Verification and Debugging of Concurrent Constraint Programs
through Abstract Interpretation with Set Constraints

Andreas Podelski
Max-Planck-Institut fiir Informatik
Im Stadtwald, D-66123 Saarbriicken

podelski@mpi-sb.mpg.de

Abstract

The existing automated verification methods apply mainly to those concurrent systems
where the number of concurrent processes is statically fixed and the data dependencies of
the control flow are simple. Systems that are specified and programmed in the concurrent
constraint programming paradigm (cc) specifically overcome those two limitations. There,
memory states are modeled by logical formulae (constraint stores); these are conjunctions
which monotonically grow in one transition sequence. We give a framework for specifying
correctness criteria for cc systems (with an unbounded number of processes). We give a
method for verifying or debugging temporal-logic properties of cc systems in which we
extract a set constraint syntactically from the program and the correctness specification.
That set constraint is a high-level specification of the automaton which accepts a (lower
or upper, respectively) approximation of the set of correct input states.

Our method relies on two observations that we establish in this paper: (1) Temporal
properties are characterized through least and greatest fixpoints of the Tp operator from
constraint logic programming (if the underlying constraint domain has the so-called sat-
uration property). (2) The greatest model semantics, i.e., gfp(Tp), can be approximated
by a set constraint. We formalize our approximation process in the abstract interpreta-
tion framework. For the least model semantics, its approximation by set constraints was
already introduced by Heintze and Jaffar and formalized as an abstract interpretation by
the Cousots.

1 Overview

We show that temporal properties of (terminating or non-terminating) executions of a con-
straint logic program P are characterized through the least and greatest fixpoints of the Tp
operator (Tp maps a set of ground facts to the set of their immediate logical consequences
under P). The characterization puts a requirement on the underlying constraint domain (the
saturation property, see below).

As a consequence of the characterization, one can use existing or new methods of abstract
interpretation with respect to the least or greatest model semantics of CLP programs for ap-
proximating temporal properties from the above or the below and obtain automated tools for
the verification or the debugging, respectively, of cc programs. Given a concurrent constraint
program P, we first approximate its set of (generally non-terminating) executions by the
one of an associated constraint logic program P.

We give a new method for approximating the greatest model semantics, i.e., gfp(Tp),
through a set constraint K% (its greatest solution, precisely). As usual in set-based analysis,
the set constraint is derived syntactically from the program. We establish the approximation,
however, as an abstract interpretation process, und use this to formalize it, prove it correct
and define the degree of approximation.

For the first time, set constraints are used for the approximation of the greatest model
semantics. Previous approaches have considered only the case of the least model semantics.
Also, for the first time, set-based analysis works on a parametrized constraint domain. Pre-
vious approaches have mainly considered the case of the domain of finite trees. We give two
conditions which define when an extension of the notion of constraints on a parametrized
constraint domain D to a notion of set constraints (i.e., a logic over the domain P(D) of sets
of values in D) is appropriate for the set-based analysis considered here. We define a logic of
set constraints over sets of (finite, rational or infinite) trees which fulfills this requirement.

The characterization of temporal properties through gfp(Tp) requires an assumption on
the underlying constraint domain. Namely, if every finite subset of a set S of constraints is
satisfiable, then also the set S. This property is called saturation.

The constraint domain of the concurrent constraint programming language Oz takes equa-
tions over infinite trees.! This domain owns the saturation property. This has already been
shown by Palmgren (1994). We can give a new proof which in a simple way exploits the
topological properties of the constraint domain (which is compact, and the solutions of a
constraint form a closed set).

Now, we can instantiate our framework to the constraint domain of infinite trees. Since a
set constraint can be tested for consistency and, if satisfiable, brought into a solved form rep-
resenting the greatest solution (essentially as a tree automaton) in worst-case exponential time
(this is also a lower bound), we obtain an automated procedure for approximating temporal
properties of cc programs. If the tree automaton used for the representation is deterministic,
the test on a given state with constraint store ¢ is linear in (.

