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Abstract—We introduce the property of vacuity for require-
ments. A requirement is vacuous in a set of requirements if it is
equivalent to a simpler requirement in the context of the other
requirements. For example, the requirement “if A then B” is
vacuous together with the requirement “not A”. The existence
of a vacuous requirement is likely to indicate an error. We give
an algorithm that proves the absence of this kind of error for
real-time requirements. A case study in an industrial context
demonstrates the practical potential of the algorithm.
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I. Introduction

In this paper we propose a new property to ensure the
quality of a set of real-time requirements. We denote that
property vacuity. The property reflects that we want to
ensure that there exists a system such that every requirement
is non-vacuously satisfied in the system.

The notion of customary consistency (there exists a
system that satisfies the requirements [1]) is too weak to
ensure this. For certain sets of requirements, every system
satisfying all requirements satisfies at least one requirement
only vacuously. For example, consider the following two
requirements:

• Req1: If ButtonPressed holds for more than 5 seconds
then it is never the case that AssistFunction stays turned
off for more than 10 seconds.

• Req2: It is never the case that ButtonPressed holds for
more than 3 seconds.

The set of the two requirements is consistent (one can find
systems that satisfy both requirements). However, a closer
inspection of the requirements shows that the requirements
are in conflict. Because of Req2 the precondition of Req1
never holds, i. e., the postcondition of Req1 does not have
to come to pass. Thus, in any system satisfying both
requirements Req1 is only vacuously satisfied. The set of
requirements, while consistent, is vacuous!

One way to resolve the partial inconsistency is to delete
Req2 or to change it to the weaker requirement Req′2.

• Req′2: Before S tartup holds, it is never the case that
ButtonPressed holds for more than 3 seconds.

This way, after S tartup, ButtonPressed may hold for more
than 5 seconds, thus the precondition of Req1 (and therefore
also its postcondition) may hold in this time slot.

We think that vacuities frequently occur in the process
of requirements elicitation. Most of these vacuities are
resolved in manual reviews. However, one may never be sure
that all vacuities are resolved without an automatic check.
Thus, in this paper, we propose a definition for vacuity
of requirements and an algorithm to automatically check a
set of requirements for vacuity. We evaluate the practical
potential of the algorithm in a case study over more than
200 requirements taken from 10 components of automotive
Bosch projects. Our case study shows that such a check is
beneficent. Although one component was not tractable by the
current implementation, we could ensure that 8 components
had no vacuity and we discovered one vacuity.

Note that the concept of vacuity is related to the work
of [2], [3], [4]. In our example, the two requirements are
vacuous as in the context of Req2 the precondition of Req1 is
never satisfied, i. e., Req1 is only trivially valid. The problem
of a trivially valid formula was first noted by Beatty and
Bryant [2], who termed it antecedent failure. Antecedent
failure means that a formula is trivially valid because the pre-
condition (antecedent) of the formula is not satisfiable in a
given model. This idea was then further developed by [3], [4]
and renamed to vacuous satisfiability. However the concept
of antecedent failure and vacuous satisfiability was always
used with respect to model checking. They check whether a
given implementation satisfies the requirements in a vacuous
way. In contrast we work solely on the requirements set: we
investigate whether a set of requirements is vacuous in the
sense that in any implementation satisfying the requirements
at least one requirement is only vacuously satisfied. Another
difference is that the earlier work bases on qualitative
temporal logics LTL/ACTL, whereas we define vacuity first
independently of any logic and then for a Duration Calculus
fragment.

II. Defining vacuity

First, we define vacuity in an abstract way, i. e., indepen-
dently of any logic. After that we instantiate the definition
for requirements formalized in Duration Calculus.



A. Abstract definition of vacuity

To define vacuity we need to define a relation simpler
between requirements. The definition may be purely syntac-
tical, e. g., for a requirement formalized in a formula ϕ one
might define that a requirement ϕ̃ is simpler than ϕ if it is a
subformula of ϕ. We write ϕ̃ ≺ ϕ to denote that ϕ̃ is simpler
than ϕ.

Consider the requirement Req1 of Section I, which can be
restated as

• Req1: It is never the case that ButtonPressed holds
for more than 5 seconds and then AssistFunction stays
turned off for more than 10 seconds.

One might define “simpler” in such a way such that the
following requirements are all simpler than Req1:

• Req′1: It is never the case that ButtonPressed holds
for more than 5 seconds and then AssistFunction stays
turned off.

• Req′′1 : It is never the case that ButtonPressed holds for
more than 5 seconds.

• Req′′′1 : It is never the case that ButtonPressed holds.

In the following, we assume that there is a given definition
of “simpler” requirements. Note that we only require a
syntactical definition. Thus ϕ̃ ≺ ϕ does not imply that the
requirement ϕ̃ is strictly stronger than ϕ in a semantical way,
i.e., (ϕ̃ ≺ ϕ); (ϕ̃⇒ ϕ ∧ ϕ; ϕ̃).

Consider a set of requirements Φ (i. e., a conjunction of
requirements Φ =

∧n
i=1 ϕi) and a separate requirement ϕ. Say

there is a requirement ϕ̃ that is simpler than the requirement
ϕ and in the context of the set of requirements Φ both
requirements ϕ and ϕ̃ are equivalent. This means that in
the context of Φ both requirements are exchangeable. Then
the question arises, why the requirements engineer did not
choose the simplest requirement.

