Set Constraints: a Pearl in Research on Constraints

Leszek Pacholski! and Andreas Podelski?

! Institute of Computer Science, University of Wroctaw
Przesmyckiego 20, PL-51-151 Wroctaw, Poland
www.tcs.uni.wroc.pl/ "~ pacholsk
pacholsk@tcs.uni.wroc.pl
2 Max-Planck-Institut fiir Informatik
Im Stadtwald, D-66123 Saarbriicken, Germany
www.mpi-sb.mpg.de/” podelski
podelski@mpi-sb.mpg.de

Abstract. The topic of set constraints is a pearl among the research top-
ics on constraints. It combines theoretical investigations (ranging from
logical expressiveness, decidability, algorithms and complexity analysis
to program semantics and domain theory) with practical experiments in
building systems for program analysis, addressing questions like imple-
mentation issues and scalability. The research has its direct applications
in type inference, optimization and verification of imperative, functional,
logic and reactive programs.

1 Introduction

Set constraints are first-order logic formulas interpreted over the domain of sets
of trees. These sets of trees are possibly recursively defined. The first-order theory
that they form is interesting on its own right. Essentially, we study it because
the problem of computationally reasoning about sets (of trees) is fundamentally
important. Thus, research on set constraints can be fundamental research.

Research on set constraints can also be applied research. This is because set
constraints form the algorithmic basis for a certain kind of program analysis
that is called set-based. Here, the problem of reasoning about runtime properties
of a programs is transferred to the problem of solving set constraints. Several
systems have been built, each addressing a particular program analysis problem
(obtained, for example, by the restriction to a particular class of programs).
The latter means to single out a subclass of set constraints that fits with the
analysis problem and to build a system solving set constraints in this subclass
(efficiently).

In the next two sections, we will survey results that cover both these aspects of
resesearch on set constraints.



2 Constraint solving

The history of set constraints and set-based program analysis goes back to
Reynolds [83] in 1969. He was the first to derive recursively defined sets as ap-
proximations of runtime values from programs, here first-order functional pro-
grams. Jones and Muchnick [61] had a similar idea in 1979 and applied it to
imperative programs with data constructors like cons and nil (and data destruc-
tors like car and cdr). The set constraints used in these approaches were rather
inexpressive. It was only in the nineties when people crystallized the problem of
solving set constraints and studied it systematically.

Heintze and Jaffar [53] coined the term of set constraints in 1990 and formulated
the general problem (schema) which has occupied a number of people since then:
is the satisfiability of inclusions between set expressions decidable, when these
set expressions are built up by

— variables (interpreted over sets of trees),
— tree constructors (interpreted as functions over sets of trees),
— a specific choice of set operators, Boolean and possibly others.

Assume given a signature X fixing the arity of the function symbols f, g, a,
b ...and defining the set T's; of trees. The symbol f denotes a function over trees,
f:(Tg)™ = Tx, t — f() (where # = (¢1,...,t,) is a tuple of length n > 0
according to the arity of f). By the canonical extension of this function to sets
M,,...,M, €2,

FMy, . oo M) ={f(t1,...,tn) €Ty | t1 € My, ... t, € M,},

the symbol f denotes also an operator over sets of trees, f : (27¥)" — 27> M

f(M). The “inverse” of this operator is the projection of f to the k-th argument,

foyM)={teTs |3, ... .ty ty =t, f(tr,...,t;) € M}.

A general set expression e is built up by: variables (that range over 27>), function
symbols, the Boolean set operators and the projection operator [53]. If e does
not contain the complement operator, then e is called a positive set expression.
A general set constraint ¢ is a conjunction of inclusions of the form e C ¢'.
The full class of general set constraints is not motivated by a program analysis
problem. Note that, generally, ¢ does not have a least or greatest solution.

Heintze and Jaffar [53] also gave the first decidability result for a class of set
constraints that they called definite, for the reason that all satisfiable constraints
in the class have a least solution (the class seems to be the largest one having
this property). A definite set constraint is a conjunction of inclusions e; C e,
between positive set expressions, where the set expressions e, on the right-hand
side of C are furthermore restricted to contain only variables, constants and
function symbols and the intersection operator (that is, no projection or union).
This class is used for the set-based analysis of logic programs [54].



