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Abstract

We investigate a resolution-based verification method for secrecy and authentication
properties of cryptographic protocols. In experiments, we could enforce its termi-
nation by tagging, a syntactic transformation of messages that leaves attack-free
executions invariant. In this paper, we generalize the experimental evidence: we
prove that the verification method always terminates for tagged protocols.

1 Introduction

The verification of cryptographic protocols is an active research area, see [1-
37]. Tt is important since the design of protocols is error-prone, and testing
cannot reveal potential attacks against the protocols. In this paper, we study
a verification technique based on Horn clauses and resolution akin to [4, 5, 34].
We consider a protocol that is executed in the presence of an attacker that
can listen to the network, compute, and send messages. The protocol and the
attacker are translated into a set of Horn clauses such that: if the fact att(M)
is not derivable from the clauses, then the protocol preserves the secrecy of
the message M in every possible execution. The correctness verified is stronger
than the one required since the executions possible in the Horn clause model
include the ones where a send or receive instruction can be applied more than
once in the same session. In practice, the difference between the correctness
criteria does not show (no false alarm arose in our experiments).

The verification technique consists of the translation into Horn clauses, fol-
lowed by the checking of the derivability of facts att(M) by a resolution-based
algorithm. It has the following characteristics.

e [t can verify protocols with an unbounded number of sessions.
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e [t can easily handle a variety of cryptographic primitives, including shared-
key and public-key cryptography (encryption and signatures), hash func-
tions, message authentication codes (mac), and even a simple model of
Diffie-Hellman key agreements. It can also be used to verify authentica-
tion [5].

e It is efficient in practice (many examples of protocols of the literature are
verified in less than 0.1 s on a 1 GHz PC; see [5]).

The resolution-based verification algorithm has one drawback: it does not
terminate in general. In fact, in our experiments, the algorithm did not termi-
nate (went into an infinite loop) when we applied it to the Needham-Schroeder
shared-key protocol [4] and several versions of the Woo-Lam shared-key one-
way authentication protocol [5]. It is always possible to modify the algorithm
to make it work on those cases and any finite number of other cases, but that
will not affect its inherent non-termination property (inherent by the unde-
cidability of the problem that it tries to solve). In this paper, we investigate
an alternative: tagging the protocol.

Tagging consists in adding a unique constant to each message. This is a syn-
tactic operation done once on the textual representation of the protocol; i.e.,
no new tags are generated during the execution of the protocol, in contrast to
nonces. For instance, to encrypt the message m under the key k, we add the tag
co to m, so that the encryption becomes sencrypt((co, m), k). The tagged proto-
col retains the intended behaviour of the original protocol; i.e., the attack-free
executions are the same. Under attacks, it is possibly more secure. Therefore,
tagging is a feature of a good protocol design, as explained e.g. in [2]: the
receiver of a message uses the tag to identify it unambiguously; thus tagging
prevents type flaws that occur when a message is taken for another message.
(This is formally proved in [21] for a tagging scheme very similar to ours.)
This also means that a security proof for a tagged protocol does not imply
security of an untagged version. Tagging is also motivated by practical issues:
the decoding of incoming messages becomes easier. For all these reasons, tags
are already present in protocols such as SSH.

In our experiments (including the protocols mentioned above), we obtained
termination after tagging the protocol. In this paper, we give the theory behind
the experiments: the resolution-based verification algorithm always terminates
on tagged protocols. More precisely, the algorithm terminates on protocols
where tags are added to each use of a cryptographic primitive, which may be
among: public-key cryptography where keys are atomic, shared-key cryptogra-
phy (unrestricted), hash functions, and message authentication codes (mac’s).

This means that we show termination for a class of protocols that includes
many relevant examples.



Overview To verify a protocol, we translate it into a set of Horn clauses.
In Section 2, we give an example of such a translation and define the formal
protocol models that form the input of the algorithm. We then, in Section 3,
define the algorithm to check secrecy properties of a protocol. Sections 2 and 3
provide the background for the results in this paper; they recapitulate and
extend material from [4]. In Section 4, we give a number of formal properties
of sets of Horn clauses. The properties do not only express that the protocol is
tagged, but also that the set of Horn clauses arises as a model of a ‘reasonable’
protocol. In Section 5, we prove that the algorithm is guaranteed to terminate
for tagged protocols, i.e. for Horn clause models that satisfy the properties
defined in Section 4. In Section 6, we show that the algorithm is exponential
in the worst case for tagged protocols. The algorithm can be extended to
authentication; in Section 7, we answer the question whether the termination
result still holds for the extension of the algorithm to authentication. We relate
our work to existing work in Section 8.

2 The Horn Clause Model of a Protocol

Cryptographic protocols can be translated into Horn clauses, either by hand,
as explained in [4, 34], or automatically, for instance, from a representation of
the protocol in an extension of the pi calculus, as in [1].

The terms in the Horn clauses stand for messages. The translation uses one
predicate att. The fact att(M/) means that the attacker may have the term
M. The fundamental property of this representation is that if att(A/) is not
derivable from the clauses, then the protocol preserves the secrecy of M.

