
rt-inconsistency: a new property for
real-time requirements

Amalinda Post1, Jochen Hoenicke2, and Andreas Podelski2

1 Robert Bosch GmbH, Stuttgart, Germany
Amalinda.Oertel@de.bosch.com

2 University of Freiburg, Germany
{hoenicke,podelski}@informatik.uni-freiburg.de

Abstract. We introduce rt-inconsistency, a property of real-time re-
quirements. The property reflects that the requirements specify appar-
ently inconsistent timing constraints. We present an algorithm to check
rt-inconsistency automatically. The algorithm works via a stepwise re-
duction to real-time model checking. We implement the algorithm using
an existing module for the reduction and the UPPAAL tool for the real-
time model checking. As a case study, we apply our prototype imple-
mentation to existing real-time requirements for automotive projects at
BOSCH. The case study demonstrates the relevance of rt-inconsistency
for detecting errors in industrial real-time requirements specifications.

1 Introduction

The specification of requirements allows us to differentiate a correct from an in-
correct system. Often, however, it is difficult to get the requirements specification
itself right. In the case of real-time requirements, this difficulty is exacerbated
by the presence of subtle dependencies between timing constraints.

A basic problem with getting the requirements right is the lack of unambigu-
ous properties that allow us to differentiate a good from a bad set of require-
ments. The IEEE Standard 830-1998 of “Recommended Practice for Software
Requirements Specifications” defines eight properties, called correctness, unam-
biguity, completeness, consistency, ranking for importance, verifiability, modi-
fiability, and traceability [9]. The meaning of these properties is, however, not
formally defined. To identify unambiguous properties for requirements remains
an active research topic; see, e.g., [3, 5, 10, 12].

In this paper, we propose a formal property of real-time requirements. The
property reflects that the requirements specify apparently inconsistent timing
constraints. Its violation may thus identify an (otherwise not identifiable) error
in a requirements specification. We call the new property rt-inconsistency (for
lack of a better name).

Errors in a requirement specification are often identified as inconsistency
(the specification is unsatisfiable by any system, e.g., because it contains two
contradicting requirements) or incompleteness (the specification lacks a require-
ment, e.g., because one among several possible cases is not covered) [3]. The new

2

property lies between inconsistency and incompleteness because the error can
be repaired either by removing a requirement (as in the case of inconsistency)
or by adding requirements (as in the case of incompleteness).

We demonstrate the relevance of the new property of real-time requirements
specifications by a practical case study in an industrial setting. We took six exist-
ing sets of real-time requirements for automotive projects at BOSCH. Each of the
six sets had undergone a thorough review. Yet, three out of the six sets of require-
ments contained an error identifiable through rt-inconsistency. The errors were
acknowledged and subsequently repaired by the responsible engineers at BOSCH.
In one of the three cases, this required a major revision of the requirements. The
errors could not have been caught using the property of inconsistency; i.e., each
of the six sets was consistent, as we could verify formally. We do not know of
any existing property of requirement specifications that would have allowed us
to catch these errors.

In the standard industrial praxis, requirements specifications must be checked
manually, e.g., by peer reviews [12]. Yet, since requirements affect each other and
cannot be analyzed in isolation, this is an considerable effort. Automatic checks
are desirable already for small sets of requirements [6, 7, 13].

In this paper, we show that we can check the rt-inconsistency of a set of real-
time requirements automatically. We present an algorithm and its theoretical
foundation. The algorithm works via a stepwise reduction of the rt-inconsistency
of a set of real-time requirements to a certain property of one specific real-time
system (that we derive from the set of real-time requirements). I.e., it reduces a
property of properties of real-time systems to a property of a real-time system.

The reduction allows us to reduce rt-inconsistency checking to real-time model
checking. As a theoretical consequence of the reduction, the algorithm inherits
the theoretical exponential worst-case complexity. Practically, the reduction al-
lows us to capitalize on the advances of real-time model checking and the indus-
trial strength of existing tools such as UPPAAL [2].

To implement the algorithm, we build upon pre-existing modules from [8] for
deriving the real-time system from the set of given real-time requirements and
the UPPAAL tool [2] for checking the real-time system. The implementation has
allowed us to perform the above-mentioned case study with existing industrial
examples. The primary goal was to demonstrate the practical relevance of the
new property of real-time requirements. The second goal of the case study was to
evaluate the practical potential of our algorithm for checking the property auto-
matically. The results of our experiments are encouraging in this direction. They
indicate that checking rt-inconsistency automatically is feasible in principle.

Roadmap. We will next illustrate rt-inconsistency informally with an example.
Section 2 introduces rt-inconsistency formally, together with the formalization of
real-time requirements. Section 3 presents the algorithm, with (1) the notion of
automaton used for the intermediate step of the reduction, (2) the construction
of such an automaton from requirements, and (3) its transformation to a timed
automaton. Section 4 presents the case study.

3

IRTest

IRLamps

IRTest=0 IRTest=1 &
IRLamps=0

IRTest=0 &
IRLamps=0

4 6 8 10 12 1420 time

1

0

1

0

Fig. 1: Witness for the rt-inconsistency of the set of requirements {Req1,Req2}.
The timing conflict appears immediately after the time point t = 14.

