the case splits are according
to whether two statements in P using the same map variable are independent or
not; if they are independent, we might as well employ different map variables and
thus remove the need for a case split (this is the idea behind the program trans-
formation). The question is: Does there exist such a program transformation,
and can it be made scalable?

In this paper, we present such a program transformation, together with its
implementation which we use to show that, in the best case, we can avoid the
exponential explosion altogether.

The program transformation is based on a static analysis that conservatively
infers which statements using a giving map variable are independent. The overall
goal of the analysis is to infer a grouping of statements such that we can introduce
a different map variable for each group of statements (the statements within each
group use the same map variable).

Our technical contributions are as follows.

– We formally introduce the independence property which enables the desired
program transformation (in the context for of the intermediate programming
language).
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– We present a static analysis that conservatively infers which statements using
a giving map variable are independent. We define an instrumentation of a
program with auxiliary variables such that an existing static analysis can
infer the independence property.

– We define a program transformation that takes as input a program and
the inferred independence property and returns a new program. In the new
program statements use different map variables according to the inferred
indepence property.

– We prove that the program transformation is sound, i.e., the new program
is bisimulation equivalent to the input program.

– We have implemented the program transformation into a toolchain for au-
tomatic verification. A preliminary experimentation shows that the program
transformation can be effective, at least in principle. On a benchmark suite
which is specifically tailored to condensate the case split explosion problem,
the toolchain with the program transformation scales very well in the size
of the program (whereas the toolchain without the program transformation
quickly falls into the case split explosion problem and runs out of time or
space).

2 Example

The left hand side of Figure 1 shows an example program given in the Boo-
gie [10] verification language. While the program models a program in the C
programming language we want to stress that our technique cannot rely on any
metainformation specific to C, like the meaning of the malloc procedure, or
the absence map reads on uninitialized cells. Map semantics in Boogie follow
McCarthy’s theory of arrays [11], which is also used in SMT solvers.

The example program is artificial. Its purpose is to necessitate a large number
of non-interference checks in a program of minimal size. So the main obstacle to
verifcation is the necessity of proving non-interference between the map updates.

In the example, dynamically allocated memory is modeled by the two map
variables mem and valid. The map mem stores the contents of the memory.
The map valid stores which memory cells are allocated. C’s malloc function
is modeled by the procedure malloc, which returns a memory location that is
not currently in use. (For simplicity we assume that all memory blocks are of
size 1.)

The procedure main starts by allocating two pointers and storing them to
variables p and q. The contents of both memory locations p and q are initialized
to 0. Then, the value at location p is incremented nondeterministically often, and
the value at location q is decremented nondeterministically often. The assert
statements express that, at the end of the program the values in memory at p
and q contain a non-negative or a non-positive value respectively.

As an intermediate goal to correctness, a solver must prove that the oper-
ations on memory cells p and q do not interfere. A typical CEGAR-based, or
bounded model checking-based, solver will need to do this for every spurious
counterexample.
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var mem : [int] : int;
var valid : [int] : bool;

procedure main() {
var p, q : int;

call p := malloc();
call q := malloc();

mem[p] := 0;
mem[q] := 0;

while (*) {
if (*) {

mem[p] := mem[p] + 1;
} else {

mem[q] := mem[q] - 1;
}

}

assert mem[p] >= 0;
assert mem[q] <= 0;

}

procedure malloc() returns (ptr : int);
ensures !old(valid)[ptr];
ensures valid == old(valid)[ptr:=true];

var mem_1, mem_2 : [int] : int;
var valid : [int] : bool;

procedure main() {
var p, q : int;

call p := malloc();
call q := malloc();

mem_1[p] := 0;
mem_2[q] := 0;

while (*) {
if (*) {
mem_1[p] := mem_1[p] + 1;

} else {
mem_2[q] := mem_2[q] - 1;

}
}

assert mem_1[p] >= 0;
assert mem_2[q] <= 0;

}

procedure malloc() returns (p : int);
ensures !old(valid)[ptr];
ensures valid == old(valid)[p := true];

Fig. 1: Example of a program and its transformation. The program serves also as
the basis of our scalable benchmark suite. — The value of the variable mem is a
mathematical map. It is used to model the memory. The program transformation
makes the independence of the two statements in the loop apparent. Intuitively,
the two statements use the map mem differently. The transformation introduces
diffent maps for different uses.

Our technique provides a preprocessing such that the solver can instead prove
correctness of the transformed program on the right hand side of Figure 1. In
the transformed example, the map mem has been replaced by two maps mem 1
and mem 2. Memory accesses at p are modeled by accessing mem 1, memory
accesses at q are modeled by accessing mem 2. That way the solver does not
need to prove non-interference between the increment and decrement operations
for each spurious counterexample, which typically results in a dramatic speedup.

3 Preliminaries

In this section, we fix our notation regarding program syntax and semantics.