The clauses are of two kinds: the clauses in Rprimitives that depend only on the
signature of the cryptographic primitives (they represent computation abilities
of the attacker) and the clauses in Rpy; that one extracts from the protocol
itself.

2.1 Attacker Clauses (“Rprimitives )

The protocols use cryptographic primitives of two kinds: constructors and
destructors (see Figure 1). A constructor f is used to build up a new term
f(My, ..., M,). For example, the term sencrypt(M, N) is the encoding of the
term M with the key N (by shared-key encryption). A destructor g applied
to terms My, ..., M, yields a term M built up from subterms of M, ..., M,.
It is defined by a finite set def(g) of equations written as reduction rules
g(My,...,M,) — M where the terms M, ..., M,,, M contain only construc-



Tuples:

Constructor: tuple (M, ..., M,)

Destructors: projections ith, ((M, ..., M,)) — M;

Shared-key encryption:

Constructor: encryption of M under the key N, sencrypt(M, N)

Destructor: decryption sdecrypt(sencrypt(M, N), N) — M

Public-key encryption:

Constructors: encryption of M under the public key N, pencrypt(M, N)
public key generation from a secret key N, pk(XN)

Destructor: decryption pdecrypt(pencrypt(M, pk(N)), N) — M

Signatures:

Constructor: signature of M with the secret key N, sign(M, N)

Destructors: signature checking checksignature(sign(M, N), pk(N)) — M

message without signature getmessage(sign(M, N)) — M

Non-message-revealing signatures:

Constructors: signature of M with the secret key N, nmrsign(M, N)
constant true

Destructor: signature checking nmrchecksign(nmrsign(M, N), pk(N), M) — true

One-way hash functions:

Constructor: hash function hash(/).

Message authentication codes, keyed hash functions:

Constructor: mac of M with key N, mac(M, N)

Fig. 1. Constructors and destructors

tors and variables. For example, the rule sdecrypt(sencrypt(M, N), N) — M
models the decoding of the term sencrypt(M, N) with the same key used for
the encoding.

The attacker can form new messages by applying constructors and destructors
to already obtained messages. This is modeled, for instance, by the following
clauses for shared-key encryption.

att(z) A att(y) — att(sencrypt(z, y)) (sencrypt)
att(sencrypt(z,y)) A att(y) — att(x) (sdecrypt)

The first clause expresses that if the attacker has the message x and the shared
key y, then he can form the message sencrypt(z,y). The second clause means
that if the attacker has the message sencrypt(z,y) and the key y, then he can
obtain the message = (by applying the destructor sdecrypt and then using the
equality between sdecrypt(sencrypt(z,y),y) and = according to the reduction
rule for sdecrypt).

We furthermore distinguish between data and cryptographic constructors and
destructors and thus, in total, between four kinds of primitives. The set
DataConstr of data constructors contains those f that come with a destruc-
tor g; defined by g;(f(x1,...,2,)) — x; for each i = 1,...,n; i.e. g; is used



for selecting the argument of f in the i-th position. It is generally sufficient
to have only tuples as data constructors (with projections as destructors). All
other constructors are said to be cryptographic constructors; they form the set
CryptoConstr. We collect all clauses like the two example clauses above, for
each of the four cases, in the set Rprimitives Of clauses or rules defined below.

Definition 1 (Program for primitives, Rpyimitives) 1he  program  for
primitives, Rprimitives, S the union of the four sets of Horn clauses corre-
sponding to each of the four cases of cryptographic primitives:

® Riryptoconstr 45 the set of clauses att(z1) A. .. Aatt(x,) — att(f(x1,...,2,))
where f is a cryptographic constructor.

® Rpataconstr 1S the set of clauses att(xi) A ... A att(z,) — att(f(z1,...,2,))
where f is a data constructor.

® Riryptobestr 05 the set of clauses att(My)A. . . Aatt(M,,) — att(M) where there
exists a cryptographic destructor g with the reduction rule g(My, ..., M,) —
M.

® Rpatabestr 1S the set of clauses att(f(xy, ..., x,)) — att(x;) where [ is a data
constructor and 1 = 1,...,n.

These clauses are similar to inference rules that are used to compute the
knowledge of the attacker in symbolic protocol verification systems such as |6,
25,33]. Our verification method differs from these systems by the model of
protocol actions explained below.

2.2 Protocol Clauses (“Rprot”)

We note Rprot the set of protocol clauses. These include clauses that directly
correspond to send and receive instructions of the protocol and clauses trans-
lating the initial knowledge of the attacker. (The clauses in Rp, can be
compared to penetrator strands in the strand spaces model [17] and to rules
S — m in the setup with rank functions [22].)

In a protocol clause of the form
att(My) A ... Aatt(M,) — att(M)

the term M in the conclusion represents the sent message. The hypotheses
correspond to messages received by the same host before sending M. Indeed,
the clause means that if the attacker has M, ..., M,,, he can send these mes-
sages to a participant who is then going to reply with M, and the attacker
can then intercept this message.

If the initial knowledge of the attacker consists of the set of terms Sy (con-



taining e.g. public keys, host names, and a name N that represents all names
that the attacker creates), then it is represented by the facts att(M) where M
is a term in Spy;;.

