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Abstract. This paper presents the first approximation method of the
finite-failure set of a logic program by set-based analysis. In a dual view,
the method yields a type analysis for programs with ongoing behaviors
(perpetual processes). Our technical contributions are (1) the semantical
characterization of finite failure of logic programs over infinite trees and
(2) the design and soundness proof of the first set-based analysis of logic
programs with the greatest-model semantics. Finally, we exhibit the con-
nection between finite failure and the inevitability of the ‘inconsistent-
store’ error in fair executions of concurrent constraint programs where no
process suspends forever. This indicates a potential application to error
diagnosis for concurrent constraint programs
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1 Introduction

Set-based program analysis dates back to Reynolds [35] and Jones and Much-
nick [27] and forms a well-established research topic by now (see [1,24, 34] for
overviews and further references). It has direct practical applications to type
inference, optimization and verification of imperative, functional, logic and, as
we will see in this paper, also concurrent programs.

In set-based analysis, the problem of reasoning about runtime properties of
programs is transferred to the problem of solving set constraints. The design of
a specific analysis involves two steps: (1) define a mapping from a class of pro-
grams P to set constraints ¢p and show the soundness of the abstraction of P
by a distinguished solution of ¢p, and (2) single out a corresponding subclass of
set constraints and devise an efficient algorithm for computing the distinguished
solution. For instance, Heintze and Jaffar defined a set-based analysis for logic
programs with the least model semantics in [22]. Their analysis is an approxi-
mation method for the success set of a logic program, i.e. for the set of initial
queries for which a successfully terminating execution exists.



In this paper, we consider the finite failure set of a logic program, i.e. the set
of initial queries for which all fair executions terminate with failure. In order to
give a sound prediction of finite failure (‘if predicted, it will occur’), we need a
characterization of finite failure in terms of program semantics. Classical results
from logic programming, however, only yield the converse, i.e. a characterization
of the greatest-model semantics in terms of finite failure (see Remark 1). Fortu-
nately, for programs over the domain of infinite trees we can characterize finite
failure through the greatest-model semantics (more precisely, its complement;
see Theorem 1). Since the analysis we design computes an abstraction of that
semantics, we obtain an approximation method for the finite-failure set of a logic
program over infinite trees (see Theorem 3). More precisely, the emptiness of the
computed abstract value for the predicate p indicates the finite failure of every
predicate call p(z). At the same time, this method can predict finite failure of a
logic program over rational trees, or over finite trees (see Remarks 2 and 3).

In the least-model analysis in [22], Heintze and Jaffar use definite set con-
straints; they give a corresponding constraint solving algorithm in [21] (see [9] for
further results). Our analysis uses co-definite set constraints, which bear their
name in duality to definite set constraints due to the fact that every satisfiable
constraint in this class has a greatest solution. This fact is crucial for our analysis.
Algorithm for solving co-definite set constraints are given in [4, 16]. In this paper,
we focus on the definition of the analysis and the soundness of the abstraction,
which is: the greatest solution of the co-definite set constraint ¢ p inferred from
the program P is a safe approximation of the greatest-model semantics for P
(see Theorem 2).

In a different reading, our abstraction method is a type analysis of logic pro-
grams with ongoing behavior. Such programs are investigated under the denom-
ination perpetual processes in [28]. There, the semantics of such a program P is
defined by the greatest-fixpoint semantics over the domain of infinite trees. Our
analysis computes the abstraction of this semantics in the form of the greatest
solution of the inferred co-definite set constraint (the greatest-fixpoint semantics
is equal to the greatest model of P’s completion [10]). This solution assings to
every program variable z a set of infinite trees that can be viewed as the type
of z. This type describes a safe approximation (i.e. a superset) of the set of all
possible runtime values for z in ongoing program executions.