Two years later, in 1992, Aiken and Wimmers [8] proved the decidability for
the class of positive set constraints (in NEXPTIME). Their definition is so natu-
ral (the choice of set operators are exactly the Boolean ones) that the term set
constraints is often used to refer to this class. Ganzinger assisted Aiken’s presen-
tation at LICS’92 and, during the talk, he recognized that this class is equivalent
to a certain first-order theory called the monadic class. One can test the sat-
sifiability of a set constraint ¢ by transforming ¢ into a so-called flat clause,
which is a skolemized form of a formula of the monadic class and for which a
decision procedure based on ordered resolution exists [62]. Thus, the history of
set constraints goes in fact back to 1915 when Lowenheim [69] gave the first
decision procedure for the monadic class. The proof by Ackermann [1] of the
same result gives an algorithm that appears to be usable in practice. The equiv-
alence between set constraints and the monadic class lead Bachmair, Ganzinger
and Waldmann [11] to give a lower bound and thus characterize the complexity
of the satisfiability problem, namely by NEXPTIME. Aiken, Kozen, Vardi and
Wimmers [3] gave the detailed analysis of the complexity of the set-constraint
solving problem depending on the given signature of function symbols. Later,
the decidability, and with it that same complexity result, was extended to richer
classes of set constraints with negation [45,4,88,19] and then with projection by
Charatonik and Pacholski [20] (which settled the open problem for the general
class formulated by Heintze and Jaffar [53]). Set constraints were also studied
from the logical and topological point of view [63,25,65,22] and also in domains
different from the Herbrand universe [50,17,71]. Kozen [64] explores the use of
set constraints in constraint logic programming. Uribe [92] uses set constaints
in order-sorted languages. Seynhave, Tommasi and Treinen [85] showed that the
F*V*-fragment of the theory of set constraints is undecidable.

Charatonik [17,18] studied set constraints in the presence of additional equa-
tional axioms like associativity or commutativity. It turns out that in the
most interesting cases (associativity, associativity together with commutativ-
ity) the satisfiability problem becomes undecidable. McAllester, Givan, Witty
and Kozen [71] liberalized the notions of set constraints to so-called Tarskian
set constraints over arbitrary first-order domain, with a link to modal-logics.
Recently, Charatonik and Podelski [24] singled out set constraints with intersec-
tion (the choice of set operators includes only the intersection), shown that they
are equivalent to definite set constraints, and gave the first DEXPTIME charac-
terization for set constraints. They have also defined co-definite set constraints
(which have a greatest solution, if satisfiable) and shown the same complexity
for this class [23,81]. A co-definite set constraint is a conjunction of inclusions
e; C e, between positive set expressions, where the set expressions e; on the left-
hand side of C are furthermore restricted to contain only variables, constants,
unary function symbols and the union operator (that is, no projection, intersec-
tion or function symbol of arity greater than one). Recently, Devienne, Talbot
and Tison [30] have improved the algorithms for the two classes of definite and
co-definite set constraints (essentially, by adding strategies); although the theo-



retical complexity does not change, an exponential gain can be obtained in some
cases.

The DEXPTIME lower bound can be expected for any class of of set constraints
that can express regular sets of trees, since conjunction corresponds to intersec-
tion (and since the emptiness of intersection of n tree automata is DEXPTIME-
hard [36,84]). Note that there is a close relation between (certain classes of) set
constraints and two-way alternating tree automata [36,24,81,16,86,94,93,40,78]
(cf., however, also the formalization of a connection with 2NPDA’s by Heintze
and McAllester [59]).

To give some intuition, we will translate the tree automaton with the transitions
below (over the alphabet with the constant symbol 0 and the unary symbol s;
note that a string automaton is the special case of a tree automaton over unary
function symbols and a constant symbol)

... 0
nt —x

first into the regular tree grammar [40]

z—0
x — s(y)
y = s(z)

and from there into the regular systems of equations [10,40]

T
Y

s(y)uo

We observe that regular systems of equations have:

— variables interpreted as sets of trees,
— tree constructors applied on sets of trees, and
— the Boolean set operator “union”.