Consider the example from the introduction. Req2 states
that ButtonPressed never holds for more than 3 seconds.
Thus, Req2 implies that the simpler requirement Req′′1 holds
as well — as ButtonPressed does not hold for more than 3
seconds, it does not hold for more than 5 seconds as well.
Thus, in the context of Req2 the precondition of Req1 never
holds, i.e. the second part “and then AssistFunction stays
turned off for more than 10 seconds” is useless. We assume
that a requirements engineer specifies only requirements
with behavior that shall be visible in a system, thus we
assume that there is an error in the requirements and call
Req1 vacuous with the set of requirements containing Req2.

Definition 1 (vacuity of a requirement ϕ in a set Φ): A
requirement ϕ is vacuous in Φ if there is a requirement
ϕ̃ that is simpler than ϕ (i. e., ϕ̃ ≺ ϕ) and in the context
of Φ the requirements ϕ and ϕ̃ are equivalent (i. e.,
Φ⇒ (ϕ⇔ ϕ̃)).

A set of requirements is vacuous if any of its requirements
is vacuous in the set of remaining requirements.

Definition 2 (vacuity of a set of requirements Φ): A set
of requirements Φ =

∧n
j=1 ϕ j is vacuous if there is a

requirement ϕi that is vacuous in
∧

j,i ϕ j.

B. Instantiated definition of vacuity

A convenient way to obtain a suitable formalization of
requirements is to borrow the notation of the Duration
Calculus [5], [6], [7]. Before we introduce the formal
syntax of our class of real-time requirements, we will derive
the formalization of the example requirement Req1 from
Section I. We first restate Req1 in a less ambiguous form.
• Req1: It is never the case that ButtonPressed holds for

more than 5 seconds (while AssistFunction does not
already hold) and then AssistFunction stays turned off

for more than 10 seconds.
Then, we introduce the two predicates ButtonPressed and

AssistFunction (with their obvious meaning) and reformulate
Req1 as follows.
• Req1: For any run of the system, it must not be the

case that there are time points t1 < t2 < t3, such that
ButtonPressed is true between t1 and t2, AssistFunction
is false between t1 and t3, the length of the interval
[t1, t2] is greater than 5 seconds, and the length of the
interval [t2, t3] is greater than 10 seconds.

Equivalently, for any run of the system, it must not be
possible to split the time axis into four consecutive phases
where:

1) the first phase (from time point 0 to t1) does not
underlie any constraint,

2) the second phase (from time point t1 to t2) under-
lies the constraint that ButtonPressed is true and
AssistFunction is false and its length (the difference
between t1 and t2) is greater than 5,

3) the third phase (from time point t2 to t3) underlies the
constraint that AssistFunction is false and its length is
greater than 10,

4) the fourth phase (from time point t3 until infinity) does
not underlie any constraint.

In formal syntax, the requirements Req1 and Req2 are
expressed as the formulas ϕ1, ϕ2 below. Here the symbol
“¬ ” denotes negation, the symbol “ ; ” separates two phases,
the phase “dPe” refers to a nonzero-length period of time
during which the predicate P is satisfied, adding the conjunct
“` > k” to a phase means that its length is strictly greater
than the constant k, and the constant phase “true” refers to a
period of time during which the behavior does not underlie
any constraint (and which is possibly of zero length).
• ϕ1 = ¬(true; dButtonPressed∧¬AssistFunctione ∧ ` > 5;
d¬AssistFunctione ∧ ` > 10 ; true)

• ϕ2 = ¬(true ; dButtonPressede ∧ ` > 3 ; true)
Syntax: Formally, the syntax of phases π and re-

quirements ϕ is defined by the BNF below. The predicate
symbol P is a propositional formula over a fixed set Preds



of predicate symbols (for observations whose truth values
change over time). Optionally, the duration ` of a phase can
be bounded by a timing bound k ∈ N+. The correctness of
the algorithm presented in this paper relies on the fact that
we have only strict inequalities (` > k or ` < k). An ex-
tension to non-strict inequalities unnecessarily complicates
the algorithm and the proof of correctness, without being
motivated by practical examples.

requirement ϕ ::= ¬ (π1 ; . . . ; πm ; true)
phase π ::= true | dPe | true ∧ ` ∼ k | dPe ∧ ` ∼ k

∼ ::= < | >

We denote with Φ the conjunction of the requirements, i. e.,
Φ =
∧n

i=1 ϕi.
Interpretation I: Avoiding the confusion about the

different meanings of other terms in the literature, we use
the term interpretation to refer to a mapping that assigns
to each time point t on the time axis (i. e., each t ∈ R≥0)
an observation, i. e., a valuation of the family of given
predicates P.

I : R≥0 → {true, f alse}Preds , I(t)(P) ∈ {true, f alse}

We use “segment of I from b to e” and write “(I, [b, e])” for
the restriction of the function I to the interval [b, e] between
the (“begin”) time point b and the (“end”) time point e.

Satisfaction of a requirement by an interpretation: We
first define the satisfaction of a requirement by a segment
of an interpretation, (I, [b, e]) |= ϕ.

(I, [b, e]) |= dPe if I(t)(P) is true for almost all
t ∈ [b, e] and b , e

(I, [b, e]) |= ` ∼ k if (e − b) ∼ k

(I, [b, e]) |= π1 ; π2 if (I, [b,m]) |= π1 and
(I, [m, e]) |= π2 for some m ∈ [b, e]

We can then define the satisfaction of a requirement by a
(‘full’) interpretation.

I |= ϕ if (I, [0, t]) |= ϕ for all t

That is, an interpretation I satisfies the requirement ϕ if
every prefix of I does (i. e., if for every time point t, the
segment of I from 0 to t satisfies ϕ).