Finally, we consider a potential application to concurrent constraint programs
(see e.g. [36,37]). We carry over the approximation method of the greatest model
to cc programs. This yields a type analysis for cc programs in the same sense as
above. It also yields a failure analysis. In cc programs, an inconsistent constraint
store (viz., failure) is considered a runtime error. (This is in contrast to logic
programming where failure is part of the backtracking mechanism.) Our analysis
computes an approximation of the execution states of cc programs for which
failure is inevitable in fair executions unless a process (i.e. a predicate call)
suspends forever (see Theorem 4). The global suspension of a process is not
necessarily a programming error. That a processmust suspend forever in order
to avoid a runtime error is, however, a problem worth diagnosing and reporting.



Related Work. To our knowledge, set-based analysis for logic programming (see
e.g. [5,18,13,14,22,23,30]) has previously only been designed to approximate
the success set (which can be characterized by the least model semantics).
Mishra’s analysis [30] is often cited as the historically first one here. Heintze
and Jaffar [23] have shown that Mishra’s analysis is less accurate than theirs
in two ways, due to the choice of the greatest solution for the class of set con-
straints he considers (see Remark 4) and due to the choice of the non-standard
interpretation of non-empty path-closed sets of finite trees, respectively. Using
the techniques in this paper, we are able to show that Mishra’s approximation
is so weak that it even approximates the greatest model. Mishra proves that
‘p(z) will never succeed’ if the set constraint ¢)p he derives is unsatisfiable. Our
results yield that ‘p(z) will finitely fail’ if ¢¥)p is unsatisfiable over the domain of
non-empty path-closed sets of infinite trees (see Remark 5).

Regarding the analysis of concurrent constraint programs, various techniques
based on abstract interpretation habe been used (see e.g. [17]) but none that is
related to set-based analysis. A first formal calculus for (partial) correctness of cc
programs is developed in [15]. The proof methods there are more powerful than
ours but not automatic. The necessity to consider greatest-fixed point semantics
for the analysis of reactive systems has been observed by other authors and in
the context of different programming paradigms (see e.g. [11,19]). None of these
analyses is set-based.

Finally, we want to mention that the idea to derive necessary conditions for
the inevitability of a runtime error by static analysis stems from the work of
Bourdoncle [3] on abstract debugging.

2 Logic Programs

Preliminaries. We assume a ranked alphabet X fixing the arity n > 0 of its
function symbols f,g,... and constant symbols a,b,..., and an infinite set Var
of variables z,y,z,.... We write & for finite sequences of variables, and use
analogous sequence notation for other syntactic entities. We also write f(z) for
flat terms, where we assume implicitly that the arity of f equals the length of Z.
A term without variables is called a ground term. The set of infinite trees over X
is denoted by T's°. Note that an infinite tree can have finite paths (ending with
a constant symbol); a finite tree is a special case. The set of terms over X' and
Var is denoted by T's°(Var). For an arbitrary formula &, we write 3_, for the
existential closure of @ with respect to all variables in ¢ but z. We also assume
a set Pred of predicate symbols p. The Herbrand Base B is the set of all ground
atoms over Pred and T, i.e., B = {p(t) | p € Pred,t € Tgr}.1

Logic Programs. A logic program defines predicates through clauses of the
form

p(t) — pl(tl)a cee apn(tn)

! What we call Herbrand Base is sometimes called Complete Herbrand Base [28] in
order to distinguish it from the classical notion for finite trees.



where p(t) is called the head and p;(t1),...,pn(tn) is called the body of the
clause. A clause with an empty body is called a fact. A complete program has
the form

Np Ni,p
A N plt) = N pits) -
pEPred i=1 j=1

where ¢ ranges over the number n, of clauses in the definition of predicate p,
and j ranges over the number n; , of queries in the it" clause of predicate p. For
better readability, we assume that all predicates are unary; the results can easily
be extended to the case without this restriction (for example, by requiring the
signature to contain at least one binary function symbol).