We generalize regular systems of equations to set constraints by
— replacing equality “=" with inclusion “C”,

allowing composed terms on both sides of “C” (which introduces the “two-

way” direction of the automata),

adding more set operators, Boolean and others (roughly, alternation accounts

for intersection on the right hand side of “C”).

Many set constraints algorithm have to deal with the special role played by
the empty set. Namely, when testing the satisfiability of, for example, the set
constraint

oA fla,y) C f(by'),



we can derive a C b (and, thus, false, showing that the set constraint is not
satisfiable) only after we have derived “y is nonempty” from the rest con-
straint . Otherwise, if the value of y in a solution a of ¢ can be (j, then
fHa},a(y)) = {f(a,t2) | t2 € 0} = 0 and the inclusion f(a,y) C f(b,y') is
satisfied. It thus seems natural to investigate the satisfiability problem when the
empty set is excluded from the domain [76,22,24]. It turns out that nonempty-set
constraints have interesting algorithmic properties [75] and logic properties, such
as the fundamental property of independence for set constraints with intersec-
tion [22,24].

3 Set-based analysis

Before we survey results, we will give some intuition. We obtain the set-based ab-
stract semantics of a program by executing the program with set environments.
A set environment at program point ;1; assigns each variable x a set x;,, of val-
ues. That is, for the abstract semantics, we replace the pointwise environments
<program point> +— <runtime value> of the concrete semantics by set envi-
ronments: <program point> > <set of runtime values>. A set constraint
expresses the relation between these sets ;.

We take, for example, the set-based analysis of an imperative programming
language with data constructors (e.g., cons for lists) [49,64]. If 1) and 12 are the
two program points before and after the instruction

(1]
x := cons(y,x)
[2]

then the derived set constraint is
X = cons(ypuy, X)) A Y = Yo,

which expresses naturally the relation between the sets of possible values of x
and y at the two program points.

The following example program illustrates that the set-based analysis ignores
dependencies between variables in the pointwise environments. If the set x;
contains two elements, then the set x,; will contain four.

[1]

y := car(x)
z := cdr(x)
x := cons(y,z)

[2]

In summary, in set-based analysis, one expresses the abstract semantics of a pro-
gram P by a set constraint ¢p (which is obtained by a syntactical transformation



of the program text) and then computes the abstract semantics of P by solving
@pp; the latter means to compute effective representations of the values for xy,
under a distinguished (the least, or the greatest) solution of ¢p. The values are
approximations of the sets of runtime values at ;. The two steps correspond to
the specification of the analysis and to its implementation, respectively.

We next analyse a small example program.

while x =/= nil do
i = i+1
x := cdr(x)

The derived set constraint is

nil Cx Az C cons(;) (x)

whose solved form is
nil U[T|z] Cx

with the set of all lists as the value for x under the least solution.

To give an example of a set-based analysis of a reactive program, we take the
following definition of a procedure in Oz [87].

proc {P X I}
local Y in
X=IY
{P Y (I+1)}
end
end

The derived set constraint is
x Cceons(T,y)ANyCx

with the solved form
x C[T|z]

whose greatest solution assigns x the set of all infinite lists.

The analysis of logic programs is one area of application of set constraints where
systems were and are being built. The area was developed mainly due to the
work of Heintze and Jaffar [54,56,49,57]. Other research groups, for example in
Bristol [38,37] and also in Saarbriicken, are now building systems too. Heintze
and Jaffar started by observing the lack of a formal definition of set-based ap-
prozimation in the earlier work of Mishra [72] and Yardeni and Shapiro [97,98].
They gave such a definition for logic programs in terms of the Tp operator, which
is obtained from the T'p operator by replacing substitutions with set-valued sub-
stitutions (later, McAllester and Heintze [70] gave such a definition for functional
languages). The Tp operator formalizes the intuition of set environments given