Program Syntax We distinguish two types of variables, map variables and base
variables. Map variables are named a,b, . . .. We use i,j, . . . for base variables
that are used as map indices in the current context and x,y, . . . for all-purpose
base variables. We use constant (or literal) expressions named lit, lit1, lit2, . . ..
We use a special variable pc ∈ Variables called the program counter. We use

5



typewriter font for program variables (e.g., i, x) and italics for mathematical
variables (e.g., i,x).

Expressions in our programs can have one of three types.

Expressions of base type: ebase ::= lit | x | a[i]
Expressions of map type: emap ::= a | a[i:=x] | (const lit)

Boolean expressions: ebool ::= x==y | !ebool | ebool && ebool | ebool || ebool

The set of all commands is generated generated by the following grammar. We
refer to this set by Commands.

c ::= x:=ebase | a:=emap | havoc x | havoc a | assume ebool

The set of program locations, Loc, is a set of distinct identifiers {`, `′, `0, `1, . . .}.
A statement is a triple of a source program location, a command, and a target
program location, i.e., Statements = Loc × Commands × Loc. We use the letter
σ for statements. Let σ = (`, c, `′) be a statement, then we refer to the source
location of σ by src(σ). In contexts where the locations are not important we
omit them from the statement and write only the command. We call statements
whose command is of the form a:=a[i:=x] map write statements, and we
call statements whose command is of the form x:=a[i] map read statements.
To highlight that a statement’s command is a map write (read), we name the
statement σwr (σrd).

A program P is given as a control flow graph whose edges are statements.
Formally: P = (Loc, Σ, `0), where Loc is a set of locations, Σ ⊆ Statements is a
set of statements, and `0 ∈ Loc is the initial location. For technical reasons we
do not allow incoming control flow edges at the initial location. A program P
induces a set of program variables, Var , which are all the variables that occur
in any of the statements of P . We sometimes refer to only the basic variables
Var base ⊆ Var or only the map variables Varmap ⊆ Var . We call the subset of
Σ that contains all the map write (read) statements Σwr (Σrd). From now on we
assume the program P is given as described here.

We do not allow equating maps in assume statements (assume a==b). In
our experience this restriction does not matter in practice. Furthermore, we only
allow equalities between (base) variables, not between expressions. This is not a
proper restriction.

We will abbreviate a:=a[i:=x] as a[i]:=x. We may omit the case when
the store is over a different map, like a:=b[i:=x], from case distinctions, since
it can be simulated by a map update followed by a map assigment; in this
case a:=b followed by a[i]:=x. Also, we omit chains of stores applied to one
map variable; again this omission does not change the expressiveness of the
programming language.

Program Semantics For simplicity of presentation we consider only two sorts,
namely the base sort Sort and the map sort Sort→ Sort .

A state in our program is a mapping from program variables to values from
our set of sorts. The base variables, like x and i are assigned values of sort Sort .
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The map variables, like a, are assigned values of sort Sort→ Sort . The Boolean
sort {true,false} occurs only during evaluation of Boolean expressions. The
program counter variable pc is a special case, its value denotes the location
` ∈ Loc that the execution is currently in.

We use the (semantic) map update operator ·[· 7→·] : (Sort→ Sort)× Sort ×
Sort → (Sort→ Sort): Let a be a map, then a[i 7→ x] is the map that returns
the value a(j) for all arguments j 6= i and the value x for the argument i.

For expressions e we give an evaluation function ·[[·]] : States× Expressions→
(Sort ∪ (Sort→ Sort)), which, given a valuation of the variables, assigns a value
to e: Every literal has one value in Sort it is associated with; the literal evaluates
to that value regardless of state. A variable is evaluated by looking up its value
in the state. A map variable’s value is a map, a map access at some index
evaluates to the application of the evaluated map value to the evaluated index
value. The semantics of the store operator is given as the above-mentioned map
update operator. A constant map expression with some argument lit evaluates to
a map whose value is lit at every position. The Boolean operators are evaluated
as usual. Formally:

s[[lit]]
def
= lit s[[v]]

def
= s(v)

s[[a[i]]]
def
= s[[a]](s[[i]]) s[[a[i:=x]]]

def
= s[[a]][s[[i]] 7→s[[x]]]

s[[(const lit)]]
def
= λx. lit s[[e==e’]]

def
=

{
true if s[[e]] = s[[e’]]

false otherwise

The concrete post operator post : 2States × Statements → 2States is given as
follows.

post(S, (`, x:=ebase , `
′))

def
= {s[pc 7→`′][x 7→s[[ebase]]] | s ∈ S, s(pc) = `}

post(S, (`, a:=emap , `
′))

def
= {s[pc 7→`′][a 7→s[[emap]]] | s ∈ S, s(pc) = `}

post(S, (`, havoc x , `′))
def
= {s[pc 7→`′][x 7→v] | s ∈ S, s(pc) = `, v ∈ Sort}

post(S, (`, havoc a , `′))
def
= {s[pc 7→`′][a 7→v] | s ∈ S, s(pc) = `,

v ∈ Sort→ Sort}

post(S, (`, assume e , `′))
def
= {s[pc 7→`′] | s ∈ S, s(pc) = `, s[[e]] = true}

An execution e is a sequence of statements and states in alternation, i.e.,

e = s0. σ0. . . . . σn−1. sn.