Characterization of “simpler”: We obtain a simpler
requirement ϕ̃ from a requirement ϕ by omitting a sequence
of phases of ϕ beginning on the right, and optionally
omitting the time bound of the new last phase.

Definition 3 (simpler requirement): Given a requirement
ϕ = ¬(π1; . . . ; π j; . . . ; πm; true), a requirement ϕ̃ is simpler
than ϕ, denoted as ϕ̃ ≺ ϕ, if ϕ̃ is not syntactically equal to
ϕ and

ϕ̃ = ¬(π1; . . . ; π j−1; π̃ j; true), where 1 ≤ j ≤ m and
π̃ j = π j or (̃π j = dPe and π j = dPe ∧ ` ∼ k).

Note that this is a purely syntactical definition, thus for a
given requirement ϕ and a simpler requirement ϕ̃ the simpler
ϕ̃ may be semantically equivalent to ϕ. A requirement like,
e. g., ¬(dPe; dPe; true) is equivalent to its simpler require-
ment ¬(dPe; true). In that case the requirement is vacuous
in every context. Also note that the definition implies that
the simpler ϕ̃ is stronger than ϕ, i. e., ϕ̃⇒ ϕ.

Vacuity: Using the simpler relation from above, vacuity
is defined as in Section II-A.

III. Checking vacuity

In this section we present an algorithm (Algorithm 1)
to check whether a set of requirements Φ is vacuous. To
simplify the presentation we assume that Φ is consistent. We
have implemented the check for consistency, not presented
here, and use it as a preliminary step in our experiments.

A set of requirements Φ is vacuous if it contains a
requirement ϕi that is vacuous in Φ′ =

∧
i, j ϕ j, i. e., if

in the context of Φ′ the requirement ϕi is equivalent to a
simpler requirement ϕ̃i ≺ ϕi. The idea of the algorithm is to
solve the problem on an automaton-representation. To do so
we construct a certain kind of automaton, a so-called phase
event automaton (PEA), from every ϕi in Φ.

The algorithm then exploits three properties of this con-
struction. First, we construct for every ϕi an automaton Ai

that represents ϕi, i. e., Ai has a run if and only if ϕi has
a matching interpretation. Second, the parallel product of
the automata represents the conjunction of the requirements,
i. e., the parallel product A = ||ni=0Ai has a run if and only
if Φ =

∧n
i=0 ϕi has a matching interpretation. Third, every

location in Ai is labeled by the set of phases of ϕi that were
observed when reaching this location, i. e., index j is in the
set phases of a location if and only if the automaton (being
in this location) has observed the requirement’s first j phases
including the j-th phase.

Figure 1 presents the intermediate results of the different
steps of the application of Algorithm 1 to the set of require-
ments Φ = ϕ1 ∧ ϕ2, where ϕ1, ϕ2 are defined in Section II.
For the sake of readibility we abbreviated ButtonPressed
as B and AssistFunction as A. Algorithm 1 transforms the
requirements ϕ1 and ϕ2 into the phase event automata A1 and
A2 in Figure 1a resp. Figure 1b. It labels every location with
a set phases, depicting the observed phases in this location.
E.g., in location p3 of A1 the automaton observes the phase
π1 = true and the phase π3 = d¬AssistFunctione ∧ ` > 10.
Since π3 has a time bound, we need to differentiate two
cases: either AssistFunction held for more than 10 seconds
or AssistFunction holds for at most 10 seconds (and the
clock c measures the duration it held). If the time bound is
not already satisfied, then we denote that with a superscript
“>” on the corresponding phase. Thus, the phase labeling
of p3 contains the phases 1 and 3>. In the next step, the
algorithm computes maxPhase(ϕi), which denotes the phase
before the last phase in ϕi, i. e., maxPhase(ϕ1) = 3> and



p0
{1}

A∨¬B

p1
{1,2>}
¬A∧B
c1≤5

p2
{1,2,3>}
¬A∧B
c2≤10

p3
{1,3>}
¬A∧¬B
c2≤10

p4
{1,2>,3>}
¬A∧B

c1≤5∧c2≤10

c1:=0

A′ c1≥5
c2:=0

A′

c1:=0 c1≥5
A′

(a) phase event automaton A1 for the requirement
ϕ1 = ¬(true ; dB∧ ¬Ae ∧ ` > 5 ; d¬Ae ∧ ` > 10 ; true)

p0
{1}
¬B

p1
{1,2>}

B
c3≤3

c3:=0

(b) phase event automaton A2
for the requirement ϕ2 =
¬(true ; dBe ∧ ` > 3 ; true)

(p0,p1)
({1},{1,2>})

A∧B
c3≤3

(p0,p0)
({1},{1})
¬B

(p1,p1)
({1,2>},{1,2>})
¬A∧B

c1≤5∧c3≤3

(p2,p1)
({1,2,3>},{1,2>})

¬A∧B
c2≤10∧c3≤3

c3:=0

c1:=0
c3:=0

c1:=0

c1≥5
c2:=0

A′

(c) phase event automaton A = A1 ||A2. The dashed part is not
reachable, since in (p1, p1) it holds that c1 ≤ c3 ≤ 3.

Figure 1. Algorithm 1 applied to the set of the requirements ϕ1 and ϕ2 from Section II. Algorithm 1 constructs the phase event automata A1 and A2,
forms their parallel product A = A1 ||A2, and checks for locations containing maxphase(ϕ1) = 3> resp. maxPhase(ϕ2) = 2>. Since these locations exist the
algorithm checks for both components whether such a location is reachable. For Component 1, it observes that no such location is reachable (note that
location (p2, p1) is not reachable), thus it deduces that the set of requirements is vacuous.

maxPhase(ϕ2) = 2. Here, 3> and 3 are separate phases and
3> comes before 3. The phase maxPhase(ϕi) is the last phase
of ϕi where ϕi is not violated.