If we consider the logical semantics of a program of the form above, we take
the completion of P [10], which is given by the following formula.

compl(P) = /\ Vz p(z) < \/ Az =tA /\ pij(tij) ).
pEPred i=1 j=1

A query s is a conjunction A, pi(tx) where the ¢, are terms. We here allow
infinite terms like f(z, f(z,...)) in order to execution states with cyclic unifiers
such y — f(z,y). Such terms can be finitely represented by equations, e.g.
y = f(z,y), or by syntact annotations as in [2].

A ground query is a query A, pr(tx) such that all ¢ are ground (i.e. infinite
trees). We use the predicate constant true as the neutral element for conjunction:
i.e., s = s A true. In particular, the ‘empty’ query is written as true.

An interpretation p (sometimes called a model) is a subset of the Herbrand
Base, p C B. Interpretations are ordered by subset inclusion.

We identify an interpretation p C B with a valuation p : Pred — 275,
i.e. a mapping of predicate symbols to sets of trees such that

plp) ={t € T3 | p(t) € p}.

A model of the program P is a valuation p : Pred — 275 such that the formula
compl(P) is valid in the usual logical sense.

The greatest model of compl(P), denoted by gm(P), always exists. Using our
convention of identifying the interpretation gm(P) with a valuation, we use the
notation gm(P)(p) for the denotation of the predicate p by the greatest-model
semantics, i.e.

gm(P)(p) = {t € T’ | p(t) € gm(P)}.

Operational Semantics. The logic program P defines a fair transition sys-
tem Tp = (S, 7p) in the following way.

The set S of states of 7p consists of all queries (including true) and the failure
state false,

S = {pe(ts) | Yk py € Pred, t), € T (Var)} U {false}
k



When a selected query atoms p(t) in a state s € S of the form s = spest A p(t)
unifies with the head of a clause p(t;) < A, pi;(ti;), then the state s’ obtained
as the instantiation of s,cs A A, pij(ti;) under the most general unifier of ¢ and
t; a possible successor state of s. We say that p(¢) is applied in the transition
step from s to s’. When a selected query atom p(t) does not unify with any of
the heads of the clauses of p, then the successor state is false.

The fairness of the transition system is defined by the fairness of the non-
deterministic selection rule (in the classical sense [28]: a selection rule is fair if
every query atom in a state s gets selected eventually, in every execution starting
in s). The non-determinism of the selection rule means that conjunction has
an interleaving operational semantics (i.e., conjunction corresponds to parallel
composition); disjunction corresponds to non-deterministic choice.

Similarly, P defines a fair ground transition system 73 = (S, 7%). We obtain
the transition relation 73 by modifying the one of 7p: after every transition step
of 73, all variables in the successor state are instantiated with ground terms
(i.e. infinite trees). Note that ground queries are a special case of queries.

We say that a derivation finitely fails if if it ends in the state false. A
query p(z) is finitely failed (and belongs to the set FF') wif every Tp derivation
starting with query p(z) finitely fails.

FF = A{p(z) | p(z) is finitely failed}

Similarly, a ground query p(t) is called ground finitely failed (and belongs to the
set GFF) if every T3 derivation starting from p(t) finitely fails.

GFF = {p(t) | p(t) is ground finitely failed}

We will now characterize the finite failure set of a program P over the domain 7'g°
of infinite trees through the greatest model of compl(P). Since we have not found
this observation in the literature, we will give its proof, drawing from several
results that are classical in the theory of logic programming.

Theorem 1 (Characterization of finite failure over infinite trees).
Given a logic program P over infinite trees, the query p(z) is finitely failed
if and only if the value of p in the greatest model of compl(P) over the domain
T of infinite trees is the empty set; i.e.,

p(z) € FF(P) if and only if gm(P)(p) = 0.

Proof. The only-if direction is a classical result (namely, the ‘algebraic soundness
of finite failure’, see [28, 25]).

For the other direction, first note that equations over infinite trees have the
saturation property, that is, an infinite set of constraints is satisfiable if every of
its finite subsets is [28, 26, 33].