Every execution starts in an initial state, i.e., a state s0 where the program
counter pc is assigned the initial location `0 . Furthermore, the sequence must
be consecutive, i.e., for all i from 0 to n − 1, the state si+1 must be contained
in the set of post states of the state si under the statement σi, i.e.,

si+1 ∈ post({si}, σi).
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A special case are the empty executions, an empty execution s0 consists of an
initial state only. We can write every non-empty execution as e. σ. s where e is
an execution. We denote the set of all executions Executions.

The reachable states are all states s such that there is an execution that ends
in s.

Reach
def
= {s | ∃e ∈ Executions. e = e′s}

4 Dependency Analysis

Our program transformation is based on an analysis of the dependencies between
the statements in the program P . In this section, we describe a property that
makes explicit which map update statements may be reponsible for the value
of a map at some index at some program location. For this, we introduce the
relation LstWr (read: “last writes”) that contains for a potential read in the
program all the map updates that are relevant for that read in some execution
of the program.

Last Write Relation LstWr The relation LstWr ⊆ Σwr×Σrd relates all map write
statements σwr to all the map read statements σrd such that σwr is responsible
for the value that is read in σrd in some execution.

Definition 1 (Last Writes Relation LstWr). The Last Write relation LstWr ⊆
Σwr × Σrd contains a pair (σwr, σrd), where the command in σwr is of the form
a[i]:=x, and the command in σrd is of the form y:=b[j], whenever there is
an execution e and a value v such that v is written by σwr and is read by σrd,
i.e., if e fulfills the following linear time property.

♦ (pc = src(σwr) ∧ x = v ∧ ♦ (pc = src(σrd) ∧ b[j] = v))

In this definition we assume that every value that is written to a map during
an execution is unique; this can be accommodated by providing each value with
a timestamp. Furthermore, in this definition a and b may or may refer to the
same program variables, the same holds for, i and j and x and y.

Alternative Characterisation of the Last Writes Relation LstWr We provide an
alternative characterisation of the Last Writes relation LstWr. This characterisa-
tion will lead to an instrumentation of the program that will allow us to compute

an relation LstWr
#

that overapproximates the Last Writes relation.
We next define the function lw which, given a position i, given a map a, and

given an execution e, returns the write statement σwr that is responsible for the
value that the map a has at position i in the last state of the execution e. For
technical reasons we will use the symbol ⊥ (to cater for the case where the map
a has not been written at position i in execution e).

Formally, we define the function lw : Varmap×Sort×Executions→ Σwr∪{⊥}
by induction over the length of the execution e. (As explained above, an execution
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of length 0 is of the form s0 where s0 is an initial state, and an execution of length
n+ 1 is of the form e. σ. s where σ is a statement and s is a state.)

lw(a, j, s0)
def
= ⊥

lw(a, j, e.havoc a. s)
def
= ⊥

lw(a, j, e.a:=(const lit). s)
def
= ⊥

lw(a, j, e.a[i]:=x. s)
def
=

{
a[i]:=x if s(i) = j

lw(a, j, e) if s(i) 6= j

lw(a, j, e.a:=b. s)
def
= lw(b, j, e)

lw(a, j, e. σ. s)
def
= lw(a, j, e) if e. σ. s matches none of the above

Intuitively, the definition of lw(a, j, e) traces the value of the map a at index
j back within the execution e until it hits the map write statement that is
responsible for the fact that a has that value at position j at the end of e. This
write statement is returned by lw. If the execution consists only of an initial state
s0, or the last statement was a havoc statement with argument a, or when a has
been set to a constant map by the last statement, then no value in a depends on
a map write statement, so lw returns the symbol ⊥. If the last statement in the
execution has been a write to map a, then LstWr checks whether the write was
at position j. If that is the case, the last write is returned, otherwise lw recurses
on the prefix of the execution where the write statement and its successor state
have been dropped. If the last statement in the execution assigned another map
b to a, the lw recurses on the execution prefix, and it looks for writes on b
instead of writes on a. Otherwise, the last statement in the execution had no
influence on values in a, so it is evaluated recursively on the prefix without the
last statement and state.

As above, the Last Writes relation LstWr relates all the write statements
σwr to all the read statements σrd, such that there is an execution where σwr
is responsible for the value that σrd reads. From the function lw we build the
explicit characterization of the relation LstWr ⊆ Σwr ×Σrd as follows.

LstWr
def
= {(σwr, σrd) | σrd = (`,x:=a[i], `′)

∧ ∃ e. s ∈ Executions. s(pc) = ` ∧ s(i) = i ∧ lw(a, i, e. s) = σwr

∧ σwr 6= ⊥}

5 Computing Dependencies

In this section, we present an instrumentation of the program P such that the
Last Writes relation LstWr can be expressed in terms of the set of reachable
states of the instrumented program PLstWr.
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5.1 Instrumentation

We introduce an auxiliary map variable a-lw for every map-variable a that
occurs in the program P . The values of the maps that are assigned to a-lw are
not values from our base sort Sort , but instead are symbols that refer to write
statements that occur in P .