The algorithm then forms the parallel product A = A1 ||

A2 (given in Figure 1c) and checks whether the phases
maxPhase(ϕ1) and maxPhase(ϕ2) occur in the labelings of
locations in A. In this example A still contains locations
labeled with these phases. However, a closer look shows
that some of these locations are not reachable in any run.
In location (p1, p1) the value of clock c5 is always less
than or equal to c3. Hence, the clock c5 can never reach
a value greater than 3 and the location (p2, p1) and all other
locations (which we omitted in the figure) with 2 or 3> in
the first component of the phase labeling are not reachable.
This means that in the context of Φ the formula ϕ̃1 ≺ ϕ1
where phase π3 is omitted is equivalent to ϕ1. Thus, the
algorithm returns that Φ is vacuous.

A. Phase Event Automata

We will use phase event automata as a means to define
sets of interpretations I (i. e., mappings from time points
to valuations of predicates). We base our work on the
definitions by [8], [7]. Syntactically, a phase event automaton
resembles a timed automaton [9] in that it has the same
notion of clocks; semantically, there are differences such as
in the minimal duration between transitions. For a set of
variables V , we use V ′ for the set of their primed versions
(which stand, as usual, for the value of the corresponding
variable in a successor state after a transition). We use L(V)

to denote the set of formulae with free variables in V .

A phase event automaton (PEA) is a tuple

A = (P,V,C, E, s, I, P0) where

• P is a set of locations p (phases),
• C is a set of clocks c,
• V is a set of Boolean variables (observation predicates),
• E is a set of transitions of the form (p, g, X, p′) where

p, p′ ∈ P specify the from- and to-locations, the guard
g is a formula in the unprimed clock variables and in
the unprimed and primed Boolean variables (g specifies
also the updates of Boolean variables), and X is the set
of clocks that are reset to 0; E ⊆ P × L(C ∪ V ∪ V ′) ×
2C × P,

• the mapping s assigns each location p its state invariant
which is stated as a formula in the Boolean variables,
i. e., s : P→ L(V),

• the mapping I assigns each location p its clock invariant
which is stated as a formula in the clocks, more
precisely a conjunction of inequalities c ≤ k or c < k
with c ∈ C and k ∈ R≥0, i. e., I : P→ L(C),

• P0 is the set of initial locations, i. e., P0 ⊆ P.
We use runs to describe the operational semantics of a PEA.
A run r is a (finite or infinite) sequence of quadruples
(p, β, γ, t) consisting of a location p, a valuation of the
Boolean variables β : V → {true, f alse}, a valuation of the
clocks γ : C → R≥0, and a non-zero duration t (the amount
of time spent in the location p), i. e., t > 0.



Given the PEA A of the form above, r is a run of A if
it starts in an initial location with clock values 0, and for
each quadruple (p, β, γ, t) in r, the valuation of variables β
satisfies the state invariant of location p (i. e., β |= s(p)), the
clock valuation γ satisfies the clock invariant at location p
during the whole duration t (i. e., γ+ t |= I(p)), and for each
pair of consecutive quadruples (p, β, γ, t) and (p′, β′, γ′, t′),
the valuations satisfy the guard and the update constraint of
a transition in E of the form (p, g, X, p′), i. e., (β, β′, γ+t) |= g
(where β′ is applied to the primed variables in g) and γ′(c)
is 0 if c ∈ X and γ(c) + t otherwise. The duration of a run
r is the sum of the durations t in its quadruples. We denote
the set of all runs of A by Run(A).

Interpretations accepted by A, L(A): A run r matches
an interpretation I if for almost all time points t, the value
of I coincides with the valuation β in the quadruple of r
that corresponds to time t, i. e., the last quadruple such that
the sum of durations of all quadruples preceding it in r is
smaller than t. We omit the cumbersome formal definition.
For every run r of a phase event automaton A there exists
an interpretation I such that r matches I.

An interpretation I is accepted by A, formally I ∈ L(A),
if there is a run r of A that matches I. The prefix of the
interpretation I until the time point t is accepted by A,
formally (I, [0, t]) ∈ L(A), if there is a run r of A with
duration t that matches (I, [0, t]).

A phase event automaton A represents a requirement ϕ
if it accepts exactly the interpretations that satisfy ϕ, i. e.,
I ∈ L(A) if and only I |= ϕ. Given two PEAs A1 and
A2 representing the requirements ϕ1 resp. ϕ2, their parallel
product A1 || A2 (defined in the canonical way) represents
their conjunction ϕ1 ∧ ϕ2.

Phase labeling of A: Phase event automata constructed
according to the algorithm given in [8] have a phase labeling
assigning to each location p a set phases(p). For a PEA Ai

representing a requirement ϕi, phase j is in the set phases(p)
if and only if the automaton (being in location p) has
observed the requirement’s first j phases including the j-th.
If the j-th phase has an lower time bound ` > k and that time
bound is not yet satisfied, phases(p) contains the element j>

instead. Thus, the elements in phases(p) come from the set
Phases = {1>, 1, . . . ,m>}). For a parallel product of automata
A = ||ni=1Ai, the labeling phases assigns to a location p ∈ P
of the automaton a tuple of sets of phases, e. g., in Figure 1c
phases(p0, p1) = ({1}, {1, 2>}).