We explain protocol clauses on the example of the Yahalom protocol [9]:

Message 1. A — B :
Message 2. B — S
Message 3. S — A:
Message 4. A — B :

A, N,)

B7 {Av Ntw Nb}Kbs)

{B, Kab, Naa Nb}Kas’ {A, Kab}Kbs)
{A Kbk, {No} k)

~—~~

In this protocol, two participants A and B wish to establish a session key
K, with the help of a trusted server S. Initially, A has a shared key K,
to communicate with S, and B has a shared key Kj, to communicate with
S. In the first message, A sends to B his name A and a nonce (fresh value)
N,. Then B creates a nonce N, and sends to the server his own name B
and the encryption {4, Ny, Ny} ,, of A, Ny, N, under the shared key Kj,. The
server then creates the new (fresh) session key K, and sends two encrypted
messages to A. The first one {B, Ky, No, Ny}, gives the key K, to A,
together with B’s name and the nonces (so that A knows that the key is
intended to communicate with B). The second message cannot be decrypted
by A, so A forwards it to B (message 4). B then obtains the session key K.
The second part of message 4, {N,}k,,, is used to check that A and B really
use the same key K,,: B is going to check that he can decrypt the message
with the newly received key. We encode only one principal playing each role,
since others can be included in the attacker. (This excludes the case in which
one principal runs the protocol with itself; we mention one way of handling
this case at the beginning of Section 5.)

Message 1 is represented by the clause
att((host(Kas), Na)) (Msgl)

meaning that the attacker gets host(Kas) and Na when intercepting message 1.
In this clause, the host name A is represented by host(Kas). Indeed, the server
has a table of pairs (host name, shared key to communicate between that host
and the server), and this table can be conveniently represented by a construc-
tor host. This constructor takes as parameter the secret key and returns the
host name. So host names are written host(k). The server can also match a
term host(k) to find back the secret key. The attacker cannot do this opera-
tion (he does not have the key table), so there is no destructor clause for host.
There is a constructor clause, since the attacker can build new hosts with new
host keys:

att(k) — att(host(k)) (host)



This encoding of host names and keys works well when one key is associated
with each host. One could adapt the model to other situations, for instance
when a key is initially shared between each pair of users.

Message 2 is represented by the clause:
att((a, na)) — att((host(Kbs), sencrypt((a, na, Nb(a, na)), Kbs)))  (Msg2)

The hypothesis means that a message (a,na) (corresponding to message 1)
must be received before sending message 2. It corresponds to the situation
in which the attacker sends (a,na) to B, B takes that for message 1, and
replies with message 2, which is intercepted by the attacker. (a and na are
variables since B accepts any term instead of host(Kas) and Na.) The nonce
N, is represented by the function Nb(a,na). Indeed, since a new name is
created at each execution, names created after receiving different messages are
different. This is modeled by considering names as functions of the messages
previously received. The creation of a fresh name corresponds to an existential
quantification in the linear logic model of [16]; our modeling of names by
functions corresponds to a skolemization of these existential quantifiers. This
modeling is slightly weaker than creating a new name at each run of the
protocol, but it is correct: if a secrecy property is proved in this model, then
it is true [1]. The introduced function symbols will be called “name function
symbols”. (In message 1, the fresh name Na is a constant because there are
no previous messages on which it would depend.)

Message 3 is represented by the clause:

att((host(kbs), sencrypt((host(kas), na, nb), kbs)))
— att((sencrypt((host(kbs), Kab(kas, kbs, na, nb), na, nb), kas), (Msg3)
sencrypt((host(kas), Kab(kas, kbs, na, nb)), kbs)))

using the same principles. Finally, message 4 is represented by
att((sencrypt((b, k, Na, nb), Kas), mb)) — att((mb, sencrypt(nb, k))) (Msgd)

The message sencrypt((host(Kas), k), Kbs) cannot be decrypted and checked
by A, so it is a variable mb.

The goal of the protocol is to establish a secret shared key K,, between A
and B. If the key was a constant, say K,,, then the non-derivability of the
fact att(K,p) from the Horn clauses presented so far would prove its secrecy.
However, K, as received by A, is a variable k. We therefore use the following
fact. The key K, received by A is secret if and only if some constant secretA
remains secret when A sends it encrypted under the key K. Thus, we add a
clause that corresponds to the translation of an extra message of the protocol,



Message 5. A — B : {secretA}g,,.

att((sencrypt((host(Kbs), k, Na, nb), Kas), mb))

Msgb
— att(sencrypt(secretA, k)) (Msg5)

Now, the secrecy of the key K, received by A can be proved from the non-
derivability of the fact att(secretA) from the set of clauses Rprimitives U Rprot-

For the Yahalom protocol, the translation yields the union of the following
sets of Horn clauses. Rcryptoconstr cOntains (sencrypt) and (host), RcryptoDestr
contains (sdecrypt), Rpataconstr contains the tuple construction and RpagaDestr
the tuple projections (both not listed), and Rpye contains (Msgl), (Msg2),
(Msg3), (Msg4) and (Msgb) and three clauses translating the initial knowledge,
att(N), att(host(Kas)), and att(host(Kbs)).

3 The Resolution-Based Verification Algorithm

To determine whether a fact is derivable from the clauses, we use a resolution-
based algorithm explained below. (We use the meta-variables R, H, C, F' for
rule, hypothesis, conclusion, fact, respectively.)