Intuitively, the transformation is designed in such a way that the fresh lw-
maps capture the results of the lw-function for each program location. We con-
struct the transformation in three steps. We begin by defining by a transformer
τ cLstWr : Commands → Commands for some commands whose transformation re-
sult does not depend on their location in the program.

If the command c is a havoc to map variable a, or if c assigns a constant map
to a, then a-lw is assigned a constant map that contains the symbol ⊥ at all
positions. This represents that no write statement has an influence on any value
in the map a after the command c has been executed. If c assigns the value of
a map variable to another map variable, then the analogous assignment is done
on the respective lw-maps. This expresses that all map write statements that
have an influence on a also have an influence on b after the command c has
been executed. In all other cases, the transformation τ cLstWr leaves the command
c unchanged.

τ cLstWr(havoc a)
def
= havoc a; a-lw:=(const ⊥)

τ cLstWr(a:=(const lit))
def
= a:=(const lit); a-lw:=(const ⊥)

τ cLstWr(b:=a)
def
= b:=a; b-lw:=a-lw

τ cLstWr(c)
def
= c where none of the other cases apply

From τ cLstWr we construct the transformer τσLstWr : Statements → Statements,
which transforms the map write statements. Whenever a map variable a is writ-
ten to at index i, then a-lw is written at the same index, but with a special
value that identifies the updating statement. Statements that are not map write
statements are left unchanged by τσLstWr.

τσLstWr(σwr)
def
= (`, a[i]:=x; a-lw[i]:=σwr , `

′)

where σwr = (`, a[i]:=x , `′)

τσLstWr((`, c, `
′))

def
= (`, τLstWr(c), `

′) where (`, c, `′) 6∈ Σwr

The final statement transformer τLstWr : Statements → Statements updates
statements that originate from the initial location `0 . Because at the initial lo-
cation no map writes have been executed, we set every lw-variable to a constant
map containing the symbol ⊥. (Note that we assume that the initial location
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has no incoming statements.)

τLstWr(σ)
def
= c;

a-lw:=(const ⊥);
. . .

z-lw:=(const ⊥)
where τσLstWr(σ) = (`0 , c, `) and Varmap = {a, . . . ,z}

We are now ready to define the instrumented program PLstWr. We define
the instrumented program PLstWr through applying the transformation function
τLstWr to each statement in Σ. Formally:

PLstWr
def
= {Loc, {τLstWr(σ) | σ ∈ Σ}, `0}

We can now express the Last Write relation LstWr through the set of reach-
able states of the instrumented program PLstWr.

Proposition 1. The Last Writes relation LstWr as defined in Section 4 is iden-
tical to the relation that relates a map write statement σwr in Σwr to a map read
statement σrd in Σrd of the form (`,x:=a[i], `′) if there is a state s in the
set of reachable states of the instrumented program PLstWr such that the program
counter pc points to the source location of σrd, `, and the value that s assigns to
the map read expression a-lw[i] is the write statement σwr. Formally:

LstWr = {(σwr, σrd) | σrd = (`,x:=a[i], `′)

∧ ∃s ∈ Reach(PLstWr). s[[pc]] = ` ∧ s[[a-lw[i]]] = σwr}

We state the following lemma for later reference (proof of Theorem 1 in
Section 6).

Lemma 1. P and PLstWr are bisimulation-equivalent.

The proof of this lemma is obvious form the fact that the additional com-
mands introduced by the transformation is ghost code.

5.2 Computing an Overapproximation of the Last Writes Relation
LstWr

We have seen that the relation LstWr can be expressed through the set of reach-
able states of the instrumented program PLstWr. The set of reachable states is
not computable in general. Thus, we apply a static analysis that computes an
overapproximation of the set of reachable states.

The static analysis must be able to handle programs that manipulate maps.
An example is a static analysis based on the Map Equality Domain [4]. This
domain is useful to infer equalities and disequalities between expressions which
can involve maps.
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We have implemented an extension of the Map Equality Domain. The ex-
tensions supports constraints of the form x ∈ {lit1, lit2} which allows us to suc-
cinctly express constraints like a-lw[i] ∈ {σ1, σ2}. Here, σ1 and σ2 are literals
(referring to the corresponding statements). All literals are pairwise different.
Thus, these constraints allow us to infer constraints like a-lw[i] 6= σ3. Such
constraints are crucial to infer independence of statements.

From now on, we use LstWr
#

to refer to the overapproximation of the re-
lation LstWr computed by applying the above-described static analysis to the
instrumented program PLstWr. The static analysis always computes an overap-

proximation of the set of reachable states of PLstWr. Thus, the relation LstWr
#

is
an overapproximation of the Last Writes relation LstWr. We state the following
remark for later reference (in Lemma 2).

Remark 1. The relation LstWr
#

is an overapproximation of the Last Write rela-
tion LstWr, i.e.,

LstWr
#

⊇ LstWr.

6 Program Transformation

In this section we introduce the program transformation that transforms the pro-

gram P , given the relation LstWr
#

, which approximates the Last Write relation
LstWr of program P .