Example of rt-inconsistency. Consider the two informal real-time require-
ments below.

– Req1: “If the system’s diagnostic request IRTest is set, then it is never the
case that the infrared lamps stay turned off for more than 10 seconds.”

– Req2: “If the system’s diagnostic request IRTest is set, then it is never the
case that the infrared lamps will be on in the next 6 seconds.”

The set of the two requirements is consistent (one can find systems that satisfy
both requirements). However, a closer inspection of the requirements shows that
circumstances may arise where the two requirements are in conflict. Consider the
trace depicted in Figure 1. At time point t = 4 the diagnostic request IRTest is
set. By Req1, the infrared lamps must be turned on within the next 10 seconds. In
the (right-open) time interval [4, 10) IRTest stays. It disappears at the time point
t = 10. By Req2, the infrared lamps are turned off for at least 6 seconds (and,
thus, during the whole time interval [10, 16]). I.e., for any possible continuation
of the trace after t = 14, the two requirements clash: by Req1, the infrared lamps
are turned on, and by Req2, they are turned off for further two seconds; i.e., the
requirements claim contradicting valuations for the infrared lamps. The set of
the two requirements, while consistent, is rt-inconsistent!

One way to resolve the rt-inconsistency is to delete Req2 or to change it to the
weaker requirement Req′2.

– Req′2: “If the system’s diagnostic request IRTest is set and it was not set in
the last 10 seconds, then it is never the case that the infrared lamps will be
on in the next 6 seconds.”

Another way to resolve the rt-inconsistency is to add both, the requirements
Req3 and Req4 to the set containing Req1 and Req2.

– Req3: “Once the system’s diagnostic request IRTest is set, IRTest stays
active for at most 3 seconds.”

– Req4: “Once the system’s diagnostic request IRTest disappears, IRTest is
absent for at least 10 seconds.”

4

2 Defining rt-inconsistency

To find rt-inconsistencies we need to interpret requirements on both the infinite
time axis R≥0 and on finite time intervals [0, t] from zero to some time point t.
A convenient way to obtain a suitable formalization of requirements is to borrow
the notation of the Duration Calculus [14, 15]. Before we introduce the formal
syntax of our class of real-time requirements, we will derive the formalization
of the example requirement Req1 from Section 1. We first restate Req1 in a less
ambiguous form.

– Req1: If the system’s diagnostic request IRTest is set at a time when the
infrared lamps are turned off, then it is never the case that the infrared
lamps stay turned off for more than 10 seconds.

We introduce the predicates IRTest and IRLampsOn (with their obvious mean-
ing) and reformulate Req1 as follows.

– Req1: For any run of the system, it must not be the case that there are time
points t1, t2, and t3, t1 < t2 < t3 such that IRTest is true between t1 and
t2, and IRLampsOn is false between t1 and t3, and the length of the interval
[t2, t3] is greater than 10 seconds.

Equivalently, for any run of the system, it must not be possible to split the time
axis into four consecutive phases where:

1. the first phase (from time point 0 to t1) does not underlie any constraint,
2. the second phase (from time point t1 to t2) underlies the constraint that

IRTest is true and IRLampsOn is false,
3. the third phase (from time point t2 to t3) underlies the constraint that

IRLampsOn is false and the constraint that its length (the difference between
t3 and t2) is greater than 10.

4. the fourth phase (from time point t3 until infinity) does not underlie any
constraint.

In formal syntax, the requirement Req1 is expressed as the formula ϕ1 below.
Here the symbol “¬ ” denotes negation, the symbol “ ; ” separates two phases, the
phase “dP e” refers to a nonzero-length period of time during which the predicate
P is satisfied, adding the conjunct“` > k” to a phase means that its length is
strictly greater than the constant k, and the constant phase “true” refers to a
period of time during which the behavior does not underlie any constraint (and
which is possibly of zero length).

ϕ1 = ¬(true ; dIRTest ∧ ¬IRLampsOne ; d¬IRLampsOne ∧ ` > 10 ; true)

The formalization of three other requirements from Section 1 is given below.

ϕ2 = ¬(true ; dIRTeste ; true ∧ ` < 6 ; dIRLampsOne ; true)

ϕ3 = ¬(true ; dIRTeste ∧ ` > 3 ; true)

ϕ4 = ¬(true ; dIRTeste ; d¬IRTeste ∧ ` < 10 ; dIRTeste ; true)

5

Syntax. Formally, the syntax of phases π and requirements ϕ is defined by
the BNF below. The predicate symbol P refers to a fixed set Preds of predicate
symbols (for observations whose truth values change over time). The correctness
of the algorithm presented in this paper (more precisely, the soundness of the
answer “rt-consistent”) relies on the fact that we have only strict inequalities
(` > k and ` < k) in the definition of phases π. The extension to non-strict
inequalities (` ≥ k and ` ≤ k) would complicate the algorithm unnecessarily,
i.e., without being motivated by practical examples.

phase π ::= true | dP e | π ∧ ` > k | π ∧ ` < k
requirement ϕ ::= ¬ (π1 ; . . . ;πn ; true)

A set of requirements denotes their conjunction. We overload the metavariable
ϕ for requirements and sets of requirements.