The algorithm infers new clauses by resolution as follows: From two clauses
R=H — Cand R = FANH' — C'" (where F is any hypothesis of R'), it
infers Ror R' = ocH ANoH' — oC', where C' and F' are unifiable and o is the
most general unifier of C' and F. The clause R op R' is the combination of
R and R’, where R proves the hypothesis F' of R'. The resolution is guided
by a selection function sel. Namely, sel(R) returns a subset of the hypotheses
of R, and the resolution step above is performed only when sel(R) = () and
F € sel(R').

We can use several selection functions. In this paper, we use:

0 if all elements of H are of the form att(x), = variable

I(H—C)=
sel( ) {{F} where F' # att(z) and F' € H, otherwise

The algorithm uses the following optimizations:

e Decomposition of data constructors: decomp takes a clause and returns a
set of clauses, built as follows. For each data constructor f, decomp re-
places recursively all facts att(f(Mi, ..., M,)) with att(M;) A ... Aatt(M,).
When such a fact is in the conclusion of a clause, n clauses are created,
with the same hypotheses and the conclusions att(M;), .. ., att(M,,) respec-
tively. With decomposition, the standard clauses for data constructors and
projections can be removed. The soundness of this operation follows from



the equivalence between att(f(Mi, ..., M,)) and att(M;) A ... Aatt(M,) in
the presence of the clauses att(z1) A ... A att(z,) — att(f(z1,...,2,)) and
att(f(xla s 7:Un)) — att(xi) in RDataConstr and RDataDestr-

e Elimination of duplicate hypotheses: elimdup takes a clause and returns the
same clause after keeping only one copy of duplicate hypotheses.

e Elimination of hypotheses att(z): elimattz eliminates hypotheses att(x)
when x does not appear elsewhere in the clause. Indeed, these hypothe-
ses are always true, since the attacker has at least one term.

e Elimination of tautologies: elimtaut eliminates all tautologies (that is,
clauses whose conclusion is already in the hypotheses) from a set of clauses.

e simplify groups all these simplifications. We extend elimdup and elimattx
naturally to sets of clauses, and define simplify = elimtaut o elimattz o
elimdup o decomp. In this definition, the simplifications are ordered in such
a way that simplify o simplify = simplify, so it is not necessary to repeat
the simplification.

e condense(R), for a set of clauses R, applies simplify to each clause in R
and then eliminates subsumed clauses. We say that H; — () subsumes
H, — (), if and only if there exists a substitution o such that oC7; = Cs
and o H; C H,. If R contains clauses R and R/, such that R subsumes R’,
R' is eliminated. (In that case, R can do all derivations that R’ can do.)

We now define the algorithm saturate(Ry). Starting from condense(Ry), the
algorithm adds clauses inferred by resolution with the selection function sel
and condenses the set of clauses at each iteration step until a fixpoint is
reached. When a fixpoint is reached, saturate(Ry) consists of the clauses R
in the fixpoint such that sel(R) = ). By adapting the proof of [4] to this
algorithm, it is easy to show that, for any R coming from a protocol and any
closed fact F', F' is derivable from Ran = Ro U Rpataconstr U RbataDestr if and
only if it is derivable from saturate(Ro) U Rpataconstr-

Once the clauses of saturate(Ry) have been computed, we use a standard
backward depth-first search to see if a fact can be derived from saturate(Rq)U
7zDa‘caCons‘cr- Taklﬂg RO = 7QCI“yptoCons‘cr U 7QCI“yptoDes‘cr U RProta if att(M) cannot
be derived from saturate(Ry) U Rpataconstr then the protocol preserves the
secrecy of M.

The optimizations enable us to weaken the conditions that guarantee termina-
tion. For instance, the decomposition of data constructors makes it possible to
obtain termination without tagging each data constructor application, while
other constructors such as encryption must be tagged. In the Yahalom proto-
col, for example, without decomposition of data constructors, the algorithm
would resolve the clause (Msg2) with itself, immediately yielding an infinite
loop.

Another consequence of the optimizations is that not all terms in a clause can



be variables. Indeed, when = € {z1, ..., z,}, the clause att(z1)A...Aatt(z,) —
att(z) is eliminated since it is a tautology. When = ¢ {zy,...,z,}, all hy-
potheses are eliminated, so the clause becomes att(x) and all other clauses are
eliminated since they are subsumed by att(z), so the algorithm stops imme-
diately: all facts can be derived. Thus, when sel(R) = (), the conclusion of
R is not of the form att(x). Therefore, the above selection function prevents
resolution steps in which att(z) is unified with another fact (actually, with any
other fact, which can lead to non-termination).

4 Sufficient Conditions for Termination

We are now collecting the formal properties of sets of Horn clauses (logic
programs, or programs for short) that together entail termination. The prop-
erties for protocol programs hold for the translation of every protocol. The
properties for plain protocol programs hold for the translation of protocols
with a restriction on their cryptographic primitives and on their keys (this
restriction is satisfied by many interesting protocols, including Yahalom for
example). The properties for tagged protocol programs hold for the transla-
tion of those protocols after they have been tagged. The derivability problem
for plain protocol programs is undecidable (as can be easily seen by a reduc-
tion to two-counter machines). The restriction to tagged programs makes the
problem decidable, as will follow.