Now assume that p(z) ¢ F'F(P). Since (see [28,26])

gm(P)(p) = {t|p(t) ¢ GFF(P)},



it is sufficient to show that there exists an infinite tree ¢ such that p(t) ¢ GFF(P)
(i.e., p(t) is not in the ground finite failure set; note that in general, the ground
finite failure of a call does not imply finite failure of some ground instance of
this call.)

By assumption, there exists an execution starting in the state p(z) that
does not lead to the failure state. That is, there exists a transition sequence
S0, 81, 2, .. starting in sp = p(z) such that the constraint store ¢; of every
state s; is satisfiable (in the terminology of constraint logic programming [25], a
state A\, pr(tx) is written as the pair (A, pr(zx), p) where the constraint store ¢
is a conjunction of equations that is equivalent to A, z; = t; over the domain
of infinite trees). Since ¢; is stronger than ¢;_; for i > 1, ¢, is equivalent to
Nizo @i-

Thus, we have a sequence of constraints g, 1,2, ... such that /\?:0 p; is
satisfiable for all n. The saturation property yields that also the infinite conjunc-
tion A;s @i is satisfiable. Let o be a solution of A;., ;. Then the transition
sequence s,, s}, s5, ... that we obtain by instantiating the states s; by the valua-
tion « is a ground transition sequence that does not lead to the fail state. Hence,
if a(z) =t, then p(t) ¢ GFF(P) and GFF(P)(p) is nonempty. m|

Remark 1. Palmgren [33] has shown that a constraint logic program over a con-
straint domain with the saturation property is canonical. That is, ¢fp(Tp) =
Tpl” (where pl¥ = N:_, TH(B) holds; for the definition of Tp see Section 4.)
Since ¢gfp(Tp) = B\GFF(P) holds for canonical programs (see [25]), this is
sufficient to characterize ground finite failure over infinite trees. Canonicity is
not sufficient for finite failure of non-ground queries.

For example, consider the program p(f(z)) < p(z) over the structure
of finite trees. This program is canonical (over finite trees). Its greatest model
over finite trees assigns p the empty set (in accordance with the fact that p(¢) €
GFF(P) for all finite trees t), but p(z) is not finitely failed.

Similarly, Jaffar and Stuckey [26] have shown that for programs over infinite
trees, Tp | w equals the complement of [FF(P)], where [FF(P)] is the set of
ground instances of elements of F'F'(P). This is a characterization of the denota-
tional semantics through the operational semantics; our characterization is the
converse.

Remark 2. Since the structure of rational trees and the structure of infinite
trees are elementarily equivalent [29] (in particular, the test of satisfiability of
constraints is the same), we can take the operational semantics of programs over
rational trees in Theorem 1 (but we must consider the logical semantics over
infinite trees). The modified statement is:

Given a logic program P over rational trees, the query p(x) is finitely failed if
and only if the value of p in the greatest model of compl(P) over the domain T's®
of infinite trees is the empty set.

Remark 3. The statement of Theorem 1 holds for constraint logic programs over
every constraint system with the saturation property (an infinite set of con-
straints is satisfiable if every of its finite subsets is).



3 Co-definite Set Constraints

Syntax. A (general) set expression e is built from first-order terms, union, in-
tersection, complement, and the projection operator [21]:

e w= @ | f@) |eUe [ene | e | frl(e)

The projection f(;)l(e) is only defined if k is a positive integer smaller than the
arity of f. If e does not contain the complement operator, then e is called a
positive set expression. A (general) set constraint is a conjunction of inclusions
of the form e C €'.

A definite set constraint [21] is a conjunction of inclusions e¢; C e, between
positive set expressions, where the set expressions e, on the right hand side of
C are furthermore restricted to contain only variables, constants and function
symbols and the intersection operator (i.e., no projection or union).