above. They gave an equivalent characterization of the set-based approximation
of the logic program P via a transformation of P to another logic program P'.
They were probably the first to look at decidability issues (most of the previous
works just had various ad hoc algorithms). Namely, is the least fixpoint of the Tp
operator, or, equivalently, the least model of P’, effectively representable (such
that, for example, emptiness is decidable)? The effective representation is, as
mentioned above, by tree automata, whose emptiness test is linear. Frithwirth,
Shapiro, Vardi and Yardeni [36] present a set-based analysis with (a restricted
class of) logic programs and showed the DEXPTIME-completeness of the prob-
lem of membership (i.e., of a ground atom in the set-based approximation).
Logic programs are also set constraints in the sense that they express a relation
between sets of trees (namely, the denotations of the predicates in models of
the program). There is also recent work on the set-based analysis of reactive
infinite-state systems that are specified by logic programs [81]; here, definite
and co-definite set constraints are derived from logic programs with oracles in
order to approximate temporal logic properties of possibly infinite program ex-
ecutions. That work also yields that the analysis of Mishra [72] is so weak that
it approximates even the greatest model of a logic program.

The standard Hindley-Milner type system is extended by type inference systems
based on set constraints (soft typing) and it can be weakened even further to
provide a family of set based safety analysis. Early work in this domain was done
by Mishra and Reddy [73] and Thatte [90] and was extended by many researchers
including Aiken, Wimmers and Lakshman [5-7,2,9], Palsberg and O’Keefe [79],
Palsberg and Schwartzbach [80]. McAllester and Heintze [70] systematized the
notion of set-based analyses of functional languages and gave a thorough study of
its complexity. Heintze and McAllester [58,59] address the complexity of control-
flow analysis, which is at the heart of set-based analyses for ML. Cousot and
Cousot [27] showed that set-based analysis can be seen as an instance of an
abstract interpretation in the sense that the process of solving a set constraint
is isomorphic to the iteration of an appropriate fixpoint operator (defining an
abstract program semantics).

The work on Tarskian set constraints [71] employs different constraint solving
techniques and has applications different from program analysis; this area has
much in common with the areas of artifical intelligence, model checking and the
p-calculus.

Several set-based analysis systems have been built. The origins of inefficiency and
other insufficiencies in early systems have by now been recognized. The language
and system CLP(SC) of Kozen [64] and Foster [33] allows one to easily prototype
a set-based analysis system. The systems built by Aiken and F&hndrich [33] at
Berkeley and by Heintze [52] at Bell Labs perform the analysis of functional
programs of several thousand lines of code in acceptable time. The concentrated
effort on the set constraint solving problem was the precondition for the existence
of such systems.

Acknowledgements. 'We thank Witold Charatonik for helpful comments.



References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

W. Ackermann. Solvable Cases of the Decision Problem. North-Holland, Ams-
terdam, 1954.

A. Aiken. Set constraints: Results, applications and future directions. In Pro-
ceedings of the Workshop on Principles and Practice of Constraint Programming,
LNCS 874, pages 326 335. Springer-Verlag, 1994.

A. Aiken, D. Kozen, M. Y. Vardi, and E. L. Wimmers. The complexity of set
constraints. In 1993 Conference on Computer Science Logic, LNCS 832, pages
1 17. Springer-Verlag, Sept. 1993.

A. Aiken, D. Kozen, and E. L. Wimmers. Decidability of systems of set constraints
with negative constraints. Information and Computation, 122(1):30 44, Oct. 1995.
A. Aiken and B. Murphy. Implementing regular tree expressions. In ACM Con-
ference on Functional Programming Languages and Computer Architecture, pages
427 447, August 1991.

A. Aiken and B. Murphy. Static type inference in a dynamically typed language.
In Eighteenth Annual ACM Symposium on Principles of Programming Languages,
pages 279-290, January 1991.

A. Aiken and E. Wimmers. Type inclusion constraints and type inference. In
Proceedings of the 1993 Conference on Functional Programming Languages and
Computer Architecture, pages 31-41, Copenhagen, Denmark, June 1993.

A. Aiken and E. L. Wimmers. Solving systems of set constraints (extended ab-
stract). In Seventh Annual IEEE Symposium on Logic in Computer Science, pages
329 340, 1992.