2 Example
We take the example of a stream program in CLP-like syntax.
p(z) <> Jy3z = = [y|z] A <computation on y and z> A p(z)

We may be interested in states where the procedure p is called and the constraint store is
compatible with the fact that the actual argument of p lies in a particular set of values. We
call the set of such states Prop. We may want to check for some given state s whether for
some (for all) executions starting in s all states reached lie in Prop (or whether a state in Prop
can be reached). The four properties of the state s that we may want to check correspond to
membership in the set obtained by applying one of four temporal logic operators on the set
Prop.

3 Set constraints for greatest model semantics

We assume a constraint system consisting of a class £ of constraints ¢ (i.e., a subclass of
first-order formulas over a given signature 3 which is closed under conjunction and existential
quantification) and a structure D (i.e., a domain D of values together with an interpretation
of the function and relation symbols occurring in X).

We next define the class LY of set constraints K with union by extending the syntax of
the constraints ¢ with the function symbol U and the relation symbol C.

K= glzCylz=yUz| KL Ay

'Tn sequential CLP languages (e.g., Prolog-II), one enlargens the domain of finite trees with rational trees
in order to account for cyclic data structures. The choice of infinite trees, as opposed to just rational ones, is
due to the fact that these can be used to describe the limits of non-terminating executions.

The intended interpretation domain of set constraints K is the domain P (D) of sets of values
of D. There is no generic way to define their interpretation for a parametrized constraint
system. It seems natural to require that the singletons of solutions of constraints ¢ over D
are solutions of ¢ (now as a set constraint) over P(D). Formally:

Condition 1. If o : Var — D is a solution of the constraint ¢, then the valuation o : Var —
P(D) defined by o(z) = {a(x)} is a solution of the set constraint (.

In our framework we require a second condition, namely that solutions of set constraints are
closed under union. (Roughly, this means that the interpretation is “coarse enough”. In the
examples we have considered it is obtained by introducing approximations.)

Condition 2. If o7 and oy are solutions of the set constraint IC then also the valuation
o : Var — P(D) defined by o(x) = o1 U o9 is a solution of K.

We say that the constraint system consisting of £Y and the structure D¢ with the domain
P (D) of sets of values in D is appropriate if Conditions 1 and 2 hold.

A CLP program consists of clauses of the form below, where p is a predicate (p € Proc)
defined by, say, n clauses which are all renamed apart, i.e., don’t share any variables (and
i=1,...,n). .

p@y) —vin N pii(5i)
j=1,...m;
For the logical semantics, we refer to the following formula (in which we leave the existential
quantifiers implicit; the variables shared among disjuncts are only the variables in the tuple
Tp in the definition of the predicate p(Zp)).

P = /\ p(Tp) < \/ (:f:p:i;/\l/%/\ /\ i (¥ij))

pEProc i=1,..n j=1,...m;

We map P to the following set constraint K.

Kp = N &= U 5 A AN @Gin A 55 Cay)
pEProc i=1,..n i=1,..n j= i

In the special case where the constraint domain is Herbrand, Xp coincides with the set con-
straint obtained from a Prolog program by the type inference algorithm of Misra (1984);
there, however, the inferred set constraint is used to approximate the [east model (i.e., the
least fixpoint of the Tp operator).

We recall that Tp maps a set X of ground facts to the set of their immediate consequences
under the programm P; i.e., if X C Bp = {p(d) | p € Proc, d € D}, then

Tp(X) ={p(d) | Ja: Var - D Fi € {1,...,n}: a(if,) =d,
D, a = i,
pij(a(7ij) € X}

where the set comprehension ranges over all predicates p € Proc defined by the program P.