Definition 1. A co-definite set constraint ¢ is a conjunction of inclusions e¢; C
e, between positive set expressions, where the set expressions e; on the left-
hand side of C are further restricted to contain only variables, constants, unary
function symbols and the union operator (that is, no projection, intersection or
terms with a function symbol of arity greater than one).

ee == z|al fle) er u= x| f(€) | eUe | ene | f@;(e)

Semantics. We interpret set constraints over 275 | the domain of sets of trees
over the signature X. That is, variables denote sets of trees, and a (set) valuation
is a mapping o : Var — 2T, Tree constructors are interpreted as functions over
sets of trees: the constant a is interpreted as {a}, and the function symbol f is
interpreted as the function which maps sets Sy, ...,.S, into the set

{f(tl,...,tn)|t1 651,...,tn€Sn}.

The application of the projection operator for a function symbol f and the k-th
argument position on a set S of trees is defined by

f@)l(S) ={t|3ty,...tn: tp=t, f(tr, ... th,...,tn) € S}.

The set operators union U and intersection N, as well as inclusion C are in-
terpreted as usual. Define the union of set valuations |J; a; on variables as the
pointwise union on the images of all variables; i.e., (J, i) (z) = U, ai(z).

The following properties hold for co-definite set constraints (see also [4]).
These properties are essential for our proof in the following section to work,
which shows soundness of abstraction.

Proposition 1 (Properties of co-definite set constraints).

1. Solutions of co-definite set constraints are closed under arbitrary unions.



2. If satisfiable, every co-definite set constraint ¢ has a greatest solution,
noted gSol(p).

3. Every co-definite set constraint without inclusions of the form a C =z is
satisfiable.

Proof. The first claim is proved by case-distinction over the possible set inclu-
sions. The second is an immediate corollary from the first one. (Note that the
restriction to constants and monadic function symbols on the left hand side of an
inclusion is crucial here. For instance, the set constraint f(z,y) C f(a,a)Uf(b,b)
does not have a greatest solution; it has two maximal but incomparable ones.)
In order to verify the third claim notice that the valuation which maps every
variable into the empty set is a solution of co-definite set constraints without
inclusions of the form a C e. a

Remark 4. Mishra [30] uses a class of set constraints with a non-standard inter-
pretation over non-empty path-closed sets of finite trees to approximate the suc-
cess set of a logic program. (A set of trees is path-closed if it can be recognized by
a deterministic top-down tree automaton [20].) Set constraints over non-empty
path-closed sets also have the properties 1. and 2. above. Due to the non-standard
interpretation, this holds even if n-ary constructor terms are allowed on the left
side of the inclusion. For example, the constraint f(z,y) C f(a,a)U f(b,b) has
a greatest solution over path-closed sets (which assigns both variables z and y
the set {a,b}).

4 Set-based Analysis

We will next describe the inference of a co-definite set constraint ¢pp from a
logic program P. The intuition is as follows. A clause of the form p(t;) < p;(¢i;)
can be written equivalently as p(z;) < z; = t; A t;; = z;; A p(z;;). Following the
abstract interpretation framework, we abstract the semantics-defining fixpoint
operator Tp by replacing the constraint z; = t; A ¢;; = x;; in its definition by
the co-definite set constraint z; C t; A $(t;; C ;). The fixpoint equation for the
abstract operator T# is essentially the inferred set constraint ¢ p. The soundness
of the abstraction follows directly. The schema of our method (whose ingredients
are Propositions 1 and Lemma 1 below) is described in an abstract setting in [12].

We next introduce the operator @ that assigns an inclusion of the formt¢ C z a
co-definite set constraint. For example, &(f(z,y) C f(a,a)U f(b,b)) is essentially
the conjunction of z C f(_l)l(f(a, a)Uf(b,b)) andy C f(_z)l (f(a,a)U f(b,b)) which
is equivalent to the conjunction of t CaUb and y C a U b.

We introduce a fresh variable z; for each subterm ¢ appearing in the formula
and then define the constraint &(¢ C z) for a term ¢ and a variable z by induction
on the depth of ¢.