A. Aiken, E. L. Wimmers, and T. Lakshman. Soft typing with conditional types.
In Twenty-First Annual ACM Symposium on Principles of Programming Lan-
guages, Portland, Oregon, Jan. 1994.

D. Arden. Delayed logic and finite state machines. In Proceedings of the 2nd
Annual Symposium on Switching Circuit Theory and Logical Design, pages 133
151, 1961.

L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are the monadic
class. In Eighth Annual IEEE Symposium on Logic in Computer Science, pages
75-83, 1993.

C. Beeri, S. Nagvi, O. Schmueli, and S. Tsur. Set constructors in a logic database
language. The Journal of Logic Programming, pages 181 232, 1991.

S. K. Biswas. A demand-driven set-based analysis. In The 2/th ACM Symposium
on Principles of Programming Languages POPL °97, pages 372 385, Paris, France,
January 1997.

B. Bogaert and S. Tison. Automata with equality tests. Technical Report IT 207,
Laboratoire d’Informatique Fondamentale de Lille, 1991.

P. Bruscoli, A. Dovier, E. Pontelli, and G. Rossi. Compiling intensional sets
in CLP. In Proceedings of the International Conference on Logic Programming,
pages 647-661. The MIT Press, 1994.

J. Brzozowski and E. Leiss. On equations for regular languages, finite automata,
and sequential networks. Theorical Computer Science, 10:19 35, 1980.

W. Charatonik. Set constraints in some equational theories. In 1st Interna-
tional Conference Constraints in Computational Logics, LNCS 845, pages 304
319. Springer-Verlag, 1994. Also to appear in Information and Computation.
W. Charatonik. Set constraints in some equational theories. PhD thesis, Polish
Academy of Sciences, 1995.



19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

W. Charatonik and L. Pacholski. Negative set constraints with equality. In Ninth
Annual IEEE Symposium on Logic in Computer Science, pages 128-136, 1994.
W. Charatonik and L. Pacholski. Set constraints with projections are in NEX-
PTIME. In Proceedings of the 35'" Symposium on Foundations of Computer
Science, pages 642—-653, 1994.

W. Charatonik and L. Pacholski. Negative set constraints: an easy proof of de-
cidability. Technical Report MPI-1-93-265, Max-Planck Institute fiir Informatik,
December 1993.

W. Charatonik and A. Podelski. The independence property of a class of set
constraints. In Conference on Principles and Practice of Constraint Programming,
LNCS 1118, pages 76-90. Springer-Verlag, 1996.

W. Charatonik and A. Podelski. Set constraints for greatest models. Tech-
nical Report MPI-1-97-2-004, Max-Planck-Institut fiir Informatik, April 1997.
http://www.mpi-sb.mpg.de/“podelski/papers/greatest.html.

W. Charatonik and A. Podelski. Set constraints with intersection. In G. Winskel,
editor, Twelfth Annual IEEE Symposium on Logic in Computer Science (LICS),
pages 362-372. IEEE, June 1997.

A. Cheng and D. Kozen. A complete Gentzen-style axiomatization for set con-
straints. In ICALP: Annual International Colloguium on Automata, Languages
and Programming, LNCS 1099, 1996.

P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. In Proc. POPL ’92, pages 83 94. ACM Press, 1992.

P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based
program analysis by abstract interpretation. In Record of FPCA 95 - Conference
on Functional Programming and Computer Architecture, pages 170 181, La Jolla,
California, USA, 25-28 June 1995. SIGPLAN/SIGARCH/WG2.8, ACM Press,
New York, USA.

F. M. Damm. Subtyping with union types, intersection types and recursive
types. In M. Hagiya and J. C. Mitchell, editors, Theoretical Aspects of Com-
puter Software (TACS’94). Proceedings of the International Symposium, Sendai,
Japan, April 19-22, 1994., volume 789 of LNCS, pages 687 706, Berlin, April
1994. Springer-Verlag.

P. W. Dart and J. Zobel. A regular type language for logic programs, chapter 5,
pages 157 188. MIT Press, 1992.

P. Devienne, J.-M. Talbot, and S. Tison. Solving classes of set constraints with
tree automata. In G. Smolka, editor, Proceedings of the Third International Con-
ference on Principles and Practice of Constraint Programming - CP97, LNCS,
Berlin, Germany, October 1997. Springer-Verlag. To appear.