The function maxPhase assigns to each a requirement ϕ
the index of the last reachable phase, i. e., for a requirement
ϕ = ¬(π1, . . . , πm, true),

maxPhase(ϕ) :=

m> iff πm has an lower time bound
m − 1 otherwise

In our running example we have maxPhase(ϕ1) = 3> and
maxPhase(ϕ2) = 2>.

B. General idea

Consider a requirement ϕ0 = ¬(π1; π2; . . . ; πm; true). In
the corresponding automaton A0 no location is labeled with
the phase m, since reaching this location would indicate
that the requirement is not satisfied. Hence, the maximum
phase label that may occur in A0 is either m> (if πm

has a lower bound ` > k) or m − 1 (otherwise). Further,
the automaton Ã0 representing the simpler requirement
ϕ̃0 := ¬(π1; π2; . . . ; πm−1; true), is a subgraph of A0, i. e., Ã0
contains all locations of A0 that cannot observe the m− 1-th
phase. Moreover Ã0 contains the same transitions between
these locations as A0, the same guards, invariants, etc. It only
differs from A0 in that all locations labeled with m − 1 and
all transitions to these locations are removed. Similarly, the
automaton implementing a simpler requirement ϕ̃0 where
only the time bound of the last phase is omitted is also
a subgraph of A0. It contains all locations of A0 except
the locations p that contain m> in the phase labeling. This
property is illustrated in Figure 2.

Now suppose that in some parallel product A0 || A where
A represents a set of requirements Φ, no location with
maxPhase(ϕ0) is reachable. Let Ã0 be the subautomaton
of A0 where all locations containing maxPhase(ϕ0) are re-
moved. Then Ã0 is the automaton for a simpler requirement
ϕ̃0 ≺ ϕ0. The parallel product Ã0 || A is equivalent to A0 || A,
since it contains the same reachable locations and transitions.
Hence, ϕ̃0 and ϕ0 are equivalent in the context of Φ.

We use this property to check whether a requirement ϕ0 is
vacuous in Φ. Let A0 and A be the automata corresponding
to ϕ0 and Φ. Then ϕ0 is vacuous to Φ, if no location labeled
with maxPhase(ϕ0) is reachable in the product automaton
A0 || A. So we can check incongruity with a reachability
analysis on a timed automaton.

C. Algorithm

In our setting we check incongruity for a set of require-
ments Φ =

∧n
i=1 ϕi. Each requirement is translated to an

automaton Ai and A = ||ni=1Ai is the parallel product of these
automata. After building the parallel product, Algorithm 1
computes for each property ϕi the locations that contain
the maximum phase of that property, maxPhase(ϕi). If such
locations exists, then it checks whether one of the locations
is indeed reachable using Procedure 2. this is not the case,
the property ϕi is reported as vacuous in Φ.

The procedure Reachable(A, locs) is needed because the
PEA-construction algorithm [8] executes no reachability-
analysis itself. Although it deletes transitions with unsatisfi-
able guards and locations that are not reachable from a start
location in the PEA interpreted as graph, it does not check
whether the locations are really reachable in a run. However,
a PEA might contain locations that are reachable in the
graph, but not in a run, e.g., a PEA as depicted in Figure 1c.
Thus, to make sure that a location with maxPhase(ϕi) in the
phase labeling is in fact reachable, we use Procedure 2.



ϕ0 = ¬( true︸︷︷︸
π1

; dPe︸︷︷︸
π2

; dT e ∧ ` > 10︸         ︷︷         ︸
π3

; true)

ϕ̃0 = ¬( true︸︷︷︸
π1

; dPe︸︷︷︸
π2

; dT e︸︷︷︸
π̃3

; true)

p1
{1, 2}

P ∧ ¬T

p0
{1}
¬P

p3
{1, 3>}
¬P ∧ T
c1 ≤ 10

p2
{1, 2, 3>}

P ∧ T
c1 ≤ 10

˜̃ϕ0 = ¬( true︸︷︷︸
π1

; dPe︸︷︷︸
π2

; true)

true

true

¬T ′

true

true

true

c1 := 0

true

true

¬T ′

¬T ′

true

c1 := 0

true

Figure 2. The corresponding automata of simpler requirements are subgraphs of the automaton representing the original requirement ϕi

IV. Proof of correctness

To prove the correctness of our algorithm, we need
to show that if a requirement ϕi is vacuous in a set of
requirements Φ then the parallel product Ai || A contains
no reachable location p with maxPhase(ϕi) ∈ phases(p)[i]
where Ai represents ϕi and A represents Φ. To do so we
first recall from [8] that (1) there is an algorithm that
correctly constructs a phase event automaton representing
a requirement ϕ and (2) the phase labeling of this algorithm
is correct.

Lemma 4.1: Given a requirement ϕi the algorithm given
in [8] constructs a deterministic PEA representing the re-
quirement.

The proof is given in [8]. The idea of this algorithm is
similar to the power set construction of a deterministic finite
automaton from a nondeterministic one. A nondeterministic
PEA that accepts a sequence (π1; . . . ; πm; true) can be con-
structed by introducing a location labeled with j for each
phase π j of the requirement that ensures that the predicate of
π j holds. For a location with a lower bound another location
labeled with j> is introduced before location j. This observes

the timing constraint and enters the next location when the
bound is satisfied. The location labeled with j> is not really
necessary but simplifies the construction of the deterministic
automaton. A location labeled with j is reached in a run if
there is an interpretation that fits to the run and that satisfies
π1; . . . ; π j. The final location is accepting and is never left.