Interpretation I. Avoiding the confusion about the different meanings of other
terms in the literature, we use the term interpretation to refer to a mapping that
assigns to each time point t on the time axis (i.e., each t ∈ R≥0) an observation,
i.e., a valuation of the family of given predicates P .

I : R≥0 → {true, false}Preds , I(t)(P) ∈ {true, false}

We use “segment of I from b to e” and write “(I, [b, e])” for the restriction of
the function I to the interval [b, e] between the (“begin”) time point b and the
(“end”) time point e.

We use “prefix of I until t” for the special case of the segment of I from 0
to t, i.e., for the restricted function (I, [0, t]). Given two interpretations I and
I ′ we say that the prefix of I until t coincides with the prefix of I ′ until t if the
(restricted) functions are equal, i.e., (I, [0, t]) = (I ′, [0, t]).

Satisfaction of a requirement by an interpretation, I |= ϕ. We first define the
satisfaction of a requirement by a segment of an interpretation, (I, [b, e]) |= ϕ.

(I, [b, e]) |= dP e if I(P)(t) is true for t ∈ [b, e] and b 6= e

(I, [b, e]) |= ` > k if (e− b) > k

(I, [b, e]) |= π1 ; π2 if (I, [b,m]) |= π1 and (I, [m, e]) |= π2 for some m ∈ [b, e]

We can then define the satisfaction of a requirement by a (‘full’) interpretation.

I |= ϕ if (I, [0, t]) |= ϕ for all t

That is, an interpretation I satisfies the requirement ϕ if every prefix of I does
(i.e., if for every time point t, the prefix of I until t satisfies ϕ).

6

Safety. A requirement ϕ, which we have defined to be a negated formula of
the form ϕ = ¬ (π1 ; . . . ;πn ; true), expresses that “something bad may
not happen”, where “bad” refers to the possibility of splitting the time axis
into n + 1 intervals satisfying the phases π1, . . . , πn, and true, respectively.
The requirement ϕ expresses a so-called safety property (which means that “if
an execution violates ϕ, then there is a prefix of the execution such that any
execution with this prefix violates ϕ”). The syntactic restriction that the last
phase is true is crucial here.

rt-inconsistency. The satisfaction of a requirement is defined not only for a ‘full’
interpretation on the infinite time axis (“I |= ϕ”) but also for the prefix of an
interpretation until a time point t (“(I, [0, t]) |= ϕ”). We need both satisfaction
relations in our definition of rt-inconsistency.

Definition 1. [rt-inconsistency] A set of requirements ϕ is rt-inconsistent if
there exists a prefix (I, [0, t]) of an interpretation I until a time point t that
satisfies ϕ but no extension of the prefix to a full interpretation does (i.e., on
the whole time axis), formally:

(I, [0, t]) |= ϕ

I ′ 6|= ϕ if (I ′, [0, t]) = (I, [0, t])

i.e., the full interpretation I ′ does not satisfy ϕ whenever its prefix until t coin-
cides with the prefix of the interpretation I until t.

Remark 1. In essence, a set of requirements ϕ is rt-inconsistent if it does not
exclude the existence of a prefix of an interpretation which leads to a conflict.
The conflict prevents the possibility of the extension of the prefix to a full inter-
pretation. More precisely, in the setting of Definition 1 (of an interpretation I,
a time point t, and the prefix (I, [0, t]) satisfying ϕ), the rt-inconsistency is due
to one of two reasons.

1. No extension of the prefix (I, [0, t]) to any time point t′ after t is possible
without violating ϕ (i.e., (I, [0, t′]) 6|= ϕ for all t′ > t).
In other words: The conflict inherent in ϕ hits directly after t. The conflict
does not hit at any time point in the closed interval [0, t] but it does hit
when time leaves the interval, i.e., at any time point t′ after t. No passing of
time after t is possible without a conflict.

2. There are (uncountably many) time points t′ after t such that the extension
of the prefix (I, [0, t]) to t′ is possible without violating ϕ, but there exists
a time point t0 after all those time points t′ such that the extension of the
prefix (I, [0, t]) to t0 violates ϕ (i.e., (I, [0, t0]) 6|= ϕ for some t0 > t).
In other words: The conflict inherent in ϕ strikes after the time point t0 after
t. The conflict does not hit at t or at any other time point in the right-open
interval [0, t0) but it does hit at the time point t0. No passing of time into t0
is possible without a conflict.