A. Dovier. Computable Set Theory and Logic Programming. PhD thesis, Dipar-
timento di Informatica, Universita di Pisa, 1996.

A. Dovier and G. Rossi. Embedding Extensional Finite Sets in CLP. In Interna-
tional Logic Programming Symposium, 1993.

M. Fahndrich and A. Aiken. Making set-constraint based program analyses scale.
Computer Science Division Tech Report 96-917, Computer Science Division, Uni-
versity of California at Berkeley, September 1996. Also presented at the Workshop
on Set Constraints, Cambridge MA, August 1996.

J. S. Foster. CLP(SC): Implementation and efficiency considerations. workshop
on set constraints. Available at http://http.cs.berkeley.edu/~ jfoster/. Pre-
sented at the Workshop on Set Constraints, Cambridge MA, August 1996, August
1996.



35.

36.

37.

38.

39.

40.
41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.

53.

J. S. Foster, M. Fiahndrich, and A. Aiken. Flow-insensitive points-to analysis
with term and set constraints. Computer Science Division Tech Report 97-964,
, University of California at Berkeley, September 1997. Also presented at the
Workshop on Set Constraints, Cambridge MA, August 1996.

T. Frihwirth, E. Shapiro, M. Y. Vardi, and E. Yardeni. Logic programs as types
for logic programs. In Sizth Annual IEEE Symposium on Logic in Computer
Science, pages 300-309, July 1991.

J. P. Gallagher, D. Boulanger, and H. Saglam. Practical model-based static analy-
sis for definite logic programs. In Proceedings of the 1995 International Symposium
on Logic Programming, pages 351 368.

J. P. Gallagher and L. Lafave. Regular approximation of computation paths
in logic and functional languages. In Proceedings of the Dagstuhl Workshop on
Partial Evaluation, pages 1-16. Springer-Verlag, February 1996.

K. L. S. Gasser, F. Nielson, and H. R. Nielson. Systematic realisation of control
flow analyses for CML. In Proceedings of ICFP’97, pages 38-51. ACM Press,
1997.

F. Gécseg and M. Steinby. Tree Automata. Akademiai Kiado, Budapest, 1984.
C. Gervet. Conjunto: Constraint logic programming with finite set domains.
In M. Bruynooghe, editor, Proceedings of the International Logic Programming
Symposium, pages 339 358, 1994.

C. Gervet. Set Intervals in Constraint-Logic Programming: Definition and Im-
plementation of a Language. PhD thesis, Université de Franche-Compté, 1995.
European Thesis.

C. Gervet. Interval Propagation to Reason about Sets: Definition and Implemen-
tation of a Practical Language. Constraints, 1(2), 1997.

R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set constraints using
tree automata. In 10th Annual Symposium on Theoretical Aspects of Computer
Science, LNCS 665, pages 505 514. Springer-Verlag, 1993.

R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set constraints with
negated subset relationships. In Proceedings of the 34'" Symp. on Foundations of
Computer Science, pages 372-380, 1993. Full version in [46].

R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set constraints with
negated subset relationships. Technical Report IT 247, Laboratoire d’Informa-
tique Fondamentale de Lille, 1993.

R. Gilleron, S. Tison, and M. Tommasi. Set constraints and automata. Technical
Report IT 292, Laboratoire d’Informatique Fondamentale de Lille, 1996.

R. Gilleron, S. Tison, and M. Tommassi. Some new decidability results on posi-
tive and negative set constraints. In 1st International Conference Constraints in
Computational Logics, LNCS 845, pages 336-351. Springer-Verlag, 1994.

N. Heintze. Set based program analysis. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1992.

N. Heintze. Set based analysis of arithmetic. Draft manuscript, July 1993.

N. Heintze. Set based analysis of ML programs. Technical Report CMU-CS-93—
193, School of Computer Science, Carnegie Mellon University, July 1993.