Given a clause R of the form att(M;) A ... Aatt(M,) — att(M,), we say that
the terms My, My, ..., M, are the terms of R, and we denote the set of terms
of R by terms(R).

Definition 2 (Protocol program) A protocol program is a set of clauses
Ran = Reprimitives Y Rprot (Where Rprimitives S @ program. for primitives) that
comes with a finite set of closed terms Sy such that:

C1. For all clauses R in Rpri, there exists a substitution o such that
terms(oR) C Sp.

C2. Every two subterms of terms in Sy of the form a(...) with the same name
function symbol a are identical.

C3. The second argument of pencrypt in Sy is of the form pk(M) for some
M.

The terminology “argument of f in S;” refers to a term M such that
f(...,M,...) is a subterm of a term in Sy. To see why these conditions are
satisfied by a translation of a protocol, let us consider the intended messages
of the protocol. These are the exchanged messages when the attacker does
not intervene and when there is no unexpected interaction between sessions
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of the protocol. We denote by Mj, ..., M the closed terms corresponding to
these messages. Each participant does not necessarily have a full view of the
messages he receives; instead, he accepts all messages that are instances of
patterns representing the information he can check. The terms M;,..., M
are particular instances of these patterns. So the protocol is represented by
clauses R such that there exists o such that terms(cR) C {Mj,..., M;}.
Defining So = {Mj, ..., My} U Shit, we obtain C1.

For instance, the intended messages for the Yahalom protocol are

M, = (host(Kas), Na)

M, = (host(Kbs), sencrypt((host(Kas), Na, My, ), Kbs))

M; = (sencrypt((host(Kbs), My, Na, My, ), Kas),
sencrypt((host(Kas), M), Kbs))

M, = (sencrypt((host(Kas), M), Kbs), sencrypt(My,, Mx))
M5 = sencrypt(secretA, M)

with My, = Nb(host(Kas),Na) and Mg = Kab(Kas, Kbs, Na, My, ). It is easy
to check that the clauses (Msgl)—(Msgb) satisfy the condition C1.

Condition C2 models that each name function symbol is created at a unique
occurrence in the protocol. (This corresponds essentially to unique origination
in the strand spaces model [17].) Condition C3 means that, in its intended
behaviour, the protocol uses public-key encryption only with public keys.

Definition 3 (Plain protocol program) A plain protocol program is a
protocol program Ry with associated set of closed terms Sy, such that:

C4. The only constructors and destructors are those of Figure 1, plus host.
Cb5. The arguments of pk and host in Sy are atomic constants.

Condition C5 essentially means that the protocol only uses pairs of atomic
keys for public key cryptography, and atomic keys for long-term secret keys.
(Note that only keys linked to one host name by the function host must be
atomic; when the protocol establishes a shared key between several hosts, this
key does not need to be atomic.)

Tagging a protocol is a simple syntactic annotation of messages. We add a tag
to each application of a primitive sencrypt, pencrypt, sign, nmrsign, hash, mac,
such that, in the intended execution of the protocol, two applications of the
same primitive with the same tag have the same parameters. In the terminol-
ogy of [21], this is “component number tagging”. For example, after tagging,

11



the Yahalom protocol becomes:

Message 1. A— B: (A, N,)

Message 2. B —S: (B,{c1,A4, Ny, Ny} k)

Message 3. S — A:  ({c2, B, Kup, Nuy Ny} ks {C30 A, Kb Vi,
Message 4. A — B: ({c3, 4, Kw}k,,>{cs, Np}k,,)

All executions of the protocol reuse the same tags c;, cg, ... for the same
components. If the original protocol translates to a plain protocol program,
its tagged version translates to a tagged protocol program, as defined below.

Definition 4 (Tagged protocol program) A tagged protocol program is a
plain protocol program Ran with associated set of closed terms Sy such that:

C6. If f € {sencrypt, pencrypt, sign, nmrsign, hash, mac} occurs in a term in
Sy or in terms(R) for R € Rprot, then its first argument is the tuple
(c, My, ..., M,) for some constant c and terms My, ..., M,.

C7. Every two subterms of terms in Sy of the form f((c,...),...) with the
same primitive f € {sencrypt, pencrypt, sign, nmrsign, hash, mac} and the
same tag ¢ are identical.

The condition that constant tags appear in terms(R) (Condition C6) means
that honest protocol participants always send tagged terms and check the
tags of received messages (something that the informal description of a tagged
protocol leaves implicit). More precisely, they check the tags of the ciphertexts
that they can decrypt and of the signatures that they can check. They check
the tags of hashes and macs by comparison: they check equality of the received
hash or mac with a hash or mac that they build using the expected tag. The
condition also expresses that the initial knowledge of the attacker consists of
tagged terms.

To illustrate the effect of tagging, we consider the Needham-Schroeder shared-
key protocol. The algorithm does not terminate on its original version, which
is untagged. It terminates after adding tags. In this protocol, we have two
messages of the form:

Message 4. B — A: {Np}x
Message 5. A — B: {Np—1}g

where Np is a nonce. Representing this with a function minusone(z) =z — 1,
the algorithm does not terminate.