6.1 Computing a Partition of the Map Write Statements

First, we define the relation R ⊆ Σwr×Σwr that relates all write statement that
map influence the same read statement. Two write statements σwr and σ′wr are

related by R if there exists a read statement σrd such that the relation LstWr
#

relates both σwr to σrd and σ′wr to σrd. Formally:

R
def
= {(σwr, σ′wr) | ∃σrd ∈ Σrd. LstWr

#

(σwr, σrd) ∧ LstWr
#

(σwr, σrd)}

Based on the relation R, we define the relation r ⊆ Σwr×Σwr as the smallest
equivalence relation that contains the relation R. This equivalence relation r
induces a partition over the set Σwr, i.e., a set W ⊆ 2Σwr of subsets of the set
Σwr such that the disjoint union of the subsets is identical to the original set Σwr.
Thus, the set W consists of disjoint subsets {W1, . . . ,Wn} of the set of all write
statements Σwr. The partition W has the property that for every two blocks W1

and W2 in W, we know that if we take one write statement σwr from W1 and
another write statement σ′wr from W2, then σwr and σ′wr are independent in the
sense that they never have an influence on the same read statement.

For technical reasons, we add a the singleton consisting only of the symbol
⊥ to W. Its use will become clear in the next subsection.
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6.2 Program Transformation

We introduce a map variable a W for each W ∈ W. If for example the write
statements a[i]:=x and a[j]:=y appear in different blocks W1 and W2, then
we will replace the map variable a with two different variables a W1 and a W2

in these statements accordingly. (There is a subtle point here regarding the fact
that W is a mathematical object while a variable name consists of characters
which we neglect here.)

We use the notation LstWr
#−1[σrd] to denote the preimage of LstWr

#

with
respect to some read statement σrd ∈ Σrd, i.e.,

LstWr
#−1[σrd]

def
= {σwr | (σwr, σrd) ∈ LstWr

#

}.

The transformation updates the statements of program P using the trans-
formation τ : Statements→ Statements as described in the following. The trans-
formation result τ(σ) depends on the statement type of σ. If σ writes to map
variable a, it is transformed to a statement that does the same update to map
variable a W , i.e., to the map variable corresponding to the block in the parti-
tion W ∈ W that contains σ. If σ reads from a map variable a, there are two

cases. Either LstWr
#

at the read location yields the empty set. This means that
it is guaranteed that the read position has never been written to in any execution
that reaches σ. In this case, σ is transformed to a read from the map variable
a {⊥} instead of a. Otherwise, by construction of the partition W, LstWr must
yield a set that falls completely into a block W in the partition W. In that case,
σ is transformed to a read from the map variable a W instead of a. If σ assigns
a map variable a to a map variable b, it is transformed to a series of assignments
that assign for each block in the partition W ∈ W the variable a W to the vari-
able b W . A havoc to a map variable a is translated to havoc on all variables
a W for every block W in the partition W, followed by an assume statement
that ensures that all maps a W have been set to the same value. In all other
cases, the transformation leaves σ unchanged. Formally:

τ((`,a[i]:=x, `′))
def
= (`,a W[i]:=x, `′) where (`,a[i]:=x, `′) ∈W

τ((`, x:=a[i] , `′))
def
= (`, x:=a {⊥}[i] , `′)

if LstWr
#−1[(`, x:=a[i] , `′)] = ∅

τ((`, x:=a[i] , `′))
def
= (`, x:=a W[i] , `′)

if LstWr
#−1[(`, x:=a[i] , `′)] 6= ∅

and LstWr
#−1[(`, x:=a[i] , `′)] ⊆W

τ((`, b:=a , `′))
def
= (`, b W1:=a W1; ...; b Wn:=a Wn , `

′)

where W = {W1, . . . ,Wn}

τ(σ)
def
= σ if σ matches none of the above cases

13



We construct the transformed program P ′ by replacing all statements σ in
P by their transformed version τ(σ). Formally:

P ′
def
= (Loc, {τ(σ) | σ ∈ Σ}, `0 )

6.3 Correctness of the Transformation

In this subsection, we show that the transformation is correct, i.e., that the
program P and the transformed program P ′ are bisimulation-equivalent. Given
Lemmma 1, it is sufficient to prove the following Lemma.

As an aside: it does not seem obvious to us how to give a bisimulation between
the programs P and P ′ directly.

Lemma 2. The programs PLstWr and P ′ are bisimulation-equivalent.

Proof. We define a bisimulation relation ∼ between PLstWr and P ′ as follows.

The states s ∈ StatesP and t ∈ StatesP ′ are bisimilar, i.e., s ∼ t, iff

∀x ∈ Var base. s[[x]] = t[[x]] (1)

and

∀a ∈ Varmap.∀i ∈ Var base.

(s[[a-lw[i]]] = ⊥ =⇒ ∀W ∈ W. s[[a[i]]] = t[[a W[i]]]) (2a)

∧ (∃W ∈ W. s[[a-lw[i]]] ∈W =⇒ s[[a[i]]] = t[[a W[i]]]) (2b)

We show, that ∼ is a bisimulation. Pick s, t such that s ∼ t (We call this the
induction hypothesis, I.H.). Pick σ in ΣP (which corresponds to picking τLstWr(σ)
and τ(σ) as well).