Theorem 1 If the system (£Y, D) of set constraints with union is an appropriate exten-
sion of the system of constraints that underlies the program P, then the greatest model of P
(or, equivalently, the greatest fixpoint of Tp) is approximated by the greatest solution of Kp.

gfp(Tp) C {p(d) | p € Proc, d € greatestSolution(Kp)(Z,)}

If we set p~1(S) = {d | p(d) € S} for a set S and a predicate p, then the inclusion above can
be written as the conjunction of the inclusions below (for all p € Proc).

p~ " (gfp(Tp)) C greatestSolution(Kp)(Z,)

Proof. ~ We will prove Theorem 1 after we state Theorem 2.
We say that a subset X of Bp is Cartesian if there exist subsets D, 1,...,D,; € D such
that
p HX)=Dp1 x...Dp

(for all p € Proc, where [is the arity of p). We represent X by a mapping p : Var — P(D)
that maps each formal variable z, (the k-th formal argument of the [-ary procedure p) to
D, . and each other variable to the whole domain D, thus representing X by

X = plolp1) x ... x plzpy)).
pEProc

We define the abstract domain P(Bp)# as the subdomain of the concrete domain P(Bp)
consisting of all its Cartesian sets. The abstraction of the Tp operator is an operator defined
on P(Bp)# by

THX) = {p(dr,...,d) | Yk=1,...,1 |
Jo:Var = P(D) Ji€{l,...,n}: di € o(z);),
Dsetsag |: 1/)7:7
pij(o(gi5)) € X}

Clearly, the image X' of a Cartesian set X under T# is again Cartesian. It is represented by
/
P’ where

P (zpr) ={d€D|3o:Var - P(D)F €{l,...,n}: dEe oz 1),
DSets’o_): d)ia
pij(o(Ti)) € X}

The following theorem formalizes the process of approximation in the previous theorem and
motivates the definition of the mapping P — K.

Theorem 2 The greatest solution of Kp is the greatest fixpoint of the operator T# .
{p(d) | p € Proc, d € greatestSolution(K2)(Z,)} = ¢fp(TH)
Another way to write the inclusion above is as the conjunctions of the inclusions
greatestSolution(Kp)(z,) = pil(gfp(T#))

for all p € Proc.
Condition 1 implies immmediately the soundness of the approximation of Tp by T# , b€l

Tpoy CyoTf

where the concretization function from P(Bp)# to P(Bp) is the identity. Thus, in the abstract
interpretation framework of the Cousots, Theorem 1 is a direct consequence of Theorem 2.
Proof. [of Theorem 2]Let X € P(Bp)# be represented by the mapping p : Var — P(D) and
its image X' = T# (X) of X under the abstraction of the Tp operator by the mapping p'.
We may represent the value of the variable z,, ;, the k-th formal argument of the procedure p
under the mapping p’ as follows.

p,(iﬁp,k) = UUEVarﬁ'P(D) Uie{l,...,n}{a(x;,k) | DSets’ o): i,
/\j:l,...,mi U(glj)) - p(ipij)}

If we assume that all constraints 1; are satisfiable, then, since we have assumed that the system
DSels is appropriate, i.e., it satisfies Condition 2, we may transform the above equality to the
following one.

' (zp1) = greatestSolution(Z, = U a‘c;, A /\ (b A /\ ij C p(Zp;;) (Tpk)))
ie{l,...,n} i=1,...,n j=1,..,m;

Note that the greatest solution of the conjunctions of set constraints with conjunctions of the
form z C S for sets S C D exists since it exists for set constraints due to Condition 2. We may
assume that the equality holds for all variables and write an equality between two mappings

from variables to sets of values (namely p’ and the greatest solution o), i.e., valuations of
IDS’ets‘

¢l =greatestSolution(A\ z, = J z A N\ (in N\ G C o))
peProc i€{L,...,n} i=1,m =Ly

We introduce the operator ® over valuations of D3¢,

®(p) = greatestSolution(/\ Ty = U a‘c;,/\ /\ (s N /\ ij C p(Zp;;)))

pEProc ic{l,...,n} 1=1,..,n Jj=1,...m;

Let Xg be the greatest fixpoint of the abstraction of the Tp operator. Then the representation
po of Xy is the greatest solution of the following fixpoint equation.

p=2(p)

We now show that py = greatestSolution(K3).
If p; is any fixpoint of ®, then p; is the greatest solution of the conjunction K; A Ky of the

set constraint _
Ki= /\ Ty = U :f‘;, A /\ h;

p€EProc ie{l,...,n} i=1,...,n
and the formula
/\ /\ /\ Yij & p1 (ipij)‘
p€EProc i=1,...,nj=1,....m;

Thus, p; is a solution also of '3 = Ky A K}, where

/\ /\ /\ Yij S Tp,;-

p€EProc i=1,...,n j=1,....,m;

Thus, p; < greatestSolution(K'2) holds for any fixpoint of ®, and in particular for the greatest
one, namely pg.