7

c1<10

IRLampsOn′

c1<10

TRUE

c1<10

IRLampsOn′

c1<10

c1:=0

p1
¬IRLampsOn∧

IRTest
c1≤10

p0
IRLampsOn
∨¬IRTest

p2
¬IRLampsOn∧
¬IRTest
c1≤10

(a) phase event automaton A1

c2<6

TRUE

c2≥6

TRUE

TRUE

c2:=0

TRUE

p1
¬IRLampsOn∧

IRTest

p2
¬IRLampsOn∧
¬IRTest

c2≤6

p0
¬IRTest

(b) phase event automaton A2

c1<10∧
c2≥6

c1<10

c1<10∧
c2<6

c1<10

c1<10
c2:=0 IRLampsOn′

c1:=0

c1<10

TRUE

c1<10

c2≥6∧
IRLampsOn′

p2, p0
¬IRLampsOn∧
¬IRTest
c1≤10

p1, p1
¬IRLampsOn∧

IRTest
c1≤10

p2, p2
¬IRLampsOn∧
¬IRTest

c1≤10∧c2≤6

p0, p0
¬IRTest

(c) phase event automaton A = A1||A2

timer:=0

TRUE

timer>0
timer:=0

c1<10
c2≥6

timer>0
timer:=0

c1<10
timer>0
timer:=0

c1<10
timer>0
timer:=0

c1:=0
timer:=0

c2≥6
timer>0
timer:=0

timer>0
timer:=0
c1:=0

c1<10
timer>0
c2:=0

timer:=0

p0, p0

p2, p2
c1≤10
c2≤6

p2, p0
c1≤10

p1, p1
c1≤10

init

(d) timed automaton S

Fig. 2: Algorithm 1 of Section 3 applied to the set of the requirements ϕ1 and
ϕ2 from Section 2 (formalizing Req1 and Req2 from Section 1) constructs the
phase event automata A1 and A2, forms their parallel product A = A1||A2 and
transforms A into the timed automaton S.
ϕ1 = ¬(true ; dIRTest ∧ ¬IRLampsOne ; d¬IRLampsOne ∧ ` > 10 ; true)
ϕ2 = ¬(true ; dIRTeste ; true ∧ ` < 6 ; dIRLampsOne ; true)

8

duration
=2

duration
=3

duration
=6

duration
=3

duration
=2

duration
=4

p2, p2
c1≤10
c2≤6

p1, p1
c1≤10

p2, p2
c1≤10
c2≤6

init

init
p1, p1
c1≤10

deadlock

p2, p2
c1≤10
c2≤6

p1, p1
c1≤10

deadlock

Fig. 3: Algorithm 1 of Section 3 applied to the set of the requirements ϕ1 and
ϕ2 from Section 2 returns a run of S leading to a deadlock as a witness for
the answer “ϕ is rt-inconsistent”, e.g. one of the depicted runs. The depicted
witnesses suggest adding ϕ3 respectively ϕ4.

Remark 2. It is easy to find examples that show, respectively, that neither does
the rt-consistency imply the absence of deadlocks for every system that satisfies
the real-time requirement ϕ, nor does the rt-inconsistency imply the presence of
deadlocks in every system that satisfies ϕ.

Remark 3. Although the idea of using rt-inconsistency to detect flaws in real-time
requirements is new (and in particular no algorithm for deciding rt-inconsistency
was given before), the property has already appeared in a different form in [1].
There, however, the concern is the completeness of proof methods for the treat-
ment of real time in standard linear temporal logic. The goal in [1] is a method
to prove that a system specification S satisfies a requirement ϕ. Here, S is an
“old-fashioned” program where updates of a program variable now over the reals
are used to model the progress of time. If ϕ is a liveness property, then one may
need to add to S a fairness assumption NZ for the scheduler that updates now .
Still, a proof method may be incomplete (i.e., it may be incapable of showing
the correctness of S together with NZ wrt. the requirement ϕ). The complete-
ness of a proof method may hold only for correctness problems where the pair
(S,NZ) is machine-closed. Machine-closure of S for NZ is essentially the same
as rt-consistency of S. The formal definitions are not directly comparable (since
machine-closure is formalized using sequences of pairs of states and time points,
as opposed to continuous interpretations I).

3 Checking rt-inconsistency

In this section, we present an algorithm (see Algorithm 1) to check whether a set
of requirements ϕ is rt-inconsistent. To simplify the presentation, we assume that
ϕ is consistent (we have implemented the check for consistency, not presented
here, and use it in a preliminary step in our experiments).

As already explained in the introduction, we reduce the problem of checking
the rt-inconsistency of ϕ to the problem of checking a certain temporal property
(existence of deadlocks) of a real-time system, formally a timed automaton S. We
construct S from ϕ. More precisely, we first construct a certain kind of automa-
ton A, a so-called phase event automaton (PEA), from ϕ and then transform A

9

Algorithm 1 check rt-inconsistency of set of requirements ϕ = {ϕ1, . . . , ϕn}
for all i = 1, . . . , n do

Ai := req2pea(ϕi) {transform requirement to phase event automaton}
end for
A := A1‖ . . . ‖An {form the parallel product of phase event automata}
S := pea2ta(A) {transform phase event automaton to timed automaton}

{call timed model checker for existence of deadlocks}
if (S is deadlock-free) then

return “ϕ is rt-consistent”
else

return “ϕ is rt-inconsistent” {return path to deadlock in timed automaton}
end if

into a timed automaton S such that ϕ, A, and S are related in a sense that we
will make formal.