Indeed, message 5 is represented by a clause of the form:

H A att(sencrypt(n, k)) — att(sencrypt(minusone(n), k))

12



Protocol Tagging Time (ms)
Needham-Schroeder shared key [26] original non-termination
tagged 27

Woo-Lam shared key [35] original non-termination
tagged 7

Woo-Lam shared key [37] (incorrect) | original 8
(correct) tagged 7

Needham-Schroeder public key [26] original 51
Denning-Sacco [15] original 12
Woo-Lam public key [35] original 6
Yahalom [9] original 21
Otway-Rees [28] original 29

Fig. 2. Tagging and termination of the algorithm for a few protocols

where the hypothesis H describes other messages previously received by A.
After some resolution steps, we obtain a clause of the form

att(sencrypt(n, K)) — att(sencrypt(minusone(n), K)) (Loop)

for some term K. The fact att(sencrypt(minusone(Ng), K)) is also derived, so a
resolution step with (Loop) yields: att(sencrypt(minusone(minusone(Ng)), K)).
This can again be resolved with (Loop), so that we finally have a cycle that
derives all facts: att(sencrypt(minusone”(Np), K)).

When tags are added, the rule (Loop) becomes:
att(sencrypt((ci,n), K)) — att(sencrypt((co, minusone(n)), K))  (NoLoop)

and the previous loop is removed because ¢y does not unify with c;. The fact
att(sencrypt((cz, minusone(Np)), K)) is derived, but this does not yield a loop.

Figure 2 shows a number of examples of protocols from the literature. The
verifier does not terminate on two protocols, Needham-Schroeder shared key
and Woo-Lam shared key, which are not tagged, and terminates after addition
of tags to these protocols. One can also notice that it terminates on many
protocols without tags. We partly explain this observation in Remark 7 below.
For the Woo-Lam shared key protocol of [37], adding tags also corrects a flaw
in the protocol, because this protocol is subject to a type flaw attack.
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5 Termination Proof

Instead of giving the termination proof in one big step, we first consider a
special case (Section 5.1), and then describe the modification of the first proof
that yields the proof for the general case (Section 5.2).

We write Paramspy for the set of arguments of pk in Sy, and Paramshes for
the set of arguments of host in Sy. The special case is defined by the condition
that Paramsp and Paramspes each have at most one element.

This restriction is meaningful in terms of models of protocols: it corresponds
to merging several keys. In the example of the Yahalom protocol, this means
that, in the clauses, the keys Kas and Kbs should be replaced with a single key,
ko (so the host names A = host(Kas) and B = host(Kbs) are replaced with
a single name host(ky)). When studying secrecy, merging all keys of honest
hosts in this way helps to model cases in which one host plays several roles in
the protocol. The secrecy for the clauses with merged keys implies secrecy for
the protocol without merged keys. However, this merging is not acceptable for
authentication [5]. This is why we also consider the general case in Section 5.2.

5.1 The Special Case of One Key

We now define weakly tagged programs by the conditions that we use in the
first termination proof. In the special case, these conditions are strictly more
general than tagged protocol programs. This plays a role to deduce termination
for protocols that are not explicitly tagged (see Remark 7).

A term is said to be non-data when it is not of the form f(...) with f in
DataConstr. The set sub(S) contains the subterms of terms in the set S.

The set tagGen contains the non-variable non-data subterms of terms
of clauses in Rpy: and of terms M;,..., M, in clauses of the form
att(f(My, ..., M,))Aatt(z1)A. .. Aatt(z,) — att(z) in condense(Rcryptobestr)
(this is the form required in W1 below). This set summarizes the terms that
appear in the clauses and that should be tagged.

Definition 5 (Weakly tagged programs) A program Ray of the form
Ran = Rprimitives U Rprot  (where Rprimitives 1S ¢ program for primitives) is
weakly tagged if there exists a finite set of closed terms Sy such that:

W1. All clauses in the set Ry piopestr = condense(Rerypiobestr) are of the form

att(f (M, ..., M,)) Aatt(xy) A ... Aatt(z,) — att(x)
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where f € CryptoConstr, x is one of My, ..., My, and f(M,...,M,) is
more general than every term of the form f(...) in sub(Sy).

W2. For all clauses R in Rpry, there exists a substitution o such that
terms(oR) C Sp.

W3. If two terms My and My in tagGen unify, Ny is an instance of M, in
sub(Sp), and Ny is an instance of My in sub(Sy), then Ny = Ny.

Condition W3 is the key of the termination proof. We are going to show the
following invariant: all terms in the generated clauses are instances of terms
in tagGen and have instances in sub(Sp). This condition makes it possible
to prove that, when unifying two terms satisfying the invariant, the result
of the unification also satisfies the invariant; this is because the instances in
sub(Sp) of those two terms are in fact equal. Condition W1 guarantees that
this continues to hold if only one of the two terms satisfies the invariant and
the other stems from a clause in Ry pioestr-

Proposition 6 A tagged protocol program where Paramsnese and Paramspg
each have at most one element, is weakly tagged.

