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Abstract� This paper presents the �rst approximation method of the
�nite�failure set of a logic program by set�based analysis� In a dual view�
the method yields a type analysis for programs with ongoing behaviors

perpetual processes�� Our technical contributions are 
�� the semantical
characterization of �nite failure of logic programs over in�nite trees and

�� the design and soundness proof of the �rst set�based analysis of logic
programs with the greatest�model semantics� Finally� we exhibit the con�
nection between �nite failure and the inevitability of the �inconsistent�
store� error in fair executions of concurrent constraint programs where no
process suspends forever� This indicates a potential application to error
diagnosis for concurrent constraint programs

Keywords� abstract interpretation� set�based program analysis� types� logic pro�
grams� concurrent constraint programs� �nite failure� fairness

� Introduction

Set�based program analysis dates back to Reynolds ��	
 and Jones and Much�
nick ���
 and forms a well�established research topic by now 
see ��� ��� ��
 for
overviews and further references�� It has direct practical applications to type
inference� optimization and veri�cation of imperative� functional� logic and� as
we will see in this paper� also concurrent programs�

In set�based analysis� the problem of reasoning about runtime properties of
programs is transferred to the problem of solving set constraints� The design of
a speci�c analysis involves two steps� 
�� de�ne a mapping from a class of pro�
grams P to set constraints �P and show the soundness of the abstraction of P
by a distinguished solution of �P � and 
�� single out a corresponding subclass of
set constraints and devise an e�cient algorithm for computing the distinguished
solution� For instance� Heintze and Ja�ar de�ned a set�based analysis for logic
programs with the least model semantics in ���
� Their analysis is an approxi�
mation method for the success set of a logic program� i�e� for the set of initial
queries for which a successfully terminating execution exists�



In this paper� we consider the �nite failure set of a logic program� i�e� the set
of initial queries for which all fair executions terminate with failure� In order to
give a sound prediction of �nite failure 
�if predicted� it will occur��� we need a
characterization of �nite failure in terms of program semantics� Classical results
from logic programming� however� only yield the converse� i�e� a characterization
of the greatest�model semantics in terms of �nite failure 
see Remark ��� Fortu�
nately� for programs over the domain of in�nite trees we can characterize �nite
failure through the greatest�model semantics 
more precisely� its complement�
see Theorem ��� Since the analysis we design computes an abstraction of that
semantics� we obtain an approximation method for the �nite�failure set of a logic
program over in�nite trees 
see Theorem ��� More precisely� the emptiness of the
computed abstract value for the predicate p indicates the �nite failure of every
predicate call p
x�� At the same time� this method can predict �nite failure of a
logic program over rational trees� or over �nite trees 
see Remarks � and ���

In the least�model analysis in ���
� Heintze and Ja�ar use de�nite set con�
straints� they give a corresponding constraint solving algorithm in ���
 
see ��
 for
further results�� Our analysis uses co�de�nite set constraints� which bear their
name in duality to de�nite set constraints due to the fact that every satis�able
constraint in this class has a greatest solution� This fact is crucial for our analysis�
Algorithm for solving co�de�nite set constraints are given in ��� ��
� In this paper�
we focus on the de�nition of the analysis and the soundness of the abstraction�
which is� the greatest solution of the co�de�nite set constraint �P inferred from
the program P is a safe approximation of the greatest�model semantics for P

see Theorem ���

In a di�erent reading� our abstraction method is a type analysis of logic pro�
grams with ongoing behavior � Such programs are investigated under the denom�
ination perpetual processes in ���
� There� the semantics of such a program P is
de�ned by the greatest��xpoint semantics over the domain of in�nite trees� Our
analysis computes the abstraction of this semantics in the form of the greatest
solution of the inferred co�de�nite set constraint 
the greatest��xpoint semantics
is equal to the greatest model of P �s completion ���
�� This solution assings to
every program variable x a set of in�nite trees that can be viewed as the type
of x� This type describes a safe approximation 
i�e� a superset� of the set of all
possible runtime values for x in ongoing program executions�

Finally� we consider a potential application to concurrent constraint programs

see e�g� ���� ��
�� We carry over the approximation method of the greatest model
to cc programs� This yields a type analysis for cc programs in the same sense as
above� It also yields a failure analysis� In cc programs� an inconsistent constraint
store 
viz�� failure� is considered a runtime error� 
This is in contrast to logic
programmingwhere failure is part of the backtracking mechanism�� Our analysis
computes an approximation of the execution states of cc programs for which
failure is inevitable in fair executions unless a process 
i�e� a predicate call�
suspends forever 
see Theorem ��� The global suspension of a process is not
necessarily a programming error� That a processmust suspend forever in order
to avoid a runtime error is� however� a problem worth diagnosing and reporting�
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Related Work� To our knowledge� set�based analysis for logic programming 
see
e�g� �	� ��� ��� ��� ��� ��� ��
� has previously only been designed to approximate
the success set 
which can be characterized by the least model semantics��
Mishra�s analysis ���
 is often cited as the historically �rst one here� Heintze
and Ja�ar ���
 have shown that Mishra�s analysis is less accurate than theirs
in two ways� due to the choice of the greatest solution for the class of set con�
straints he considers 
see Remark �� and due to the choice of the non�standard
interpretation of non�empty path�closed sets of �nite trees� respectively� Using
the techniques in this paper� we are able to show that Mishra�s approximation
is so weak that it even approximates the greatest model� Mishra proves that
�p
x� will never succeed� if the set constraint �P he derives is unsatis�able� Our
results yield that �p
x� will �nitely fail� if �P is unsatis�able over the domain of
non�empty path�closed sets of in�nite trees 
see Remark 	��

Regarding the analysis of concurrent constraint programs� various techniques
based on abstract interpretation habe been used 
see e�g� ���
� but none that is
related to set�based analysis� A �rst formal calculus for 
partial� correctness of cc
programs is developed in ��	
� The proof methods there are more powerful than
ours but not automatic� The necessity to consider greatest��xed point semantics
for the analysis of reactive systems has been observed by other authors and in
the context of di�erent programming paradigms 
see e�g� ���� ��
�� None of these
analyses is set�based�

Finally� we want to mention that the idea to derive necessary conditions for
the inevitability of a runtime error by static analysis stems from the work of
Bourdoncle ��
 on abstract debugging �

� Logic Programs

Preliminaries� We assume a ranked alphabet � �xing the arity n � � of its
function symbols f� g� � � � and constant symbols a� b� � � �� and an in�nite set Var

of variables x� y� z� � � �� We write �x for �nite sequences of variables� and use
analogous sequence notation for other syntactic entities� We also write f
�x� for
�at terms� where we assume implicitly that the arity of f equals the length of �x�
A term without variables is called a ground term� The set of in�nite trees over �
is denoted by T�� � Note that an in�nite tree can have �nite paths 
ending with
a constant symbol�� a �nite tree is a special case� The set of terms over � and
Var is denoted by T�� 
Var�� For an arbitrary formula �� we write ��x� for the
existential closure of � with respect to all variables in � but x� We also assume
a set Pred of predicate symbols p� The Herbrand Base B is the set of all ground
atoms over Pred and T�� � i�e�� B � fp
t� j p � Pred� t � T�� g��

Logic Programs� A logic program de�nes predicates through clauses of the
form

p
t� � p�
t��� � � � � pn
tn�

� What we call Herbrand Base is sometimes called Complete Herbrand Base ���� in
order to distinguish it from the classical notion for �nite trees�
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where p
t� is called the head and p�
t��� � � � � pn
tn� is called the body of the
clause� A clause with an empty body is called a fact� A complete program has
the form �

p�Pred

np�
i��

p
ti� �

ni�p�
j��

pij
tij� �

where i ranges over the number np of clauses in the de�nition of predicate p�
and j ranges over the number ni�p of queries in the ith clause of predicate p� For
better readability� we assume that all predicates are unary� the results can easily
be extended to the case without this restriction 
for example� by requiring the
signature to contain at least one binary function symbol��

If we consider the logical semantics of a program of the form above� we take
the completion of P ���
� which is given by the following formula�

compl 
P � �
�

p�Pred

�x p
x��

np�
i��

��x
 x � ti �

ni�p�
j��

pij
tij� ��

A query s is a conjunction
V

k pk
tk� where the tk are terms� We here allow
in�nite terms like f
x� f
x� � � ��� in order to execution states with cyclic uni�ers
such y 	
 f
x� y�� Such terms can be �nitely represented by equations� e�g�
y � f
x� y�� or by syntact annotations as in ��
�

A ground query is a query
V

k pk
tk� such that all tk are ground 
i�e� in�nite
trees�� We use the predicate constant true as the neutral element for conjunction�
i�e�� s � s � true� In particular� the �empty� query is written as true�

An interpretation � 
sometimes called a model� is a subset of the Herbrand
Base� � � B� Interpretations are ordered by subset inclusion�

We identify an interpretation � � B with a valuation � � Pred
 �T
�

� �
i�e� a mapping of predicate symbols to sets of trees such that

�
p� � ft � T�� j p
t� � �g�

A model of the program P is a valuation � � Pred 
 �T
�

� such that the formula
compl 
P � is valid in the usual logical sense�

The greatest model of compl
P �� denoted by gm
P �� always exists� Using our
convention of identifying the interpretation gm
P � with a valuation� we use the
notation gm
P �
p� for the denotation of the predicate p by the greatest�model
semantics� i�e�

gm
P �
p� � ft � T�� j p
t� � gm
P �g�

Operational Semantics� The logic program P de�nes a fair transition sys�
tem TP � hS� 	P i in the following way�

The set S of states of TP consists of all queries 
including true� and the failure
state false�

S � f
�
k

pk
tk� j �k pk � Pred� tk � T�� 
Var�g � ffalseg
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When a selected query atoms p
t� in a state s � S of the form s � srest � p
t�
uni�es with the head of a clause p
ti� �

V
i pij
tij�� then the state s� obtained

as the instantiation of srest �
V

i pij
tij� under the most general uni�er of t and
ti a possible successor state of s� We say that p
t� is applied in the transition
step from s to s�� When a selected query atom p
t� does not unify with any of
the heads of the clauses of p� then the successor state is false�

The fairness of the transition system is de�ned by the fairness of the non�
deterministic selection rule 
in the classical sense ���
� a selection rule is fair if
every query atom in a state s gets selected eventually� in every execution starting
in s�� The non�determinism of the selection rule means that conjunction has
an interleaving operational semantics 
i�e�� conjunction corresponds to parallel
composition�� disjunction corresponds to non�deterministic choice�

Similarly� P de�nes a fair ground transition system T g
P � hS� 	gP i� We obtain

the transition relation 	gP by modifying the one of TP � after every transition step
of T g

P � all variables in the successor state are instantiated with ground terms

i�e� in�nite trees�� Note that ground queries are a special case of queries�

We say that a derivation �nitely fails if if it ends in the state false� A
query p
x� is �nitely failed 
and belongs to the set FF � wif every TP derivation
starting with query p
x� �nitely fails�

FF � fp
x� j p
x� is �nitely failedg

Similarly� a ground query p
t� is called ground �nitely failed 
and belongs to the
set GFF � if every T

g
P derivation starting from p
t� �nitely fails�

GFF � fp
t� j p
t� is ground �nitely failedg

We will now characterize the �nite failure set of a program P over the domain T��
of in�nite trees through the greatest model of compl
P �� Since we have not found
this observation in the literature� we will give its proof� drawing from several
results that are classical in the theory of logic programming�

Theorem � �Characterization of �nite failure over in�nite trees��
Given a logic program P over in�nite trees� the query p
x� is �nitely failed
if and only if the value of p in the greatest model of compl
P � over the domain
T�� of in�nite trees is the empty set� i�e��

p
x� � FF 
P � if and only if gm
P �
p� � 
�

Proof� The only�if direction is a classical result 
namely� the �algebraic soundness
of �nite failure�� see ���� �	
��

For the other direction� �rst note that equations over in�nite trees have the
saturation property� that is� an in�nite set of constraints is satis�able if every of
its �nite subsets is ���� ��� ��
�

Now assume that p
x� �� FF 
P �� Since 
see ���� ��
�

gm
P �
p� � ft j p
t� �� GFF 
P �g�

	



it is su�cient to show that there exists an in�nite tree t such that p
t� �� GFF 
P �

i�e�� p
t� is not in the ground �nite failure set� note that in general� the ground
�nite failure of a call does not imply �nite failure of some ground instance of
this call��

By assumption� there exists an execution starting in the state p
x� that
does not lead to the failure state� That is� there exists a transition sequence
s�� s�� s�� � � � starting in s� � p
x� such that the constraint store �i of every
state si is satis�able 
in the terminology of constraint logic programming ��	
� a
state

V
k pk
tk� is written as the pair h

V
k pk
xk�� �i where the constraint store �

is a conjunction of equations that is equivalent to
V

k xk � tk over the domain
of in�nite trees�� Since �i is stronger than �i�� for i � �� �n is equivalent toVn

i�� �i�
Thus� we have a sequence of constraints ��� ��� ��� � � � such that

Vn

i�� �i is
satis�able for all n� The saturation property yields that also the in�nite conjunc�
tion

V
i�� �i is satis�able� Let 
 be a solution of

V
i�� �i� Then the transition

sequence s�o� s
�
�� s

�
�� � � � that we obtain by instantiating the states si by the valua�

tion 
 is a ground transition sequence that does not lead to the fail state� Hence�
if 

x� � t� then p
t� �� GFF 
P � and GFF 
P �
p� is nonempty� �

Remark �� Palmgren ���
 has shown that a constraint logic program over a con�
straint domain with the saturation property is canonical� That is� gfp
TP � �
TP �

� 
where P �
� �

T�

i�� T
i
P 
B� holds� for the de�nition of TP see Section ���

Since gfp
TP � � BnGFF 
P � holds for canonical programs 
see ��	
�� this is
su�cient to characterize ground �nite failure over in�nite trees� Canonicity is
not su�cient for �nite failure of non�ground queries�

For example� consider the program p
f
x�� � p
x� over the structure
of �nite trees� This program is canonical 
over �nite trees�� Its greatest model
over �nite trees assigns p the empty set 
in accordance with the fact that p
t� �
GFF 
P � for all �nite trees t�� but p
x� is not �nitely failed�

Similarly� Ja�ar and Stuckey ���
 have shown that for programs over in�nite
trees� TP � � equals the complement of �FF 
P �
� where �FF 
P �
 is the set of
ground instances of elements of FF 
P �� This is a characterization of the denota�
tional semantics through the operational semantics� our characterization is the
converse�

Remark �� Since the structure of rational trees and the structure of in�nite
trees are elementarily equivalent ���
 
in particular� the test of satis�ability of
constraints is the same�� we can take the operational semantics of programs over
rational trees in Theorem � 
but we must consider the logical semantics over
in�nite trees�� The modi�ed statement is�
Given a logic program P over rational trees� the query p
x� is �nitely failed if
and only if the value of p in the greatest model of compl 
P � over the domain T��
of in�nite trees is the empty set�

Remark �� The statement of Theorem � holds for constraint logic programs over
every constraint system with the saturation property 
an in�nite set of con�
straints is satis�able if every of its �nite subsets is��
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� Co�de�nite Set Constraints

Syntax� A 
general� set expression e is built from �rst�order terms� union� in�
tersection� complement� and the projection operator ���
�

e ��� x j f
e� j e � e� j e � e� j ec j f���k� 
e�

The projection f���k�
e� is only de�ned if k is a positive integer smaller than the

arity of f � If e does not contain the complement operator� then e is called a
positive set expression� A 
general� set constraint is a conjunction of inclusions
of the form e � e��

A de�nite set constraint ���
 is a conjunction of inclusions el � er between
positive set expressions� where the set expressions er on the right hand side of
� are furthermore restricted to contain only variables� constants and function
symbols and the intersection operator 
i�e�� no projection or union��

De�nition �� A co�de�nite set constraint � is a conjunction of inclusions el �
er between positive set expressions� where the set expressions el on the left�
hand side of � are further restricted to contain only variables� constants� unary
function symbols and the union operator 
that is� no projection� intersection or
terms with a function symbol of arity greater than one��

el ��� x j a j f
e� er ��� x j f
e� j e � e� j e � e� j f���k�
e�

Semantics� We interpret set constraints over �T
�

� � the domain of sets of trees
over the signature�� That is� variables denote sets of trees� and a 
set� valuation
is a mapping 
 � Var 
 �T

�

� � Tree constructors are interpreted as functions over
sets of trees� the constant a is interpreted as fag� and the function symbol f is
interpreted as the function which maps sets S�� � � � � Sn into the set

ff
t�� � � � � tn� j t� � S�� � � � � tn � Sng �

The application of the projection operator for a function symbol f and the k�th
argument position on a set S of trees is de�ned by

f���k� 
S� � ft j �t�� � � � tn � tk � t� f
t�� � � � � tk� � � � � tn� � Sg �

The set operators union � and intersection �� as well as inclusion � are in�
terpreted as usual� De�ne the union of set valuations

S
i 
i on variables as the

pointwise union on the images of all variables� i�e�� 

S

i 
i�
x� �
S

i 
i
x��
The following properties hold for co�de�nite set constraints 
see also ��
��

These properties are essential for our proof in the following section to work�
which shows soundness of abstraction�

Proposition � �Properties of co�de�nite set constraints��

�� Solutions of co�de�nite set constraints are closed under arbitrary unions�
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�� If satis�able� every co�de�nite set constraint � has a greatest solution�
noted gSol
���

�� Every co�de�nite set constraint without inclusions of the form a � x is
satis�able�

Proof� The �rst claim is proved by case�distinction over the possible set inclu�
sions� The second is an immediate corollary from the �rst one� 
Note that the
restriction to constants and monadic function symbols on the left hand side of an
inclusion is crucial here� For instance� the set constraint f
x� y� � f
a� a��f
b� b�
does not have a greatest solution� it has two maximal but incomparable ones��
In order to verify the third claim notice that the valuation which maps every
variable into the empty set is a solution of co�de�nite set constraints without
inclusions of the form a � e� �

Remark 	� Mishra ���
 uses a class of set constraints with a non�standard inter�
pretation over non�empty path�closed sets of �nite trees to approximate the suc�
cess set of a logic program� 
A set of trees is path�closed if it can be recognized by
a deterministic top�down tree automaton ���
�� Set constraints over non�empty
path�closed sets also have the properties �� and �� above� Due to the non�standard
interpretation� this holds even if n�ary constructor terms are allowed on the left
side of the inclusion� For example� the constraint f
x� y� � f
a� a� � f
b� b� has
a greatest solution over path�closed sets 
which assigns both variables x and y

the set fa� bg��

� Set�based Analysis

We will next describe the inference of a co�de�nite set constraint �P from a
logic program P � The intuition is as follows� A clause of the form p
ti�� pj
tij�
can be written equivalently as p
xi�� xi � ti � tij � xij � p
xij�� Following the
abstract interpretation framework� we abstract the semantics�de�ning �xpoint
operator TP by replacing the constraint xi � ti � tij � xij in its de�nition by
the co�de�nite set constraint xi � ti � �
tij � xij�� The �xpoint equation for the

abstract operator T�
P is essentially the inferred set constraint �P � The soundness

of the abstraction follows directly� The schema of our method 
whose ingredients
are Propositions � and Lemma � below� is described in an abstract setting in ���
�

We next introduce the operator � that assigns an inclusion of the form t � x a
co�de�nite set constraint� For example� �
f
x� y� � f
a� a��f
b� b�� is essentially
the conjunction of x � f����� 
f
a� a��f
b� b�� and y � f����� 
f
a� a��f
b� b�� which

is equivalent to the conjunction of x � a � b and y � a � b�
We introduce a fresh variable zt for each subterm t appearing in the formula

and then de�ne the constraint �
t � x� for a term t and a variable x by induction
on the depth of t�

�
y � x� � y � x

�
t � x� �

�
�zt � x � zt� � f����� 
zt� � �
t� � zt��

� � �

� ztn � f���n�
zt� � �
tn � ztn�

�
A for t � f
t�� � � � � tn�

�



Lemma �� If a tree valuation 
 � Var 
 T�� satis�es the equality x � t� then
the set valuation �� � Var 
 �T