Fig. 2 presents the intermediate results of the different steps of the appli-
cation of Algorithm 1 to the rt-inconsistent set of the requirements ϕ1 and ϕ2

from Section 2 (formalizing Req1 and Req2 from Section 1). Algorithm 1 trans-
forms the requirements ϕ1 and ϕ2 into the phase event automata A1 and A2 in
Figure 2a resp. Figure 2b. It forms their parallel product A = A1||A2 which is
given in Figure 2c. It then transforms A into the timed automaton S given in
Figure 2d. After that it checks whether S contains a deadlock. In this example,
it finds a deadlock and returns the answer “ϕ is rt-inconsistent”, together with
a witness given in Figure 3 (a run of S leading to a deadlock). The first wit-
ness depicted in Figure 3(where IRTest toggles too quickly) suggests adding the
requirement ϕ4. The second witness (where IRTest stays on too long) suggests
adding the requirement ϕ3.

3.1 Phase Event Automata

We will use phase event automata as a means to define sets of interpretations I
(i.e., mappings from time points to observations, i.e., to valuations of predicates).
Syntactically, a phase event automaton resembles a timed automaton in that it
has the same notion of clocks; semantically, there are differences such as in the
minimal duration between transitions. Below, for a set of variables X, we use
X ′ for the set of their primed versions (which stand, as usual, for the value of
the corresponding variable in a successor state after a transition). We use L(X)
to denote a set of formulae with free variables in X.

A phase event automaton (PEA) is a tuple A = (P, V,C,E, s, I, P 0) where

– P is the set of locations p (phases),
– C is the set of clocks c,
– V is the Boolean variables P (observation predicates),
– E is a set of transitions of the form (p, g,X, p′) where p and p′ specify

the from- and to-locations, the guard g is a formula in the unprimed clock

10

variables and in the unprimed and primed Boolean variables (i.e., g specifies
also the updates of Boolean variables), and X is the set of clocks that are
reset to 0, i.e., E ⊆ P × L(C ∪ V ∪ V ′)× 2C × P ,

– the mapping s assigns each location p its state invariant which is stated as
a formula in the Boolean variables, i.e., s : P → L(V),

– the mapping I assigns each location p its clock invariant which is stated as
a formula in the clocks, more precisely a conjunction of inequalities c ≤ k or
c < k with c ∈ C and k ∈ R≥0, i.e., I : P → L(C),

– P 0 is the set of initial locations, i.e., P 0 ⊆ P .

We use runs to describe the operational semantics of a PEA. A run r is a
(finite or infinite) sequence of quadruples (p, β, γ, t) consisting of a location p,
a valuation of the Boolean variables β : V → {true, false}, a valuation of the
clocks γ : C → R≥0, and a non-zero duration t (the amount of time spent in the
location p), i.e., t > 0.

Given the PEA A of the form above, r is a run of A if it starts in an initial
location with clock values 0, and for each quadruple (p, β, γ, t) in r, the valuation
of variables β satisfies the state invariant of location p (i.e., β |= s(p)), the
clock valuation γ satisfies the clock invariant at location p during the whole
duration t (i.e., γ+t |= I(p)), and for each pair of consecutive quadruples (p, β, γ)
and (p′, β′, γ′), the valuations satisfy the guard and the update constraint of a
transition in E of the form (p, g,X, p′), i.e., (β, β′, γ+t) |= g (where β′ is applied
to the primed variables in g) and γ′(c) is 0 if c in X and γ + t otherwise.

The duration of a run r is the sum of the durations t in its quadruples. An
infinite run r is non-Zeno if its duration is infinite. An unextendable run of A is
a finite run r of A which is not prefix of any non-Zeno run of A.

Interpretations accepted by A, L(A). A run r matches an interpretation I if
for almost all time points t, the value of I coincides with the valuation β in
the quadruple of r that corresponds to t if one adds up the durations of all
quadruples in r preceding it. We omit the cumbersome formal definition (which
is analogous for finite runs and prefixes of an interpretation).

An interpretation I is accepted by A, formally I ∈ L(A), if there is a non-
Zeno run r of A that matches I. The next lemma implies that every run r of A
gives rise to an interpretation I accepted by A.

Lemma 1. For every non-Zeno run r of a phase event automaton A there exists
an interpretation I such that r matches I.

The prefix of the interpretation I until the time point t is accepted by A, formally
(I, [0, t]) ∈ L(A), if there is a run r of A with duration t that matches (I, [0, t]).

A phase event automaton A represents a requirement ϕ if it accepts exactly the
interpretations that satisfy ϕ, i.e., I ∈ L(A) if and only I |= ϕ. Given two PEAs
A1 and A2 representing the requirements ϕ1 resp. ϕ2, their parallel product
A1||A2 (defined in the canonical way) represents their conjunction ϕ1 ∧ ϕ2.

11

3.2 Characterizing rt-inconsistency via phase event automata

We will use the algorithm of [8, 11] which, given a requirement ϕ, constructs a
phase event automaton A that represents ϕ. In this section, we show that the
properties of the algorithm that are stated in Lemmas 2 and 3 (and proven in [8])
suffice to characterize the rt-inconsistency of ϕ. From now on, we refer to the
construction of A from ϕ by the algorithm of [11].