PROOF. For condition W1, the clauses for sdecrypt, pdecrypt, and
getmessage are:

att(sencrypt(z,y)) A att(y) — att(z) (sdecrypt)
att(pencrypt(z, pk(y))) A att(y) — att(z) (pdecrypt)
att(sign(z,y)) — att(z) (getmessage)

and they satisfy condition W1 provided that all public-key encryptions in S
are of the form pencrypt(My, pk(Ms)) (that is C3). In the clause (pdecrypt), the
constructor pk maps the secret key y to the corresponding public key pk(y).
The clauses for checksignature and nmrchecksign are

att(sign(x,y)) A att(pk(y)) — att(x) (checksignature)
att(nmrsign(z,y)) A att(pk(y)) A att(z) — att(true) (nmrchecksign)

These two clauses are subsumed respectively by the clauses for getmessage
(given above) and true (which is simply att(true) since true is a zero-ary con-
structor), so they are eliminated by condense, i.e., they are not in R,y popestr-
(This is important, because they do not satisfy condition W1.)

Condition W2 is identical to condition C1. We now prove condition W3. Let

Sy ={f(ci,z1,. . mp), 2. 2h)) |
f € {sencrypt, pencrypt, sign, nmrsign, hash, mac} }
U{a(xy,...,z,) | a name function symbol}
U {pk(z), host(z)} U {c | ¢ atomic constant }
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By condition C4, the only term in tagGen that comes from clauses of

Cryptoestr 15 PK(7). Using condition C6, all terms in tagGen are instances
of terms in S; (noticing that tagGen does not contain variables). Using con-
ditions C2, C5, C7, and the fact that Paramsp and Paramspes have at most
one element, each term in S; has at most one instance in sub(Sp).

If M, and M, in tagGen unify, they are both instances of the same element
M' in S; (since different elements of S; do not unify with each other). Let Ny
and N, be any instances of M; and M, (respectively) in sub(Sy). Then N,
and N, are instances of M' € S; in sub(Sy) so N; = N,. Thus we obtain W3.

O

Remark 7 Some protocols are in fact weakly tagged without explicitly adding
constant tags. For instance, this is true for the Woo and Lam public key pro-
tocol (after merging the keys sk, and skg):

Message 1. A—B: A

Message 2. B—A: N

Message 3. A — B: {A,B,N}g,
Message 4. B—S: A

Message 5. S — B: A, {A,pka}sks

Indeed, since different encryptions in the protocol have a different arity, we
can take pencrypt((z1,...,x,),x") in Sy in the proof above, and use the same
reasoning as above to prove the condition W3. This shows both that the origi-
nal protocol is protected against type flaw attacks, and that the algorithm also
terminates on the original protocol. We can say that the protocol is “implicitly
tagged”: the arity replaces the tag. This situation happens in some other exam-
ples: In figure 2, this is also the case of the Denning-Sacco protocol. This can
partly explain why the algorithm often terminates even for protocols without
explicit tags.

A term is top-tagged when it is an instance of a term in tagGen. Intuitively,
referring to the case of explicit constant tags, top-tagged terms are terms whose
top function symbol is tagged. A term is fully tagged when all its non-variable
non-data subterms are top-tagged.

We next show the invariant that all terms in the generated clauses are non-
data, fully tagged, and have instances in sub(Sp). Using this invariant, we
show that the size of an instance in sub(Sp) of a clause obtained by resolution
from R and R' is smaller than the size of an instance of R or R' in sub(S)).
This implies the termination of the algorithm.

Let us define the size of a term M, size(M), as usual, and the size of a clause by
size(att(My)A. .. Aatt(M,) — att(M)) = size(My)+. ..+ size(M,,) + size(M).
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The hypotheses of clauses form a multiset, so when we compute size(oR)
and the substitution ¢ maps several hypotheses to the same fact, this fact
is counted several times in size. Intuitively, the size of clauses can increase
during resolution, because the unification can instantiate terms. However, the
size of their corresponding closed instance in sub(Sp) decreases.

Proposition 8 Assuming a weakly tagged program (Definition 5) and Ry =
R CryptoConstr U R cryptobestr URprot, the computation of saturate(Ry) terminates.

PROOF. We show by induction that all rules R generated from R either are
in RCryptoConstrUR,CryptoDestr7 or are such that the terms of R are non-data, fully
tagged, and mapped to sub(Sp) by a substitution o, i.e., terms(cR) C sub(Sp).

First, we can easily show that all rules in condense(Ry) satisfy this property.

If we combine by resolution two rules in Rcryptoconstr U R’CryptoDestr, we in fact
combine one rule of Reryptoconstr With one rule of Reryptopestr- The resulting
rule is a tautology by condition W1, so it is eliminated immediately.

Otherwise, we combine by resolution a rule R such that the terms of R are non-
data and fully tagged, and there exists a substitution o such that terms(cR) C
sub(Sy), with a rule R such that one of 1, 2, or 3 holds.

(1) The terms of R’ are non-data and fully tagged, there exists a substitution
o' such that terms(o'R') C sub(Sy), and sel(R') = () (in which case
sel(R) # 0).