�

� de�ned by ��
x� � f

x�g satis�es the co�
de�nite set constraints x � t and �
t � x�� �

We de�ne the co�de�nite constraint �P inferred from P as follows� Here� we
assume that the di�erent clauses are renamed apart 
if not� we apply 
�renaming
to quanti�ed variables��

�P �
�

p�Pred

p �

np�
i

ti �

np�
i

ni�p�
j

�
tij � pij�

Both� symbols p � Pred and x � Var act here as second�order variables ranging
over sets of trees� In the following� when we compare an interpretation � of a logic
program with a valuation � of a set constraint� � � � means that �
p� � �
p�
for all p � Pred�

Theorem � �Soundness of Abstraction��
For a logic program P � the greatest model of P �s completion is smaller than the
greatest solution of �P � formally gm
P � � gSol
�P ��

Proof� We �rst de�ne an abstraction T
�
P of the TP operator� and we prove that

gfp
TP � � gfp
T�
P �� Here� we extend valuations � over trees to valuations 
�

over sets of trees by 

x� � f�
x�g� In the second part we show that gfp
T�
P � �

gSol
�P � where we use Proposition ��

�� gfp�TP � � gfp�T�P �� The TP operator maps an interpretation � to another
one TP 
�� where� for all p � Pred�

TP 
��
p� �

�
t � T�

����� �
 � Var 
 T� �i � t � 

ti��

T�� � 
 j�
V

j tij � �
pij�

	
� 
��

The greatest�model semantics and the greatest��xpoint semantics of a program
P coincide� i�e�� the greatest model of P �s completion is the greatest �xpoint of
the operator TP � formally gm
P � � gfp
TP � 
see e�g� ���
��

The T�
P operator maps an interpretation � to the interpretation T�

P 
�� where�
for all p � Pred�

T
�
P 
��
p� �

�
t � T�

����� �� � Var 
 �T
�

� � �i � t � �
ti��

�T
�

� � � j�
V

j �
tij � xij� � xij � �
pij�

	
� 
��

Here� we use new variables xij as placeholders for pij � The variables x � Var

now range over sets of trees� As usual� we write M� 
 j� F if the formula F is
valid under the interpretation with the valuation 
 on the structure 
with the
domain� M� The formula F above is a co�de�nite set constraint with constants
noted constant �
pij�� The constant �
pij� is interpreted as the set �
pij��

�



Let �� � TP 
�� and ��� � T
�
P 
��� Then ��
p� � ���
p� holds for all p �

Pred� This can be seen as follows� For every tree valuation 
 satisfying the
condition in the set comprehension for ��� the set valuation �� de�ned by ��
x� �
f

x�g satis�es the condition in the set comprehension for ��� by Lemma ��
Clearly� ��
tij� � �
pij�� we replace the inclusion tij � �
pij� by the equivalent
conjunction tij � xij � xij � �
pij�� If �� satis�es the equality tij � xij then
also �
tij � xij��

Hence� T�
P is indeed an abstraction of Tp� and� thus� gfp
TP � � gfp
T�

P ��
This concludes the �rst part of the proof�

�� gfp�T�P � � gSol��P �� In order to show that gfp
T�
P � � gSol
�P �� we

�rst reformulate the de�nition of T�
P as follows�

T
�
P 
��
p� �

�
��Var��

T�
�

�
i

f�
ti� j �
T�� � � j�

�
j

�
tij � xij� � xij � �
pij�g

Fix � and let ��� � T
�
P 
���

We next exploit the fact that the solutions of co�de�nite set constraints are
closed under arbitrary unions 
Proposition ��� Hence� we can replace the union
of solutions in the formula above by the greatest solution� We obtain that