N. Heintze. Set based analysis of ML programs. In Conference on Lisp and
Functional Programming, pages 306-317. ACM, 1994. Preliminary version in [51].
N. Heintze and J. Jaffar. A decision procedure for a class of set constraints
(extended abstract). In Fifth Annual IEEE Symposium on Logic in Computer
Science, pages 42 51, 1990.



54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.
67.
68.
69.
70.

71.

72.

73.

74.

N. Heintze and J. Jaffar. A finite presentation theorem for approximating logic
programs. In Seventeenth Annual ACM Symposium on Principles of Programming
Languages, pages 197 209, January 1990.

N. Heintze and J. Jaffar. A finite presentation theorem for approximating logic
programs. Technical report, School of Computer Science, Carnegie Mellon Uni-
versity, Aug. 1990. 66 pages.

N. Heintze and J. Jaffar. An engine for logic program analysis. In Proceedings,
Seventh Annual IEEE Symposium on Logic in Computer Science, pages 318 328,
1992.

N. Heintze and J. Jaffar. Semantic Types for Logic Programs, chapter 4, pages
141-156. MIT Press, 1992.

N. Heintze and D. McAllester. Linear-time subtransitive control-flow analysis. In
ACM Conference on Programming Language Design and Implementation, 1997.
To appear.

N. Heintze and D. McAllester. On the cubic bottleneck in subtyping and flow
analysis. In G. Winskel, editor, Twelfth Annual IEEE Symposium on Logic in
Computer Science (LICS), pages 342 351. IEEE, June 1997.

ILOG. ILOG SOLVER 3.2 user manual. www.ilog.com.

N. D. Jones and S. S. Muchnick. Flow analysis and optimization of lisp-like
structures. In Sizth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 244 256, January 1979.

W. Joyner. Resolution strategies as decision procedures. Journal of the Associa-
tion for Computing Machinery, 23(3):398 417, 1979.

D. Kozen. Logical aspects of set constraints. In 19938 Conference on Computer
Science Logic, LNCS 832, pages 175-188. Springer-Verlag, Sept. 1993.

D. Kozen. Set constraints and logic programming (abstract). In 1st International
Conference Constraints in Computational Logics, LNCS 845. Springer-Verlag,
1994. Also to appear in Information and Computation.

D. Kozen. Rational spaces and set constraints. In TAPSOFT: 6th International
Joint Conference on Theory and Practice of Software Development, LNCS 915,
pages 42 61. Springer-Verlag, 1995.

D. Kozen. Rational spaces and set constraints. Theoretical Computer Science,
167(1 2):73 94, October 1996.

G. Kuper. Logic programming with sets. New York, NY, 1990. Academic Press.
B. Legeard and E. Legros. Short Overview of the CLPS System. 1991.

L. Lowenheim. Uber Méglichkeiten im Relativkalkiil. Mathematische Annalen,
76:228-251, 1915.

D. McAllester and N. Heintze. On the complexity of set-based analysis.
www.al.mit.edu/people/dam/setbased.ps.

D. A. McAllester, R. Givan, C. Witty, and D. Kozen. Tarskian set constraints. In
Proceedings, 11" Annual IEEE Symposium on Logic in Computer Science, pages
138-147, New Brunswick, New Jersey, July 1996. IEEE Computer Society Press.
P. Mishra. Towards a theory of types in Prolog. In IEEE International Symposium
on Logic Programming, pages 289 298, 1984.

P. Mishra and U. Reddy. Declaration-free type checking. In Twelfth Annual ACM
Symposium on the Principles of Programming Languages, pages 7-21, 1985.

M. Miiller. Type Analysis for a Higher-Order Concurrent Constraint Language.
PhD thesis, Universitat des Saarlandes, Technische Fakultat, 66041 Saarbriicken,
Germany, expected 1997.



75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

M. Miiller, J. Niehren, and A. Podelski. Inclusion constraints over non-empty sets
of trees. In M. Bidoit and M. Dauchet, editors, Proceedings of the 9th International
Joint Conference on Theory and Practice of Software Development (TAPSOFT),
volume 1214 of LNCS, pages 345 356, Berlin, April 1997. Springer-Verlag.