The PEA for the requirement ϕ = ¬(π1; . . . ; πm; true) is
constructed by determinizing the nondeterministic automa-
ton and removing all accepting states (as these violate the
requirement). Since the locations of the nondeterministic
automaton are labeled by the phases, the locations of the
deterministic automaton are then labeled with sets of phases.
More precisely, the phase labeling of the location p that the
automaton visits at time t in a run contains those phases j
of the requirement for which the matching interpretation in
the interval [0, t] satisfies (π1; . . . ; π j). Thus, whenever the
automaton has detected a prefix of the requirement up to a
certain phase then the corresponding index is in the phase
labeling of the current location.

The usage of dense time in the automaton complicates the
power set construction. Also for general timed automata,



Algorithm 1 vacuity check on Φ =
∧n

i=1 ϕi

for all i = 1, . . . , n do
ϕi 7→ Ai

A := A || Ai

end for
for all i = 1, . . . , n do

/* Collect locations in A with maxPhase(ϕi) ∈ phases*/

locs := ∅
for all locations p of A do

if maxPhase(ϕi) ∈ phases(p)[i] then
locs := locs ∪ {p}

end if
end for
/* Check if they exists and are reachable */

if locs = ∅ ∨ ¬Reachable(A, locs) then
return “requirement ϕi is vacuous in Φ”

end if
end for
return “Φ is non-vacuous”

Procedure 2 Reachable(A, locs)
for all locations p ∈ locs do

if exists run in A visiting location p then
return true

end if
end for
return false

determinization is impossible since there is no way to
represent a set of clock values. However, for the restricted
language of requirements the construction is feasible and the
details are in [8].

A. correct labeling

In its locations the automaton needs to remember dis-
crete parts of the real-time behavior, i. e., if the automaton
detected a prefix of the requirement up to a phase and
whether the lower bounds of the duration have passed. We
differentiate two cases:

Lemma 4.2: Given a requirement ϕ = ¬(π1; . . . ; πm; true)
the algorithm given in [8] determines a phase labeling for
the PEA representing ϕ, such that:
• The index j is in the phase labeling of the current

location if and only if the automaton has detected a
prefix π1; . . . ; π j of the requirement up to the j-th phase.

• The index j> (“>” indicates that a time bound ` > k of
phase j has not already elapsed) is in the phase labeling
if the automaton has detected a prefix π1; . . . ; π̃ j of the
requirement up to the j-th phase, and the j-th phase has
a lower time bound (π j = π̃ j ∧ ` > k), and the clock
measuring the duration of the last phase has not yet
reached the lower bound k.

In the second case a corresponding clock measures the
duration of the phase and as soon as the lower bound is
reached, a new location is entered, where “ j>” in the phases-
labeling is replaced with “ j”. The proof of Lemma 4.2 is
given in [8] in Lemma 5.15 and 5.17.

B. Reachability of locations with maxPhase(ϕ0) ∈ phases

Our algorithm checks vacuity by determining reachability
of phases that contain maxPhase(ϕ0) for some property ϕ0
in their labeling. This is justified by the following lemma.

Lemma 4.3: Given requirements ϕ0,Φ and their repre-
senting automata A0, A, the automaton A0‖A contains a
reachable location (p0, p) with maxPhase(ϕ0) ∈ phases(p0)
if and only if ϕ0 is non-vacuous in Φ.

Proof: “⇒”: Assume that a location (p0, p) with
maxPhase(ϕ0) ∈ phases(p0) is reachable in A0‖A, i. e., there
is a run reaching that state. Because of Lemma 4.1 there
is a matching interpretation I that satisfies ϕ0 and Φ. Be-
cause of Lemma 4.2 this interpretation satisfies the formula
π1; . . . ; πm−1; π̃m if maxPhase(ϕ0) = m>, resp. π1; . . . ; πm−1 if
maxPhase(ϕ0) = m − 1. Thus for every ϕ̃0 ≺ ϕ0 the formula
¬ϕ̃0 is satisfied by this interpretation. Hence φ⇒ (ϕ0 ⇒ ϕ̃0)
is not valid.

“⇐”: Let ψ = π1; . . . ; πm−1 if maxPhase(ϕ0) = m− 1 resp.
ψ = π1; . . . ; πm−1; π̃m if maxPhase(ϕ0) = m>. Further, let
ϕ̃0 = ¬(ψ; true), then ϕ̃0 ≺ ϕ0. If ϕ0 is non-vacuous in Φ then
we have that Φ⇒ (ϕ0 ⇒ ϕ̃0) is not valid (obviously ϕ̃0 ⇒ ϕ0
holds). Hence, there is an interpretation that satisfies Φ, ϕ0
and ¬ϕ̃0. A prefix of this interpretation satisfies ψ. Because
of Lemma 4.1 there is a run in A0‖A matching this prefix.
This run leads to a location (p0, p). By Lemma 4.2 we have
maxPhase(ϕ0) ∈ phases(p0).

C. vacuity detection on PEA

Theorem 4.4: Algorithm 1 correctly calculates for a set
of requirements Φ whether Φ contains a requirement ϕi that
is vacuous in the other requirements

∧
i, j ϕ j.

Proof: As described in Section III-A, it holds that the
parallel product A = ||ni=1Ai represents a set of requirements
Φ =

∧n
i=1 ϕi [8]. With Lemma 4.3 Φ is non-vacuous if

for all Ai there is a reachable location p in A such that
maxPhase(ϕi) ∈ phases(p)[i]. This property is checked in
the last if-statement. Thus, Algorithm 1 is correct.

V. Case study: evaluation of the benefit of vacuity

The goal of our experimental study is to evaluate the
practical relevance of vacuity. The primary question we need
to investigate is whether the property is useful in terms of
quality assurance for requirements resp. discovery of subtle
specification errors. According to our preliminary results,
this is indeed the case; see Table I.