���
p� �
�
i

�i
ti� where �i � gSol

�
j

�
tij � xij� � xij � �
pij���

Since all program variables are renamed apart� we have ���
p� �
S

i �
ti� where

� � gSol

�
i

�
j

�
tij � xij� � xij � �
pij���

Thus� we have ���
p� � �
p� where

� � gSol
p �
�
i

ti �
�
i

�
j

�
tij � xij� � xij � �
pij���

Again� since all program variables are renamed apart�

��� � gSol

�

p�Pred

p �
�
i

ti �
�
i

�
j

�
tij � xij� � xij � �
pij���

Here� we equate the interpretation ��� � Pred 
 �T
�

� with a valuation � inter�
preting a formula with predicate symbols p � Pred and tree variables x � Var

both ranging over sets of trees� and with constants of the form �
pij� standing
for the corresponding sets� We omit any further formalization of this setting�

Let �� be any �xpoint of T�
P � i�e�� T�

P 
��� � ��� This means that �� is a
solution 
the greatest one� in fact� of�

p�Pred

p �
�
i

ti �
�
i

�
j

�
tij � xij� � xij � ��
pij��

��



That is� �� is a solution of �P � Hence� �� is smaller than the greatest solution
of �P � This is true in particular if �� is chosen as the greatest �xpoint of T�

P �
This concludes the second part of the proof� �

Theorem 	 �Set�based failure analysis for logic programs��
The query p
x� is �nitely failed in every fair execution of the reactive logic
program P if the value of p in the greatest solution 
over sets of in�nite trees�
of the co�de�nite set constraint �P derived from P is the empty set� i�e�� for all
predicates p � Pred� if gSol
�P �
p� � 
 then p
x� � FF 
P ��

Proof� We combine Theorems � and �� �

The statement above can be made more precise� Namely the emptiness of
the computed value for an argument variable in the i�th clause of p entails the
�nite failure of every predicate call of p with that clause�

Remark 
� Essentially� the set constraint derived from a logic program P in the
�least�model� analysis of Mishra ���
 is of the form

�P �
�

p�Pred

p �

np�
i

ti �

np�
i

ni�p�
j

tij � pij �

Instead of Lemma �� we have the obvious fact that �� satis�es the set constraint
x � t 
which is equivalent to t � x� if 
 satis�es the tree constraint x � t�
Since we also have the existence of greatest solutions over the domain of non�
empty path�closed sets of 
�nite or in�nite� trees 
see Remark ��� the proof of
Theorem � goes through also for �P instead of �P � and the statements in this
and the next section hold in the appropriate adaptation�

� Concurrent Constraint Programs

We consider concurrent constraint �cc� programs 
see e�g� ���� ��
� in a nor�
malized form such that we can employ a Prolog�style clausal syntax� This is
a notational convention which is convenient to establish a connection to logic
programming�

Furthermore� we consider only the case where constraints C are term equa�
tions t� � t� interpreted over in�nite trees� as in the cc programming language
and system Oz ���� ��
� Hence� we can adopt a Prolog�like syntax and assume
that every procedure p is de�ned either by a single fact or by several guarded
clauses of the form

p
x� � x � t �
 p�
t��� � � � � pn
tn��

In such a guarded clause� we call x � t the guard and p�
t��� � � � � pn
tn� the body�
The operational semantics of a cc program P is de�ned through a fair transi�

tion system T cc

P as TP for logic programs 
again with the non�deterministic fair

��



selection rule�� with one important di�erence� A selected query p
t� can only be
applied if amongst the guarded clauses of predicate p there is one� the ith one
with body x � ti �


V
j pij
tij�� say� such that x � t entails ��x x � ti� if this is

the case in a state S� then the successor state will be S �
V

j pij
tij� under the
most general uni�er of t and ti 
for a more precise de�nition� see e�g� ���� ��
��
Notice that a logic program is a special case of a cc program where all guards
are trivially true� e�g� x � x�

Failure of cc programs� We next apply the approximationmethod of the previous
section to logic programs abstracting cc programs in order to predict the behavior
of the latter�

De�ne the logic program �P abstracting the cc program P by replacing the
guard �
 with conjunction� It is an abstraction in the following sense�

Proposition �� If the query p
t� �nitely fails in the logic program �P abstracting
the cc program P then failure is inevitable in fair executions of the cc program P

unless a process 
i�e� a predicate call� suspends forever�

Proof� Observe that every 
�nite or in�nite� fair computation in P which neither
fails nor deadlocks induces a computation in �P which does not fail or deadlock�
either� This can be made formal by a simulation argument which exploits that
whenever a selected query p
t� is applied with a guarded clause in P it can also
be applied with the associated unguarded clause in �P � This proves the �rst claim
by contraposition� �

Corollary � �Characterization of failure behavior of cc programs��
Failure is inevitable in fair executions of the cc program P unless a process
suspends forever� if and only if the value of p in the greatest model of compl 
P �
over the domain T�� of in�nite trees is the empty set�

Proof� We combine Proposition � and Theorem �� �

Theorem 
 �Set�based failure analysis for cc programs��
Failure is inevitable in fair executions of the cc program P unless a process
suspends forever if the value of p in the greatest solution 
over sets of in�nite
trees� of the co�de�nite set constraint � 	P derived from �P is the empty set�

Proof� We combine Theorem � and Corollary �� �

� Examples

We will give some examples to illustrate how our method of approximating
greatest models with co�de�nite set constraints tests the inevitability of certain
runtime errors� Consider the following simple stream program�

stream
�X�Y jS
� � Y � s
s
X��� computation
Y �� stream
�Y jS
��

main
Z� � stream
�ZjT 
��

��



Suppose we know that the predicate computation makes sense only for 
trees
representing� odd numbers� whereas no such restriction is known for main and
stream� This invariant can be expressed by the following set constraint� which
may have been derived from another code fragment or externally provided by a
program annotation�

computation � s
�� � s
s
computation�� � 
��

Further� we can approximate the set of non�failed computations of the program
with the constraint

stream � cons
X� cons
Y� S�� �

X � computation � X � s�����
s
��
���
Y �� �

Y � cons�����
stream� � S � cons�����
stream� �

main � cons�����
stream� �


��

It is not di�cult to see that the greatest solution of the conjunction of 
��
and 
�� assigns to the variable main 
as well as to X � Y � and computation� the
set of odd numbers� We obtain from this fact that� for example� the querymain
��
inevitably leads to a state where computation is called with a wrong argument�

We illustrate now the necessity to consider in�nite trees by another example�
Consider the reactive logic program P de�ned by

p
f
x��� p
x��

The execution of the query p
x� does not fail� whether the program is de�ned
over the domain of �nite or in�nite trees� We derive the co�de�nite set constraint
�P � p � f
x� � x � p� When interpreted over sets of �nite trees� �P has as
greatest solution the valuation assigning the empty set to p 
and x�� In the
in�nite tree case the greatest solution assigns to p the singleton set containing
the in�nite tree f
f
f
� � ����� That is� an interpretation of the derived co�de�nite
set constraint over sets of �nite trees does not admit the prediction of �nite
failure�

	 Conclusion

We have presented a set�based analysis of logic programs with ongoing behavior

i�e� with the greatest��xpoint semantics�� We have given a characterization of
�nite failure of logic programs over rational or in�nite trees through the greatest
model over in�nite trees� and we have exhibited a connection between the in�
evitability of �inconsistent�store� runtime error for cc programs and �nite failure
for logic programs� thus indicating a potential application to error diagnosis for
cc programs�

Our �greatest�model� set�based analysis of logic programs is interesting in its
own right� as a particular instance of static analysis� and also in comparisionwith

��



the �least�model� set�based analyses of classical logic programs e�g� by Mishra ���

or by Heintze and Ja�ar ���
�

The practicability of our approach depends on the e�ciency of the constraint
solving� Succeeding the earlier technical report ��
 on this paper and ��
 are based�
Devienne� Talbot and Tison ���
 have given a strategy for solving co�de�nite set
constraints which may achieve an exponential speedup� The realization of this
set�based analysis for the Oz system� and its extension to reactive Oz programs
with non�cc features such as cells and higher�order features is part of ongoing
work� We have implemented a prototype version 
with an incomplete constraint
solver�� experiments seem to indicate its potential usefulness for �nding bugs�

One question arising from this work and the work by Cousot and Cousot
in ���
 is whether this set�based analysis is an instance of an abstract interpre�
tation� i�e�� whether our constraint�solving process is isomorphic to the iteration
of an abstraction of the TP �xpoint operator�
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