PlyCz)=yCx
2 Cw Az CFy(ae) A Dt C ze,)
P(tCz) = for t = f(t1,...,tn)
Az, C finy(26) N B(tn C 21,)



Lemma 1. If a tree valuation o : Var — T's° satisfies the equality z = ¢, then
the set valuation o, : Var — 275 defined by 0,(z) = {a(z)} satisfies the co-
definite set constraints z C ¢ and é(¢t C z). O

We define the co-definite constraint ¢p inferred from P as follows. Here, we
assume that the different clauses are renamed apart (if not, we apply a-renaming
to quantified variables).

Tp Mip

©Yp = /\ pCUt /\/\/\ z]Cpl]

pEPred

Both, symbols p € Pred and z € Var act here as second-order variables ranging
over sets of trees. In the following, when we compare an interpretation p of a logic
program with a valuation o of a set constraint, p C o means that p(p) C o(p)
for all p € Pred.

Theorem 2 (Soundness of Abstraction).
For a logic program P, the greatest model of P’s completion is smaller than the
greatest solution of ¢p, formally gm(P) C gSol(pp).

Proof. We first define an abstraction T;f of the Tp operator, and we prove that
gfp(Tp) C g fp(TIf.7E ). Here, we extend valuations o over trees to valuations o,

over sets of trees by a(z) = {o(z)}. In the second part we show that gfp(T#) C
gSol(op) where we use Proposition 1.

1. gfp(Tp) C gfp(T#). The Tp operator maps an interpretation p to another
one Tp(p) where, for all p € Pred,

Te(p)(p) = {teTz (1)

Ja:Var - Ty Fi: t=a(t),

TF,a At € p(piy)
The greatest-model semantics and the greatest-fixpoint semantics of a program
P coincide; i.e., the greatest model of P’s completion is the greatest fixpoint of
the operator Tp, formally gm(P) = gfp(Tp) (see e.g. [28]).

The Tlf operator maps an interpretation p to the interpretation Tlf (p) where,
for all p € Pred,

T (p)(p) = {teTZ Jo s Var — 275, Ji: 1€ o(t), } o

275 0 = N, B(tiy C zig) Azij C p(pij)

Here, we use new variables z;; as placeholders for p;;. The variables z € Var
now range over sets of trees. As usual, we write M,a | F if the formula F is
valid under the interpretation with the valuation a on the structure (with the
domain) M. The formula F' above is a co-definite set constraint with constants
noted constant p(p;;). The constant p(p;;) is interpreted as the set p(p;;).



Let p' = Tp(p) and p" = T#(p). Then p'(p) C p"(p) holds for all p €
Pred. This can be seen as follows. For every tree valuation a satisfying the
condition in the set comprehension for p’, the set valuation o, defined by o, (z) =
{a(z)} satisfies the condition in the set comprehension for p’ by Lemma 1.
Clearly, oq(tij) C p(pij); we replace the inclusion ¢;; C p(p;;) by the equivalent
conjunction t;; = x;; A zi; C p(pij). If o4 satisfies the equality ¢;; = ;; then
also ®(t;; C x45).

Hence, Tlff is indeed an abstraction of T}, and, thus, gfp(Tp) C gfp(T#).
This concludes the first part of the proof.

2. gfp(T#) C gSol(¢p). In order to show that gfp(T;f) C gSol(pp), we
first reformulate the definition of T# as follows.

i) = U o) 127, 0= A St C o) A 33 C plpi)}
a':Var—>2TE'c i J

Fix p and let p" = T#(p).

We next exploit the fact that the solutions of co-definite set constraints are
closed under arbitrary unions (Proposition 1). Hence, we can replace the union
of solutions in the formula above by the greatest solution. We obtain that

p”(p) = Ugi(ti) where o; = gSOl(/\ @(tij C xij) AN C p(p”))
i J
Since all program variables are renamed apart, we have p"(p) = |J, o(t;) where
o = gSol(\ N\t Czij) Awi; C p(pij))-
i g

Thus, we have p"(p) = o(p) where
o = gSolp=Jti A \ \®(ti; C i) Azij C p(pij)-
i i

Again, since all program variables are renamed apart,

p" = gSol( /\ p:Uti/\/\/\QS(tijgwij)/\xijgp(pij))'
i i

pEPred

Here, we equate the interpretation p” : Pred — 275 with a valuation o inter-
preting a formula with predicate symbols p € Pred and tree variables = € Var
both ranging over sets of trees, and with constants of the form p(p;;) standing
for the corresponding sets. We omit any further formalization of this setting.