We next show that the greatest solution oy of ICU is a fixpoint of ®. If o9 =
greatestSolution(K'3), then oy is the greatest solution of IC1 A K4 where

/\ /\ /\ Yij & O—O(i‘pij)

pEProc i=1,...,n5=1,....m;

since, if oy is any other solution of K1 A KJ then oy U oy is also a solution of K%, and, thus,
o9 Uoy < og. Thus, o9 = ®(0y).

4 Erroneous states and greatest model semantics

We now turn to transition systems that are induced by constraint logic programs according
to their abstract operational semantics. The states are the error state err or pairs consisting
of the parallel composition of procedure calls and of the constraint store, i.e.,

S ={{ /\ pi(Zi),) | n >0, ¢ is a satisfiable constraint} U {err}.

i=1,...,n

We identify states modulo the AC1-laws for parallel composition of procedure calls in the first
component and modulo logical equivalence of the constraint stores in the second component.
We use the same symbol A also for the logical ‘and’ composition of constraints; in both cases,
T (true) is the neutral element; it corresponds either to the empty parallel composition or to
the empty parallel conjunction.

The transition function 7p of the system induced by the program P is defined as follows.
Let s be a state is of the form s = (p(Z) A E, ¢) and the procedure p be defined by n clauses
as in the form above. , For any 7« = 1,...,n, there is a transition from s into the state

8" = (Nj=1,...m; Pij (Tig) NE, 0 Ny,

(p(Z)NE,p) —7p (’ N (i) A E o Aiy)

7j=1,...m;

if ¢ A 1); is satisfiable. If no such transition exists (for that predicate p), then there is a
transition from s into the error state err. An execution is fair if for every state s, every
procedure p occurring in s will be applied (ie, yield a transition as described above) eventually
(i.e., for some state in the execution sequence starting in s).

For a given state s = (p(Z),¢), we define that |s]p = {p(d) | d is a solution of ¢} (i.e.,
the set of all ground instances of the query p(z) A ¢). We extend this definition to sets of
states in the canonical way.

Theorem 3 If the constraint system has the saturation property, then a state s terminates
in the error state in every fair execution of the transition system induced by the program P if
and only if none its ground instances lies in the greatest model of P (or, equivalently, in the
greatest fixed point of Tp); i.e.,

every execution starting in (p(Z), @) leads to err iff |[(p(Z),p)|p Ngfp(Tp) =0

Proof. Palmgren (1986) has shown that every program over a constraint domain with the sat-
uration property is canonical. Therefore, by classical results, every ground execution starting

in any ground instance p(d) of (p(Z), ¢) leads to err if and only if p(d) & gfp(Tp); i-e.,
GFFp = Bp — gfp(Tp).

Thus, we only need to show that every ground execution starting in any ground instance p(d)
of (p(z), p) leads to err if and only if every execution starting in (p(z), ¢) leads to err; i.e.,

(p(7),9) € FFp iff |[(p(Z),¢)|p C GFFp.

The “only if” direction is clear. For the “if” direction, assume that there exists an execution
starting in the state s = (p(Z), ¢) that does not lead to err. That is, there exists a transition
sequence s = sg, 1, S2, - - - such that the constraint store, say ; of every state s; is satisfiable.
Since ¢; is stronger than ; ;1 for i > 1, this means that (),_ _, Sol(®;) # (. The saturation
property yields that also ;o Sol(¢;) # 0. Let @ be a member in this set, i.e., a solution
of the infinite set constraint stores ;. Then the transition sequence s, s}, sb,... that we
obtain by instantiating the constraint store in each state s; by the valuation « is a ground
derivation that does not lead to err. Hence, if a(z) = d, then p(d) € |(p(z),p)|p — GFFp.
This completes the proof of the “if” direction.