To allow the experimental study we implemented Algo-
rithm 1 in Java as depicted in Figure 3. We based our
implementation on modules taken from the PEA-Toolkit [8]
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Figure 3. Prototype implementation of Algorithm 1 for checking vacuity of a set of requirements, with modules using tools for phase event automata
(PEA) resp. timed automata (TA).

and the model checker Uppaal [10]. More precisely, we di-
vided the calculation into two tasks. In Task 1 we determine
maxPhase(ϕi), use the PEA-Toolkit to build up the PEAs Ai

and the parallel product A, determine for each property ϕi the
locations p ∈ locs that contain the last phase of that property
(maxPhase(ϕi) ∈ phases(p)[i]), and check whether this set is
empty. If so we return that Reqi is vacuous in Φ. Otherwise
we start Task 2 which transforms A to a Timed Automaton
and uses Uppaal to check whether there is a run to a location
p ∈ locs. If Task 2 returns with “no” then requirement ϕi

is vacuous in Φ. Otherwise if Task 2 returns with “yes” for
every requirement ϕi, then the set is non-vacuous.

For the case study we took ten examples from different
automotive projects at Bosch, namely projects of the appli-
cation domains car multimedia, driving assistance, engine
controlling, and powertrain development. Each example is
a set of real-time requirements for a single software com-
ponent. The specifics of the components are not relevant;
hence we do not present them and just number the examples
from 1 to 10. Each requirement specification had previously
undergone a thorough albeit informal review. We formalized
the requirements (i. e., we translated them to formal require-
ments as defined in Section II-B) in a somewhat lengthy
process of iterations with feedback from the responsible
requirement engineers. The final formalization was reviewed
by a requirements engineer.

Table I refers to the results of our study. It is build
up as following: The first column refers to the index of
the example-component. The second column refers to the
number of requirements for this component. The third and
fourth column depict the problem size, measured in the
number of locations and transitions in the PEA A. Column 5
and 6 refer to the calculation times of Task 1 and Task 2,
i. e., the calculation time to the check whether A contains for
every requirement ϕi at least one location with maxPhase(ϕi)
in phases (Column 5) and the calculation time to check
whether such a location is reachable in a run (Column 6).
All times (except those for Task 2 on Components 5 and 7,
see below) are for a PC Windows XP system with 2 GHz
Intel Core 2 Duo processor and 1 GB RAM. Column 7, 8,
and 9 give the result of the checks, i. e., Column 7 depicts
the result of Task 1, Column 8 the result of Task 2, and
Column 9 the subsequent result of the vacuity-check.

As Table I shows the vacuity check guaranteed the ab-
sence of vacuities for eight components. It is interesting
to note that engineers at Bosch are quite keen on this
functionality. We think this is because vacuities often arise
during requirements elicitation. Most of these errors are
detected (and then resolved) during a manual review, but
review can only detect errors, they cannot guarantee the
absence of errors.

Further, the vacuity check helped to discover a subtle
specification error in Component 10 that needed to be
repaired (and that had gone undetected in the previous
informal review). A minor change was needed to correct
the requirement specification, i. e., only one requirement was
changed. Debugging the requirements was quickly done, we
needed about 30 Minutes to find and resolve the error.

The tool output that Req71 was vacuous in the set of
requirements. It is defined as:

Req71: If accelerationPedal = 0 and brakePedalActivated
then regeneration holds after less than 1 ms.

Debugging the requirements, we found out that the an-
tecedent accelerationPedal = 0 could never occur. This
was due to a misinterpretation of an ambiguous requirement.
Requirement Req3 was ambiguously specified as

Req3: The value range of the acceleration pedal is be-
tween 0 and 100.

It was interpreted as “0 < accelerationPedal < 100”. Instead
it should have been interpreted as “0 ≤ accelerationPedal ≤
100”. Thus, we resolved the ambiguity and changed Req3 to

Req′3: The value range of the acceleration pedal is be-
tween 0 and 100 where the endpoints of the interval
are included (0 ≤ accelerationPedal ≤ 100).

After that change the set of requirements was non-vacuous,
as depicted in the last row of Table I.

We think that there are two reasons why this error was not
detected in the manual review: first, ambiguities are difficult
to detect in reviews and, second, big sets of requirements are
difficult to review for humans. Reviewers have difficulties in
detecting ambiguities as they often subconsciously disam-
biguate the requirements and think that their interpretation
is the only interpretation [11]. If Req3 and Req71 would have
been next to each other, then in the context of Req71 it would
have been more obvious how Req3 had to be interpreted.



component reqs #locs A #trans A Task1 Task2 result result non-vacuous
Task1 Task2

comp. 1 10 2520 340326 3m 40s OOM yes OOM ?
comp. 2 10 839 30519 5s 3s yes yes yes
comp. 3 12 28 310 1s 1s yes yes yes
comp. 4 17 27 729 6s 1s yes yes yes
comp. 5 17 1506 207751 1m 22s 3m 30s yes yes yes
comp. 6 18 633 48037 35s 2s yes yes yes
comp. 7 27 639 174231 21m 32s 4m 43s yes yes yes
comp. 8 27 3 9 13s 1s yes yes yes
comp. 9 39 10 48 3s 1s yes yes yes
comp. 10 81 7 35 6s — no — no
comp. 10’ 81 21 241 2m 49s 1s yes yes yes

Table I
vacuity results for several Bosch SW-components. Column 2 refers to the number of requirements; Column 3 and 4 to the number of locations and
transitions in A; Column 5, 6 refer to the CPU Time of Task 1, resp. Task 2 (in minutes and seconds); Column 7, 8, 9 refer to the analysis results.