Lemma 2. The phase automaton A constructed from ϕ is deterministic; i.e.,
if A accepts the prefix of the interpretation until the time point t, then there is
exactly one run r of A that matches I for duration t.

Lemma 3. The prefix of the interpretation I until the time point t satisfies the
requirement ϕ if and only if it is accepted by the phase automaton A constructed
from ϕ; i.e., (I, [0, t]) |= ϕ if and only if (I, [0, t]) ∈ L(A).

The “⇐” direction of Lemma 3 relies on the restriction to strict inequalities in
the definition of the syntax of ϕ in Section 2. The restriction entails that the
PEA constructed from ϕ contains only non-strict clock invariants “c ≤ k”.

Theorem 1. The set of requirements ϕ is rt-inconsistent if and only if the phase
event automaton A constructed from ϕ contains an unextendable run.

Proof. “⇒” If ϕ is rt-inconsistent and I is an interpretation as in Definition 1,
then the prefix of I until the time point t satisfies ϕ and thus, by Lemma 3, it is
accepted by A. Hence, by the definition of acceptance, there is a run r in A that
matches I for duration t. We are done if we show that r is unextendable. Assume,
for a proof by contraction, that there is a non-Zeno run r′ of A that extends r.
By Lemma 1, r′ matches an interpretation I ′. Hence, again by the definition of
acceptance, A accepts I ′ and also the prefix of I ′ until t′, for every time point
t′. By Lemma 3, the prefix of I ′ until t′ satisfies ϕ, for every time point t′. Thus,
by the definition of the satisfaction relation, the full interpretation I ′ satisfies
ϕ. Since the prefix of I until the time point t coincides with the one of I ′, we
have found an interpretation I ′ as in Definition 1, i.e., one which cannot exist.

“⇐” If r is an unextendable run of A for, say, the duration t, then, by
Lemma 3, there is an interpretation I such that the prefix of I until t matches
r. By Lemma 3, the prefix of the interpretation I until the time point t satisfies
the requirement ϕ. We are done if we show that there exists no interpretation
I ′ that satisfies ϕ and whose prefix until t coincides with the one of I. Assume,
for a proof by contraction, that such an I ′ exists. Then, since A represents ϕ,
A accepts ϕ. By the definition of acceptance, there exists a non-Zeno run r′ of
A that matches I ′. By Lemma 2, A is deterministic, i.e., r′ coincides with r for
the duration t, or: r is a prefix of r′. Thus, we have found a non-Zeno run of
A which has r as a prefix, which cannot exist by the assumption that r is an
unextendable run of A. ut

12

Algorithm 2 transform phase event automaton A to timed automaton S

if A has more than one initial location p0i then
add a new initial location, with an transition to every p0i

end if
normalize transitions such that each guard is a conjunct of literals
for all transitions (p, g,X, p′) of A do

if s(p) ∧ g ∧ (s(p′))′ is unsatisfiable then
remove this transition

end if
end for
remove unreachable locations
remove all literals from the guards except clock constraints
set all state invariants to true
for all transitions (p, g,X, p′) of A do

g := g ∧ timer > 0
X := X ∪ {timer}
for all constraints c ≤ k in I(p′) where c /∈ X do

g := g ∧ c < k
end for

end for

3.3 Characterizing rt-inconsistency via timed automata

From phase event automata to timed automata. Algorithm 2 transforms a phase
event automaton to a timed automaton. The transformation extends a similar
one in [8] which preserves reachability but not unextendability. The transfor-
mation introduces a special clock timer in order to capture the fact that, in a
phase event automaton, every location getting active has to stay active for a
non-zero period of time. The clock timer is reset when the location is entered,
and every outgoing transition must satisfy the guard that specifies timer > 0. To
prevent introducing artificial deadlocks, the new transformation strengthens the
guard of the outgoing transition with the strict inequality c < k derived from
the non-strict inequality c ≤ k in the clock invariant of the target location (thus,
after a transition, there is always some time left to stay in the target location).

Lemma 4. Every run of the phase event automaton A corresponds to a run of
the timed automaton S constructed from A (with the same sequence of locations
and clock valuations), and vice versa.

Deadlock. Following [2], a timed automaton S contains a deadlock if there is a
reachable state (p, γ) such that for all durations d > 0 there is no action successor
of (p, γ + d). In particular, the self-loop is not enabled. We will next character-
ize rt-inconsistency in terms of deadlocks, and thus obtain the correctness of
Algorithm 1.

Theorem 2 (Correctness). The timed automaton S constructed from the set
of requirements ϕ via the phase event automaton A and Algorithm 2 contains a
deadlock if and only if the set of requirements ϕ is rt-inconsistent.

13

Proof. “⇒” By Lemma 4, a run to a deadlock state (p, γ) in S corresponds to an
unextendable run in A to the same location p with the same clock valuation γ
without any further transition being possible (the successor would be reachable
in S as well). By Theorem 1, ϕ is rt-inconsistent.