5 The constraint domain of infinite trees

For the canonical extension of the constraint domain Herbrand (the constraints are equations
between terms interpreted over finite trees) to set constraints with union, the interpretation of
constructor symbols is the canonical extension from trees to sets of trees; inclusion and union
have their usual set-theoretic interpretation. The first condition is satisfied, but the second
one is not. Both conditions are satisfied if we interpret the inclusion relation as follows (the
same holds true for the cases of rational and infinite trees).

DSts g =z Cy iff Paths(o(z)) C Paths(o(y))
D,S'ets’o.|:f(ul’___’un)g0 iff U(Ul)::O’(Un):@
The first condition corresponds to taking the usual “Cartesian” approximation of union. We

define the set Paths(t) for a tree ¢ (its extension to sets of trees is the canonical one) as the
set of the path labelings “together with their direction”.

paths(a) = {{a,e)}
paths(f(ty,....tn)) = {{(f,1).p|p € paths(ti)}U...U{(f,n).p|p € paths(t,)}

The second condition accounts for the special role of the empty set (and corresponds to
optimizations in existing implementations of set-constraint solvers).

6 Temporal properties of CLP systems

Let (S,7T) be a transition system, i.e., a set S of states together with a (non-deterministic)
transition function 7 : § — P(S), i.e., a mapping from S to the powerset of S. Given
a property of states, i.e., a set Prop C &, we can define a new set of states satisfying a
CTL-style temporal property in one of the following ways.

EF(Prop) = Ifp(AX. PropU 7T 1(X))

EG(Prop) = gfp(AX. PropNT (X))
AF(Prop) = S — EG(S — Prop)
AG(Prop) = S — EF(S — Prop)

Here, EF(Prop) (“exists finally Prop”) denotes the set of all states s € S for which there exists
an execution starting in s and reaching a state s’ in Prop, i.e., there exists a sequence of states
S =80,...,8, =& such that s; € T({s;—1}) fori=1,...,n.

EF(Prop) = U(Tﬁl)i(Prop)

i>0

Similarly, EG(Prop) (“exists globally Prop”) denotes the set of all states s € S for which there
exists an execution starting in s such that all reached states lie in Prop, i.e., a (necessarily

infinite) sequence of states s = sg, s1, S92, ... € Prop such that s; € T({s;—1}) fori=1,...,n.
EG(Prop) = ﬂ(T_l)i(Prop)
i>0

The meaning of the other two sets is obtained in the analogous way by referring to all execu-
tions starting in the states they contain.

The transition systems we consider are induced by (generally non-terminating) constraint
logic programs. (They will also appear as approximations of those that are induced by con-
current constraint programs, introduced in the next section).

The following schema for specifying state properties is inspired by the abstract debugging
framework of Bourdoncle (1991). We annote each predicate p(z) with an assertion v(z) on
the set of the possible values of Z. (One may fix default assertions, for example true or false.)
Given such an annotation with assertions, we define:

Prop = {(/\ pi(Zi),) | /\ vi(Z;) N\ @ is satisfiable}

i=1,...,n i=1,...,n

Properties Prop of states defined in this way are invariant under parallel composition of
procedure calls in the following sense. If s and s’ lie in Prop then also the state that is the
component-wise A-composition of s and s’. We call a set of states thus defined an invariant
property. We note that the above definition is one possibility to define properties of states
without a bound on the possible number of procedure calls (“processes”).

From now on, we take the definitions of temporal properties with respect to the transition
function 7 induced by a corresponding CLP program. We define the following transformers
of sets of ground facts.

TP\/Prop = AX. {PFOPJD U TP(X)
Tp/\prop = 2X. LPropJD N TP(X)

Our notation is justified by the fact that T'pprop is the operator associated with the program
P V Prop below. We obtain this program from P by adding a disjunct of the form z, €
{d | p(d) € Prop} to each definition of a predicate p(z).