However, there were more than 60 requirements specified
in between. We think that it is too difficult for a human to
have the specifics of so many requirements in mind. Thus,
an automatic check is beneficent.

The first columns of Table I show that the problem size
of checking vacuity is not directly linked to the number
of requirements. E.g., the problem size (measured in the
number of locations and transitions in A) of Component 10
with 81 requirements is only a fraction of the problem size
of Component 1 with 10 requirements. This is due to the fact
that there are requirements that decrease the size of A. E.g.,
a requirement “It is always the case that if IRTest holds
then IRLampsOn holds as well” reduces the space of solu-
tions in forbidding any states with IRTest ∧ ¬IRLamspOn.
Nevertheless, often, adding requirements will blow up the
space of solutions. Thus, the algorithm may scale badly for
big sets of requirements.

In particular for components 1, 5 and 7 we could execute
the first task of Algorithm 1 but Uppaal was not capable to
load the timed automaton on our PC with 1 GB of RAM.
We retried this on a 64-bit PC with enough RAM, however,
Uppaal is still 32-bit only and uses at most 4 GB of RAM.
For Components 5 and 7 the larger machine could prove the
requirements to be non-vacuous, however, for Component 1
it still runs out of memory (denoted in the table as OOM).
We assume that the presented algorithm may be used to
check requirements of single SW-components but that it
will likely fail for the set of requirements over all SW-
and HW-components. The scaling problem is induced by
state explosion when building up A. Hence, to improve
the performance, the state explosion problem needs to be
handled.

VI. RelatedWork

Various work exists on the topic of vacuity detection [12],
[13], [14], [15], [4], [16], [17]. There are two main dif-
ferences to our work. First, the goal of the work by [12],

[13], [14], [15], [4], [16] is to check whether a given system
satisfies the requirements only vacuously. In particular, there
may be systems that satisfy the requirements non-vacuously.
In contrast, the goal of our work is to check whether
a requirement in a set of requirements is only vacuously
satisfied. Our property is independent of any given system,
i. e., we check whether there exist systems satisfying the
requirements non-vacuously.

Another difference is the definition of vacuity. The prop-
erty is often intuitively defined as the question whether a
specification is satisfied in a system in some non-interesting
way [13], [14], [4]. For example, the requirement “every
request is eventually followed by a grant” is satisfied vacu-
ously in a model with no requests. Kurshan defines a system
to be vacuous, if the enabling condition is never satisfied,
and thus the fulfilling condition is never checked [12]. Beer
et al. [15] defined vacuity as follows: a formula ϕ is satisfied
in a system S vacuously if it is satisfied in S , but some
subformula ψ of ϕ does not affect ϕ in S , which means
that S also satisfies ϕ[ψ← ψ′] for all subformulas ψ′ (here,
ϕ[ψ← ψ′] denotes the result of substituting ψ′ for ψ in ϕ).
In [4], [14], [16] further definitions are discussed. The idea
of our property vacuity is similar, however, our definition
only refers to requirements and not to a system.

Recent work on vacuity has also considered how to assess
the quality of a given set of properties. Two approaches have
emerged: One consists of measuring the coverage of a set
of properties [18], [19], i. e., incomplete coverage exposes
features of the system not adequately verified. The second
approach [3], [20] consists of detecting vacuous passes in
temporal logic formulae (again for a given system S ). A
formula ϕ passes vacuously in a model S if it passes in
S , and there is a subformula ϕ′ of ϕ that can be changed
arbitrarily without affecting the outcome of model checking.
One goal of this second approach is to generate so called
witnesses.

In the work mentioned so far, vacuity detection was used



to check whether a given system satisfies the requirements
non-vacuously. In [17] Ball and Kupferman map vacuity
detection to the testing context, i. e., they define and study
vacuous satisfaction in the context of testing, and demon-
strate how vacuity analysis can lead to better specifications
and test suits.

To our knowledge there exists no concept of vacuity
detection in the requirements context. To identify properties
for requirements analysis remains an active research topic;
see, e.g., [21], [22].

VII. Conclusion

We have introduced vacuity, a new property of require-
ments for real-time systems. We have shown that it has an
interesting practical potential for ensuring the quality of real-
time requirements. We have presented an algorithm to check
vacuity automatically. We have implemented the algorithm
to demonstrate its feasibility in principle, by applying it to
prove the absence resp. presence of vacuity in a number of
existing requirement specifications in automotive projects.
Our experiments guaranteed the absence of vacuities for
eight specifications and discovered a previously unknown
error in one specifications, which got subsequently repaired.

In [3], Beer et al. describe that vacuity is a serious
problem: “our experience has shown that typically 20%
of specifications pass vacuously during the first formal-
verification runs of a new hardware design, and that vacuous
passes always point to a real problem in either the design
or its specification or environment”. Our work shows, that
vacuity (i. e., vacuity) occurs as well in requirements spec-
ifications. We think, that most vacuities are detected and
subsequently resolved in manual reviews, however, our work
shows that an automatic check that proves the absence of
vacuity is beneficial. In fact with the help of our vacuity
check we discovered one error that was not discovered in
the manual review.

For vacuous requirements, all systems satisfy the re-
quirements only vacuously, provided they satisfy them at
all. Thus, our proposed property might help to avoid the
problems that were noted by Beer et al. in later development
stages. It would be interesting to investigate in future work
whether vacuity checks on requirements lead to less vacuity
errors on the implemented systems.
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