“⇐” We assume that S is deadlock-free and show that ϕ is not rt-inconsistent.
By Theorem 1 it suffices to show that, for every finite run r of A, there is a non-
Zeno run r′ of A that extends r.

By Lemma 4, a finite run r of A corresponds to a run in the timed automata
S leading to some state (p, γ). We extend r by staying in p until the bound of its
invariant is reached (the clock invariants in S are non-strict by the construction).
If p has no bound, r′ can be chosen as the non-Zeno run which stays in p forever.
Otherwise, since S contains no deadlock, there must be an action successor from
p, at a different location whose time bound is not yet reached. The infinite
iteration of this reasoning leads to an infinite run in the timed automaton and,
again by Lemma 4, to an infinite run r′ in the PEA A. We need to show that r′

is non-Zeno.
Assume that there exists a time point, say, t, such that r′ never reaches t. If b

is the smallest among the bounds of all clocks in the invariant of some location in
S, then each location can be visited at most t/b times in r′ (since the location is
active until the clock reaches the bound and then the clock must be reset before
the location can be visited again). Since there are only finitely many locations
in S, r′ is a finite run. This is in contradiction to our construction of r′. Hence
there is no such time point t and r′ is a non-Zeno run. ut

4 Using rt-inconsistency in a case study

The goal of our experimental study is to evaluate the practical relevance of
rt-inconsistency. The primary question we need to investigate is whether the
property is useful to improve a requirement specification, namely by providing a
criterion that helps to differentiate good from bad, or desirable from undesirable
requirement specifications. According to our preliminary results, this is indeed
the case; see Table 1.

Table 1 refers to six examples from different automotive projects at BOSCH.
Each example is a set of real-time requirements for a single software component.
The specifics of the components are not relevant; hence we do not present them
and just number the examples from 1 to 6 (first column). The second column
refers to the number of requirements in the example. Each requirement specifica-
tion had previously undergone a thorough albeit informal review. We formalized
the requirements (i.e., we translated them to formal requirements as defined in
Section 2) in a somewhat lengthy process of iterations with feedback from the
responsible requirement engineers. We had the final formalization reviewed by a
requirements engineer.

As Table 1 shows, three out of the six examples have an error that is identi-
fiable as rt-inconsistency. I.e., for Components 1, 2, and 3, the rt-inconsistency
identifies an actual flaw in the requirement specification that needed to be re-

14

reqs TA nodes TA transitions {reqs} 7→TA UPPAAL rt-consistent? correction

1 9 900 69183 34s 37s no A:3, C:4

2 10 2520 418365 322s 28min 49s no A:4, C:4

3 10 895 36541 9.4s 1h 16min no A:7, D:2, C:5

4 13 28 310 1s < 1s yes —

5 16 27 729 6s < 1s yes —

6 17 1614 318267 160s n/a n/a n/a

Table 1: Checking rt-inconsistency for existing examples of sets of real-time require-
ments for software components in automotive projects at BOSCH using a prototypical
implementation (Fig. 3) of the algorithm presented in Section 2, on a PC Windows XP
system with 2GHz Intel Core 2 Duo processor and 1GB RAM, whereas only one core
was used. The examples are numbered from 1 to 6. The columns refer to: the size of the
input in the number of requirements, the number of nodes resp. the (much higher!) num-
ber of transitions of the timed automaton (TA) obtained by the automatic translation
of the set of requirements (via the translation to a phase event automaton), the time
used for the automatic translation, the time used by the timed model checker UPPAAL

for checking the existence of deadlocks in the timed automaton (where n/a here means
out-of-memory when loading the input), the outcome of the rt-inconsistency check, and
the cost of the correction of an rt-inconsistency (in the number of requirements that
were newly added (A), changed (C), and deleted (D), respectively).

paired. As the last column shows, major changes were needed to correct the
requirement specification. E.g., for Component 3, two of the existing require-
ments were deleted, five were changed, and seven new requirements were added.
If positive, the rt-inconsistency test returns a run of the time automaton that
is helpful for analyzing the error; yet, debugging the requirement specification
demands the help of a requirements engineer with domain knowledge and takes
a considerable amount of time (about half a day to one day per example for
debugging and fixing). Most of the detected flaws based on conflicts similar to
the conflict described in the example of Section 1.

The requirement specifications for Component 4 and Component 5 are ex-
amples for rt-consistency. Without these examples one might wonder if rt-
inconsistency implies a high degree of specificity (obtainable only through a
large number of precise requirements) which cannot be found in realistic exam-
ples. The examples, requirement specifications that are rt-consistent as is (i.e.,
not after a revision), indicate that this is not the case. For safety-critical sys-
tems (e.g., in the automotive domain), the high degree of specificity enforced by
rt-consistency seems appropriate.

In order to evaluate the practical relevance of rt-inconsistency, the second
question we need to investigate is whether the property can be checked on real-
istic examples automatically. For the purpose of proof of concept, we have im-
plemented the algorithm presented in Section 3; see Figure 4. Our prototypical,
non-optimized implementation relies on existing tool kits [8, 2] for implementing
three procedures called by the algorithm: the translation of a set of requirements

15

{reqs} translation
{reqs} 7→ PEA

translation
PEA 7→ TA

TA
deadlock-

free?