PV Prop = /\pEProc p(jp) Ans Vi:l,...n (@D = _j; N thi A /\j:l,...,mi pij(gij))
V I, € {d| p(d) € Prop}

In the analogous way, Tpaprop is the operator associated with the program P A Prop below
which we obtain by adding a conjunct of the same form to each clause in the definition of a
predicate p(z).

PAProp = N\ p@) e | @ =3, A A Nj=1,....m; Pis (Fis)
pEProc i=1,..n A i,p c {d | p(d) c Prop})

If the conjunct can be expressed by a constraint), then the programs PV Prop and P A Prop
are again pure CLP programs. In the framework where we derive set constraints, we may
define the set Prop as the greatest solutions of a set constraint in £Y in programs P V Prop,

and as the least solution of set constraints in £ (i.e., with intersection) in programs P A Prop.
2

Theorem 4 Given an invariant set of states Prop, there exists at least one execution starting
in the state s = (p(z),) and reaching a state in Prop if and only if there exists a solution of
¢ mapping Z to d such that p(d) lies in the least fixpoint of the operator Tpypyop.

(p(z),) € EF(Prop) < [{p(7),9)|p N1fp(Trverop) # 0

If the constraint domain D has the saturation property, there exists at least one execution
starting in the state s = (p(z), ¢) such that every state reached during the execution lies in
the set Prop if and only if there exists a solution of ¢ mapping Z to d such that p(d) lies in
the greatest fixpoint of the operator Tppprop.

(p(%), 0) € EG(Prop) < [(p(Z),)]p Ngfp(TPaprop) 7 0

’In a more powerful framework, Prop may be defined by temporal properties itself; i.e., one may nest
temporal operators. One may obtain then set constraints with conjuncts of the form z C leastSolution(K?)
or greatestSolution(K3) C x. It is an open problem whether such set constraints are effectively solvable, and
what their expressiveness is with respect to Rabin tree automata.

7 Concurrent Constraint Programs

We will now consider the transition systems that are induced by concurrent constraint pro-
grams. As before, its states are the error state or pairs consisting of the parallel composition
of procedure calls and of the constraint store, i.e.,

S ={(/\ pi(Zi),) | n >0, ¢ is a satisfiable constraint} U {err}.

i=1,...,n

We identify states modulo the same laws as before.

The transition function Tp of the system induced by the cc program P is defined according
to the semantics of the “pure” cc programming constructs. The procedure p is defined either
as the “tell” of a constraint v, i.e.,

p(Z) <Az 9

or as the committed choice of several guarded clauses,

p(@) < \/ ElXi-T/)iﬂ. N pii(Fi)-

i=1,..n j=1,...m;

In the first case, there is a transition from a state s of the form s = (p(Z) AE,). into the state
s' = (E,p A1) if p A1) are satisfiable, and into the error state err otherwise. In the second
case, a transition going from s = (p(T) A E,) into the state s’ = (A\;_ . Pij(Fij) NE, o A)
is possible for any ¢ = 1,...,n under the condition that ¢ entails 3Xj. .

If a state is of the form s = (T,p) (where T is the “empty” parallel composition of
procedure calls; i.e., the execution of the program terminates in s) then, for formal reasons,
we require that there is a transition of every such state upon itself. The same holds for the
error state.

We obtain upper approximations of the sets EF(Prop) and EG(Prop) and lower approxi-
mations of the sets AF(Prop) and AG(Prop) as follows. We relax the condition under which
a clause in the committed-choice definition of a procedure p(Z) may be chosen (namely, the
constraint store ¢ entails the guard 1)) to the condition that the conjunction of ¢ and v is
satisfiable.

The approximated transition function corresponds to the abstract operational semantics
of the constraint logic programming (CLP) paradigm. In that paradigm, however, executions
of a program have a meaning only if they terminate. In this paper we are interested in
generally non-terminating concurrent systems (which is why we use temporal properties as
specifications). The approximated system does not account for synchronization based on
suspension. It is still a concurrent system (in the sense, for example, of Lamport (1992)) in
that its behavior is characterized by (interleaving) non-determinism plus fairness.