Let pp be any fixpoint of T}f, ie., T#(po) = po- This means that pg is a
solution (the greatest one, in fact) of

AN p=UJtin NN\ @i € 2ij) Azij € polpis)-
: i

pEPred

10



That is, po is a solution of ¢p. Hence, pg is smaller than the greatest solution
of pp. This is true in particular if py is chosen as the greatest fixpoint of T;f .
This concludes the second part of the proof. O

Theorem 3 (Set-based failure analysis for logic programs).

The query p(z) is finitely failed in every fair execution of the reactive logic
program P if the value of p in the greatest solution (over sets of infinite trees)
of the co-definite set constraint pp derived from P is the empty set; i.e., for all
predicates p € Pred, if ¢Sol(¢p)(p) = 0 then p(z) € FF(P).

Proof. We combine Theorems 2 and 1. a

The statement above can be made more precise. Namely the emptiness of
the computed value for an argument variable in the i-th clause of p entails the
finite failure of every predicate call of p with that clause.

Remark 5. Essentially, the set constraint derived from a logic program P in the
‘least-model’ analysis of Mishra [30] is of the form

Np Np MNi,p
v = N p=Uti A N N ti =pis-
pEPred i g

Instead of Lemma 1, we have the obvious fact that o, satisfies the set constraint
z = t (which is equivalent to t = z) if « satisfies the tree constraint z = t.
Since we also have the existence of greatest solutions over the domain of non-
empty path-closed sets of (finite or infinite) trees (see Remark 4), the proof of
Theorem 2 goes through also for p instead of pp, and the statements in this
and the next section hold in the appropriate adaptation.

5 Concurrent Constraint Programs

We consider concurrent constraint (cc) programs (see e.g. [36,37]) in a nor-
malized form such that we can employ a Prolog-style clausal syntax. This is
a notational convention which is convenient to establish a connection to logic
programming.

Furthermore, we consider only the case where constraints C' are term equa-
tions t; = t» interpreted over infinite trees, as in the cc programming language
and system Oz [32,37]. Hence, we can adopt a Prolog-like syntax and assume
that every procedure p is defined either by a single fact or by several guarded
clauses of the form

p(x) —x=t [lpl(tl)aapn(tn)

In such a guarded clause, we call z = ¢ the guard and p;(t1), ..., pn(trn) the body.
The operational semantics of a cc program P is defined through a fair transi-
tion system 75¢ as Tp for logic programs (again with the non-deterministic fair

11



selection rule), with one important difference: A selected query p(t) can only be
applied if amongst the guarded clauses of predicate p there is one, the i** one
with body z = ¢; | /\j pij(tij), say, such that & = ¢ entails 3_, & = ¢;; if this is
the case in a state S, then the successor state will be S A A p;;(ti;) under the
most general unifier of ¢ and ¢; (for a more precise definition, see e.g. [36,37]).
Notice that a logic program is a special case of a cc program where all guards
are trivially true, e.g. z = .

Failure of cc programs. We next apply the approximation method of the previous
section to logic programs abstracting cc programs in order to predict the behavior
of the latter.

Define the logic program P abstracting the cc program P by replacing the
guard | with conjunction. It is an abstraction in the following sense.

Proposition 2. If the query p(t) finitely fails in the logic program P abstracting
the cc program P then failure is inevitable in fair executions of the cc program P
unless a process (i.e. a predicate call) suspends forever.