We make a case distinction on which statement type σ falls into.

Case σ is an assignment: Let {s′} ∈ post({s}, τLstWr(σ)) and let {t′} = post({t}, τ(σ)).
First, we consider the conditions (1), (2a), and (2b) with respect to variables

x, a, and i that are not updated by σ when σ is deterministic. For all three
conditions, the reasoning is simple: By I.H. the condition holds with respect
to s and t. Neither τLstWr(σ) nor τ(σ) modify x, a or i as they occur in the
conditions, and τLstWr(σ) does not modify a-lw. Thus the conditions directly
carry over from s and t to s′ and t′.

In order to prove the conditions for s′ and t′ with respect to to variables
that are updated by σ, we make a further case distinction on which type of
assignment σ is (and analogously by τLstWr(σ) and τ(σ)).

– Case σ = a[i]:=x: a is updated only at position s′[[i]]; for the other posi-
tions, the same reasoning as above is applicable. We know s′[[a-lw[i]]] = σ
and σ 6= ⊥. Thus the antecedent of condition (2a) cannot be fulfilled in s′. Let
W ∈ W be the block that contains σ. Remember τ(σ) = a W[i]:=x and
τLstWr(σ) = a[i]:=x; .... Thus t′[[a W[i]]] = t[[x]] = s[[x]] = s′[[a[i]]],
which means condition (2b) is fulfilled.
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– Case σ = x:=a[i]: Then τ(σ) = x:=a W[i] for some W ∈ W. In order
to show s′[[x]] = t′[[x]], we need to show s[[a[i]]] = t[[a W[i]]].

First, if W = {⊥}, by construction of τ , we have LstWr
#

(a,i, s(pc)) = {⊥}.
Thus, by Proposition 1 and Remark 1, we have s[[a-lw[i]]] = ⊥. Thus, by
condition (2a) in I.H. we get s[[a[i]]] = t[[a W[i]]].

Second, if W 6= {⊥}, by construction of τ , we have LstWr
#

(a,i, s(pc)) \
{⊥} ⊆W . Thus, by Proposition 1 and Remark 1, we have s[[a-lw[i]]] ∈W .
Thus, by condition (2b) in I.H. we get s[[a[i]]] = t[[a W[i]]].

– Case σ = b:=a: We must show conditions (2a) and (2b) holds for s′ and
t′ for variable b and b-lw. We already showed this for a and a-lw above
(because a is updated by τLstWr(σ)/τ(σ)). Our proof goal follows directly
from the fact that s′(a) = s′(b) and s′(a-lw) = s′(b-lw) and for all W ∈
W, t′(a W ) = t′(b W ) hold, which is ensured by the assignments in the
statements τLstWr(σ) and τ(σ).

– Case σ = x:=e: where e is not a map read. Then, we know τLstWr(σ) =
τ(σ) = σ. By I.H., condition (1), s′[[e]] = t′[[e]] holds, because e is a base
variable or a literal. Our goal s′[[x]] = t′[[x]] follows directly.

Case σ is a havoc statement:

– Case σ = havoc a: We show show the simulation directions separately.
First let s′ ∈ post(s′, τLstWr(σ)). We need to show existence of an appropriate
t′ ∈ post(t′, τ(σ)). Given s′[[a]], pick t′[[a W]] for all W s identical to that.
(Clearly, this state t′ is not blocked by the assume statement in τ(σ).)
For the other simulation direction let t′ ∈ post(t′, τ(σ)). We need to show
existence of an appropriate s′ ∈ post(s′, τLstWr(σ)). We know that for all
W,W ′, t′[[aW ]] = t′[[aW ′ ]] holds (ensured by the assume statement in τ(σ)).
Pick s′[[a]] such that it equals all the t′[[a W]].

– Case σ = havoc x: We can clearly choose the appropriate s′ or t′ such that
condition (1) is met.

Case σ = assume ebool: Remember we did not allow the use of map variables
in assume statements, so τLstWr(σ) = τ(σ) = σ. Because of I.H., condition (1), s
and t agree on all base variables. Thus s[[ebool]] = t[[ebool]]. Thus whenever an s′

is not blocked by τLstWr(σ), it is not blocked by τ(σ) and vice versa. ut

Theorem 1 (Bisimulation). P and P ′ are bisimulation-equivalent.

Proof. This follows by transitivity of bisimulation-equivalence from Lemmas 1
and 2. ut

7 Implementation in Ultimate

The purpose of this paper is to provide formal foundations of a program transfor-
mation that makes independence of groups of map accessing statements explicit
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and to prove it correct. However, we find it important to explant that the ap-
proach extends to a full fledged intermediate language.