“rt-consistent”

“rt-inconsistent”
run to deadlock in TA

PEA Toolkit [8] Algorithm 2 UPPAAL [2]

yes

no

Fig. 4: Prototype implementation of Algorithm 1 for checking rt-inconsistency of
a set of requirements, with modules using tools for phase event automata (PEA)
resp. timed automata (TA).

to a phase event automata (req2pea), the translation of a phase event automaton
into a timed automaton (pea2ta), the check for the existence of deadlocks in a
timed automaton. The results of our experiments (see Table 1) show that in five
out of six examples, the algorithm is able to automatically prove resp. disprove
rt-inconsistency. The examples are relatively small but they are realistic (and
apparently so complex that a manual review is no longer sufficient). The results
indicate that checking rt-inconsistency automatically is feasible in principle.

As one could expect by the theoretical complexity of the algorithm, the check
does not succeed for every input (and, as often with the automatic analysis
tools, the size of the input does not necessarily correlate with the difficulty of its
analysis for the tool). In the sixth example, UPPAAL runs out of memory when
loading the timed automaton generated from the phase event automaton in this
example. We still need to analyze the cause (which is not solely the size of the
input), but it is clear that UPPAAL is not optimized for the timed automata
generated in this setting; in the examples of Table 1, the number of transitions
is two orders of magnitude larger than the number of nodes.

An experimental study is incomplete (and somewhat unsatisfying) if it does
not expose deficiencies of the evaluated concepts (and opportunities for improve-
ment). The sixth example shows that the state explosion problem occurs not only
in theory, but also in practice.

Furthermore, the case study shows that the state explosion is not directly
related to the number of requirements: although Component 4 and Compo-
nent 5 consist of more requirements than the first three components the num-
ber of nodes and transitions of A is much smaller for Component 4 and 5.
This is due to the fact that not all requirements blow up the state space ex-
ponentially. There are also requirements that solely constrain the state space
and thus reduce the number of states, e.g., a requirement like “If IRTest
holds, then Diagnosis.Running holds as well” forbids every state in which holds
IRTest ∧ ¬Diagnosis.Running.

5 Conclusion and future work

We have introduced rt-inconsistency, a new property of requirements for real-
time systems. We have shown that it has an interesting practical potential for

16

unambiguously identifying subtle timing errors in a requirements specification.
We have presented an algorithm to check rt-inconsistency automatically. We
have implemented the algorithm to demonstrate its feasibility in principle, by
applying it to prove the absence resp. presence of rt-inconsistency in a number of
existing requirement specifications in automotive projects. Our experiments dis-
covered previously unknown errors in some of those specifications, errors which
got subsequently repaired.

As already mentioned, one line of future work is to adapt heuristics and opti-
mizations from real time model checking to checking rt-inconsistency. Another,
more speculative line of research are methods to automatically correct (or help
to correct) an rt-inconsistent set of requirements, possibly using algorithms from
real-time synthesis [4].

References

1. M. Abadi and L. Lamport. An old-fashioned recipe for real time. In Proceedings
of the Real-Time: Theory in Practice, REX Workshop, pages 1–27, London, UK,
1992. Springer-Verlag.

2. G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL. 2004.
3. A. G. Dahlstedt and A. Persson. Requirements interdependencies - moulding the

state of research into a research agenda. In REFSQ, pages 71–80, 2003.
4. R. Ehlers, R. Mattmüller, and H.-J. Peter. Combining symbolic representations

for solving timed games. FORMATS, pages 107–121, 2010.
5. J. H. Hayes. Building a requirement fault taxonomy: Experiences from a NASA

verification and validation research project. In ISSRE, 2003.
6. M. P. E. Heimdahl and N. G. Leveson. Completeness and consistency analysis of

state-based requirements. In IEEE Trans. on SW Engineering, pages 3–14, 1995.
7. C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency check-

ing of requirements specifications. ACM Trans. on SW Eng. and Methodology,
5(3):231–261, 1996.

8. J. Hoenicke. Combination of Processes, Data, and Time. PhD thesis, University
of Oldenburg, July 2006.

9. IEEE. Recommended Practice for Software Requirements Specifications. 1998.
10. N. G. Leveson. System safety in computer-controlled automotive systems. In SAE

World Conference, 2000.
11. R. Meyer, J. Faber, J. Hoenicke, and A. Rybalchenko. Model checking duration

calculus: a practical approach. Formal Asp. Comput., 20(4-5):481–505, 2008.
12. G. S. Walia and J. C. Carver. A systematic literature review to identify and classify

software requirement errors. Inf. Softw. Technol., 51(7):1087–1109, 2009.
13. L. Yu, S. Su, S. Luo, and Y. Su. Completeness and consistency analysis on re-

quirements of distributed event-driven systems. In TASE, 2008.
14. C. Zhou and M. Hansen. Duration Calculus: A Formal Approach to Real-Time

Systems. Springer-Verlag, 2004.
15. C. Zhou, C. Hoare, and A. Ravn. A calculus of durations. IPL, 1991.