Proof. Observe that every (finite or infinite) fair computation in P which neither
fails nor deadlocks induces a computation in P which does not fail or deadlock,
either. This can be made formal by a simulation argument which exploits that
whenever a selected query p(t) is applied with a guarded clause in P it can also
be applied with the associated unguarded clause in P. This proves the first claim
by contraposition. O

Corollary 1 (Characterization of failure behavior of cc programs).
Failure is inevitable in fair executions of the cc program P unless a process
suspends forever, if and only if the value of p in the greatest model of compl(P)
over the domain 7's° of infinite trees is the empty set.

Proof. We combine Proposition 2 and Theorem 1. O

Theorem 4 (Set-based failure analysis for cc programs).

Failure is inevitable in fair executions of the cc program P unless a process
suspends forever if the value of p in the greatest solution (over sets of infinite
trees) of the co-definite set constraint ¢ 5 derived from P is the empty set.

Proof. We combine Theorem 3 and Corollary 1. |

6 Examples

We will give some examples to illustrate how our method of approximating

greatest models with co-definite set constraints tests the inevitability of certain

runtime errors. Consider the following simple stream program.
stream([X,Y|S]) < Y = s(s(X)), computation(Y'), stream([Y]S]).
main(Z) « stream([Z|T)).

12



Suppose we know that the predicate computation makes sense only for (trees
representing) odd numbers, whereas no such restriction is known for main and
stream. This invariant can be expressed by the following set constraint, which
may have been derived from another code fragment or externally provided by a
program annotation.

computation C s(0) U s(s(computation)) . (3)

Further, we can approximate the set of non-failed computations of the program
with the constraint

stream C cons(X, cons(Y,S)) A (4)
X C computation A X C s(_lﬁ(s(_ﬁ(Y)) A
Y C cons(_lﬁ (stream) A S C cons(_z; (stream) A

main C consa; (stream) .

It is not difficult to see that the greatest solution of the conjunction of (3)
and (4) assigns to the variable main (as well as to X, Y, and computation) the
set of odd numbers. We obtain from this fact that, for example, the query main(0)
inevitably leads to a state where computation is called with a wrong argument.

We illustrate now the necessity to consider infinite trees by another example.
Consider the reactive logic program P defined by

p(f(z)) < p().

The execution of the query p(z) does not fail, whether the program is defined
over the domain of finite or infinite trees. We derive the co-definite set constraint
pop =p C f(z) Az C p. When interpreted over sets of finite trees, ¢ p has as
greatest solution the valuation assigning the empty set to p (and z). In the
infinite tree case the greatest solution assigns to p the singleton set containing
the infinite tree f(f(f(...))). That is, an interpretation of the derived co-definite
set constraint over sets of finite trees does not admit the prediction of finite
failure.

7 Conclusion

We have presented a set-based analysis of logic programs with ongoing behavior
(i.e. with the greatest-fixpoint semantics). We have given a characterization of
finite failure of logic programs over rational or infinite trees through the greatest
model over infinite trees, and we have exhibited a connection between the in-
evitability of ‘inconsistent-store’ runtime error for cc programs and finite failure
for logic programs, thus indicating a potential application to error diagnosis for
cc programs.

Our ‘greatest-model’ set-based analysis of logic programs is interesting in its
own right, as a particular instance of static analysis, and also in comparision with
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the ‘least-model’ set-based analyses of classical logic programs e.g. by Mishra [30]
or by Heintze and Jaffar [22].

The practicability of our approach depends on the efficiency of the constraint
solving. Succeeding the earlier technical report [8] on this paper and [4] are based,
Devienne, Talbot and Tison [16] have given a strategy for solving co-definite set
constraints which may achieve an exponential speedup. The realization of this
set-based analysis for the Oz system, and its extension to reactive Oz programs
with non-cc features such as cells and higher-order features is part of ongoing
work. We have implemented a prototype version (with an incomplete constraint
solver); experiments seem to indicate its potential usefulness for finding bugs.

One question arising from this work and the work by Cousot and Cousot
in [12] is whether this set-based analysis is an instance of an abstract interpre-
tation, i.e., whether our constraint-solving process is isomorphic to the iteration
of an abstraction of the Tp fixpoint operator.
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