We implemented our program transformation in the Ultimate program anal-
ysis framework1. The intermediate representation we support is the most ex-
pressive one used by Ultimate, namely the so-called interprocedural control flow
graph (short: ICFG). ICFGs are control flow graphs whose edges are labeled
with ith transition formulas. Transition formulas are arbitrary logical formulas
over some background theory that contain an in- and an out-version for each
program variable. Furthermore, ICFGs allow dedicated edges for procedure calls
and returns. In the following we highlight the most important features that the
programming language used so far does not have and explain what is necessary
to support them.

Multidimensional Maps In order to support maps of higher dimensions, we need
to slightly adapt the relation LstWr and the corresponding analysis. On a tech-
nical level this is done by having not one but several lw-maps for each map
variable in the original program. For an n-dimensional map variable a we would
introduce n lw-maps a-lw-1 to a-lw-n where a-lw-1 is one-dimensional
a-lw-2 is two-dimensional and so forth.

Transition Formulas In transition formulas, the distinction between assume
statements and assignments is not immediately apparent. For example, given
a program variable a, the transition formula a’ = 1 would correspond to the as-
signment a:=1, while the transition formula a = 1∧a′ = a would correspond to
the assume statement assume a==1. In order to infer, how our instrumentation
needs to be done, we need to compute, which which variables are unconstrained
in a given formula. Those have to be treated like variables subject to a havoc
statements are treated.

Procedures In order to support procedures, two features are relevant: Map-valued
parameters must be passed between procedures, and it must be possible to com-
pute procedure summaries that describe the effect of a procedure on global map
variables (in fact having one of these features would be enough in terms of ex-
pressiveness, but Ultimate supports both). Both of these features are enabled by
our support for (by-value) assignments between maps.

8 Experiments on a Scalable Benchmark Suite

The thorough experimentation needed to establish whether the approach can be
made applicable to classes of practical benchmarks (or, to what classes) is not
in the scope of this paper. In this section, we will only investigate whether the
approach is applicable in principle. That is, we will use a benchmark suite which
is specifically tailored to condensate the case split explosion problem. This helps

1 https://github.com/ultimate-pa/ultimate
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Fig. 2: The Ultimate Automizer toolchain without and with the program trans-
formation as a preprocessing step, and the Ultimate Automizer toolchain in
isolation applied after the program transformation, on a benchmark suite whose
programs are scaled-up versions of the example program in Section 2. The time-
out (TO) is set to 1800 seconds.

us to factor out all aspects in automatic program verification that are orthogonal
to our problem.

We obtain the bechmark suite by starting with the example program from
Section 2. The example program manipulates the map variable mem on the
two index variables p and q. We obtain a new program by adding another two
variables and adding the corresponding statements which manipulate the map
variable mem on two new variables in the same way as the existing statements do
for p resp. q. We can iterate the process and thus obtain a scalable benchmark
suite whose programs have 2, 4, 6, . . . index variables.

Setup We ran our experiments on a dedicated benchmarking system, each bench-
mark task was limited to 2 CPU cores at 2.4GHz and 20 Gigabytes of RAM.
We ran two toolchains and took three measurements. One toolchain, called “Au-
tomizer without”, is the standard verification toolchain of the program verifier
Ultimate Automizer. The toolchain computes an ICFG from the input program
and then run’s Automizer’s verification algorithm on the ICFG. The second
toolchain, called “Automizer with”, applies our transformation after computing
the interprocedural control flow graph and before running Automizer’s verifica-
tion algorithm. A third kind of measurements, denoted “Automizer after”, are
the timings of only the verification algorithm in the toolchain “Automizer with”,
i.e., how long the verification of the transformed program takes.

Results In Figure 2 we display the results of our experimental evaluation. The
x-axis of the plot represents the different example programs, identified by the
number of map index variables. The y-axis represents the time taken by each
toolchain. We ran three toolchains: The Ultimate Automizer program verifier,
Ultimate Automizer where before the verification run, the transformation is
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applied, and a toolchain where Automizer was run on the already transformed
programs.

We observe that the timings of Automizer on the transformed programs are
nearly constant in the number of used map index variables – the timings range
from 0.9 seconds to 8.8 seconds. This means that the only real difficulty in
our programs lies in deriving the non-interferences between the map accesses.
Furthermore, we can see that the Automizer fails to scale well when it needs
to derive the non-interferences itself: It fails to prove all examples with 10 or
more map index variables. The toolchain that includes our transformation shows
a significantly improved scaling behaviour even though the transformation (in
particular the static analysis it is based on) is not cheap.

9 Related Work

There are several works resembling ours in that they propose computing non-
interference properties between memory regions to simplify the verification con-
ditions that are handed to an SMT solver. Rakamaric and Hu [14], as well as
Wang et al. [15] propose a memory model that uses maps which are separated
according to the results of an up-front alias analysis. Gurfinkel and Navas [9]
propose a related but different memory model. In their setting, the heap state is
passed between procedures through local map variables. They propose a memory
model with a partitioning that is context-sensitive to improve precision. In con-
trast to our work, these papers all rely on C semantics for their input program,
so they do not apply to arbitrary map manipulating programs.