M. Miiller, J. Niehren, and A. Podelski. Ordering constraints over feature trees.
In G. Smolka, editor, Proceedings of the Third International Conference on Prin-
ciples and Practice of Constraint Programming - CP97, LNCS, Berlin, Germany,
October 1997. Springer-Verlag. To appear.

T. Miiller and M. Miiller. Finite set constraints in Oz. In 18. Workshop Logische
Programmierung, Technische Universitat Miinchen, September 1997. to appear.

M. Nivat and A. Podelski. Tree Automata and Languages. North-Holland, Ams-
terdam, 1992.

J. Palsberg and O’Keefe. A type system equivalent to flow analysis. In Symposium
of Principles of Programming Languages, pages 367-378. ACM, 1995.

J. Palsberg and M. Schwartzbach. Safety analysis versus type inference. Infor-
mation and Computation, 118(1):128 141, April 1995.

A. Podelski, W. Charatonik, and M. Miiller. Set-based analysis of reactive infinite-
state systems. Submitted for publication, 1997.

J. F. Puget. Finite Set Intervals. In Proceedings of the Second International
Workshop on Set Constraints, Cambridge, Massachusetts, 1996.

J. C. Reynolds. Automatic computation of data set definitions. Information
Processing, 68:456 461, 1969.

H. Seidl. Haskell overloading is DEXPTIME-complete. Information Processing
Letters, 52:57-60, 1994.

F. Seynhave, M. Tommasi, and R. Treinen. Grid structures and undecidable
constraint theories. In M. Bidoit and M. Dauchet, editors, Proceedings of the 9th
International Joint Conference on Theory and Practice of Software Development
(TAPSOFT), volume 1214 of LNCS, pages 357 368, Berlin, April 1997. Springer-
Verlag.

G. Slutzki. Alternating tree automata. Theoretical Computer Science, 41:305-318,
1985.

G. Smolka. The Oz programming model. In Volume 1000 of Lecture Notes in
Computer Science, 1995.

K. Stefansson. Systems of set constraints with negative constraints are
NEXPTIME-complete. In Ninth Annual IEEE Symposium on Logic in Computer
Science, pages 137-141, 1994.

F. Stolzenburg. Membership-constraints and complexity in logic programming
with sets. In F. Baader and K. U. Schulz, editors, Frontiers in Combining Systems,
pages 285-302. Kluwer Academic, Dordrecht, The Netherlands, 1996.

S. Thatte. Type inference with partial types. In 15th International Colloquium
on Automata, Languages and Programming, volume 317 of LNCS, pages 615 629.
Springer-Verlag, 1988.

W. Thomas. Handbook of Theoretical Computer Science, volume B, chapter Au-
tomata on Infinite Objects, pages 134 191. Elsevier, 1990.

T. E. Uribe. Sorted unification using set constraints. In 11th International Confer-
ence on Automated Deduction, LNAI 607, pages 163 177. Springer-Verlag, 1992.
M. Y. Vardi. An automata-theoretic approach to linear-temporal logic. In Logics
for Concurrency: Structure versus Automata. LNCS, 1043:238-266, 1996.

M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs. J. Comput. Syst. Sci., 32, 1986.



95.

96.

97.

98.

99.

100.

C. Walinsky. CLP(X™): Constraint Logic Programming with Regular Sets. In
Proceedings of the International Conference on Logic Programming, pages 181—
190, 1989.

E. Yardeni, , T. Frithwirth, and E. Shapiro. Polymorphically typed logic programs,
chapter 2, pages 157-188. MIT Press, 1992.

E. Yardeni. A type system for logic programs. Master’s thesis, Weizmann Institute
of Science, 1987.

E. Yardeni and E. Shapiro. A type system for logic programs, volume 2, chapter 28,
pages 211 244. The MIT Press, 1987.

E. Yardeni and E. Shapiro. A type system for logic programs. Journal of Logic
Programming, 10:125-153, 1991. Preliminary version in [98].

J. Young and P. O'Keefe. Experience with a type evaluator. In D. Bjgrner, A. P.
Ershov, and N. D. Jones, editors, Partial Evaluation and Mized Computation,
pages 573-581. North-Holland, 1988.