Our relation LstWr and the corresponding property is reminiscent of a large
field of work that is concerned with inferring guarantees about data dependencies
between program parts in the presence of arrays. We can only mention a few
papers here, e.g., [5,13,12]. These papers propose various approaches of finding
data dependencies in programs with arrays in different precisions, for different
fragments and for different applications. None of them is aimed at symbolic
program verification as our work is. To our knowledge, our property is the only
one that accounts for maps, the crucial difference being the presence of by-value
assignments.

10 Discussion

We discuss some of the choices we made in this paper.

10.1 Alias Analysis vs. Intermediate Verification Languages

In this subsection, we discuss why classical alias analyses cannot be used as a
basis for our program transformation.

A classical alias analysis reasons about the pointer variables of a program. In
a nutshell, the analysis collects all the assignments in the program that assign a
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// (memory model infrastructure)
procedure main() {
var p, q : int;
p = 0;
q = 0;
// (code not using mem[p] or mem[q])
p = malloc();
q = malloc();
// (code using mem[p] and mem[q])

}

Fig. 3: Program that illustrates why it is not sufficient to only consider pointer
(map index) variables in our setting. Without any additional assumptions we
must conclude that p and q may alias and thus that there is a dependency
between statements that use p and q to access the map mem. However, if we
consider at which program locations p and q are actually used to access the
map mem, we can conclude that those accesses must be mutually independent.
(An ensures statement guarantees that the procedure malloc never returns the
same value twice.)

pointer source value to a pointer variable. Possible source values are typically:
(1) calls to memory-allocating procedures, like malloc, (2) expressions that
point to memory that is known to be implicitly allocated, like the addressof-
expression &x, (3) other pointers. While the classes of source values may vary, it
is always assumed that no two pointers alias “by accident”. I.e., when a pointer is
uninitialized, it is assumed to be distinct from every other pointer, even though
nothing is known about its value at the time. The same holds for pointers that
have been freed. Similarly, every pointer that has the value null is assumed to
not alias with any other pointer, even if that other pointer also has the value
null. To summarize, only valid pointer values are taken into account for alias
analysis. This is sound in the context of the programming language because
accessing an invalid pointer would lead to undefined behaviour according to the
language standard. Thus, the analysis reasons about pointers with the hidden
assumption that no undefined behaviour occurs in the program because in the
case of undefined behaviour all guarantees about what the program does are lost
anyways.

These assumptions enable extremely efficient pointer analyses because in
this setting the only way that two pointers can alias is if there is a chain of
assignments between pointer variables that (transitively) assigns the value of one
pointer variable to the other. Therefore, a flow-insensitive analysis that collects
all assignments of pointer variables without regard to control flow can already
achieve good precision while being highly scalable.

The analogue to pointers in an intermediate verification language are map
indices, i.e., values that are used to read values from a map variable. It is common
to use mathematical integers as the sort of map indices, like in our example. In
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our setting, assumptions that are not explicitly modelled in the program are not
allowed. Therefore, we have two options: (1) We model all assumptions in our
verification language. E.g. we would have to check that all pointer accesses are
indeed valid. This is impractical as checking this is a hard verification task on
its own right. (2) We develop an alternative to alias analysis that does not rely
on these assumptions – which is what we did in this paper.

As the example program in Figure 3 illustrates, it is not enough if our static
analysis only considers the values that map indices may assume. Instead, we
must track when and how (for read or write accesses) the indices are actually
used. This is done by the Last Writes relation LstWr.

10.2 Assume Statements over Map Variables

From a theoretical of view, it might be interesting why we omit assume state-
ments that equate map variables from our programming language. We now ex-
plain the complications this would entail.

Consider the following program snippet.

x := b[i];
a[j]:=y;
assume a==b;

The snippet contains no loops or procedure calls but still the map write in the
second line influences the map read that comes earlier in the code because the
assume statement establishes a relationship between the maps a and b. Thus,
because i and j may alias, we have (a[j]:=y,x:=b[i]) ∈ LstWr (note that
the assume statement enforces the timestamps to match as well as the values,
between a and b). This would mean that a practical computation of LstWr would
have to incorporate both forward- and backward analysis, whereas without such
assume statements it is sufficient to propagate information in just one direction.

11 Conclusion

We have investigated the theoretical foundations for a novel research question
which may be relevant for the practical potential of intermediate verification
languages. The question concerns a preprocessing step for intermediate verifi-
cation languages which takes the similar role that alias analysis plays in the
verification for programming languages. We have presented a preliminary solu-
tion in the form of a program transformation. We have integrated the program
transformation into a toolchain. A preliminary experimentation shows that the
program transformation can be effective, at least in principle. On a benchmark
suite which is specifically tailored to condensate the case split explosion prob-
lem, the toolchain with the program transformation scales very well in the size of
the program (whereas the toolchain without the program transformation quickly
falls into the case explosion problem and runs out of time or space).

The thorough experimentation needed to establish whether the approach can
be made applicable to classes of practical benchmarks (or, to what classes) is
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not in the scope of this paper. We see our investigation as a preliminary for a
wealth of future investigations to explore the practical potential of intermediate
verification languages.
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