(2) R € 7QCI“yptoCons‘cr-

(3) R € 7QICI“yptoDes‘cr‘

Let R" be the rule obtained by resolution of R and R'. We show that the

terms of R’ are fully tagged, and there exists a substitution ¢” such that

terms(o"R") C sub(Sp) and size(o”"R") < size(ocR).

Let My, ..., M, be the terms of R, att(M;) being the atom of R on which we
resolve. In all cases, the terms of R are M', x4, ..., x,, the variables x1, ..., 2,
occur in M’ and are pairwise distinct variables, and att(M') is the atom of R’
on which we resolve. (In case 1, because sel(R') = () and by the optimizations
elimattr and elimdup; in case 2, by definition of constructor rules; in case 3,
by W1.) The terms My and M’ unify, let o, be their most general unifier.
Then the terms of R" are o,x1,...,0u%n,0,M,...,0,M,. By the choice of
the selection function, the terms M, and M’ are not variables.

We know that oMy, ..., oM, are in sub(Sp). We show that there exists o’
such that oMy, = o' M’.

17



e In case 1, there exists o’ such that o’ M' € sub(Sy). The terms My and M' are
non-data fully tagged, so all their non-variable non-data subterms are top-
tagged. In particular, since they are not variables, My and M’ themselves
are top-tagged, i.e., M, is an instance of some Ny € tagGen and M' is an
instance of some N € tagGen. Since M, and M' unify, so do Ny and N,
o' M’ is an instance of NJ in sub(Sy), oM is an instance of Ny in sub(Sp),
so by condition W3, o' M' = o M,.

e In case 2, M' is of the form f(zy,...,x,). Since M, is not a variable and
unifies with M’, M, has root symbol f, so oMy is an instance of M’.

e In case 3, by condition W1, M" is more general than every term in sub(Sy)
with the same root symbol, hence the instance oM, of the term M, that is
unifiable with M’ and thus has the same root symbol.

The substitution equal to o on the variables of R and to ¢’ on the variables of
R’ is then a unifier of My and M'. Since o, is the most general unifier, there
exists o” such that ¢”0, is equal to o on the variables of R, and to ¢’ on
the variables of R'. Thus the terms of 0" R" are o'x,...,0'zp, 0 My, ..., cM,.
The terms o'zy, ..., 0"z, are subterms of o' M' = o0 M, which is in sub(Sp), so
they are also in sub(Sy). So all terms of o” R" are in sub(Sy).

Moreover, size(0"R") < size(cR). Indeed, x1, ..., x, occur in M’ and are dif-
ferent variables. So o'z, ..., 0'x, are disjoint subterms of o' M', and M’ does
not consist of only a variable, so size(o'x1) + ...+ size(0'xy) < size(c'M') =
size(oc My), and size(c"R") < size(cMy) + ...+ size(ocM,,) = size(c R).

We show that the terms of R" are fully tagged.

e In case 1, since o, is the most general unifier of fully tagged terms, we can
show that, for all x, o,z is fully tagged, so for all fully tagged terms M, we
can show that o, M is fully tagged, so the terms of R" are fully tagged.

e In case 2, for x among x4, ..., x,, 0,2 is a subterm of M, so is fully tagged.
The terms o, M, ...,o,M, are equal to My, ..., M,, also fully tagged.

e Incase 3, M' = f(M,...,M] ) and My = f(M{,...,M"), so o, is also the
most general unifier of the pairs (M7, M), ..., (M,,, M) of fully tagged
terms. So we conclude as in case 1.

Finally, the terms of R" are fully tagged, terms(c”"R") C sub(S,), and
size(0"R") < size(oR).

Then it is easy to show that all rules Ry € simplify(R") obtained after sim-
plification of R" have non-data fully tagged terms and satisfy terms(o” Rs) C
sub(Sp), and size(0"Rs) < size(oR). Indeed, all rules in decomp(R") satisfy
this property. (The decomposition of data constructors transforms fully tagged
terms into non-data fully tagged terms.) This property is preserved by elimdup
and elimattz.
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Therefore, for all generated rules R, there exists o such that size(oR) is smaller
than the maximum initial value of size(cR) for a rule of the protocol. There
is a finite number of such rules (since size(R) < size(ocR)). So the algorithm
terminates. a

The termination of the backward depth-first search for closed facts is easy to
show, for example by a proof similar to that of [4]. Essentially, the size of the
goal decreases, because the size of the hypotheses of each clause is smaller
than the size of the conclusion. (Recall that all terms of hypotheses of clauses
of saturate(Ro) U Rpataconstr are variables that occur in the conclusion.) So we
obtain:

Theorem 9 The resolution-based verification algorithm terminates for weakly
tagged programs and closed facts.

As a corollary, by Proposition 6, we obtain the same result for tagged protocol
programs, when Paramsnes and Paramsp have at most one element.

5.2 Handling Several Keys

The extension to several arguments of pk or of host requires an additional
step. We define a homomorphism A from terms to terms that replaces all
elements of Paramspk and of Paramsnes with a special constant k. We extend
h to facts, clauses, and sets of clauses naturally. For the protocol program
h(Rprot), Paramsp and Paramspes each have at most one element. So by
Proposition 6, when Rp,o is a tagged protocol program, h(Rpy) is a weakly
tagged program.

Let Rprot be any program such that h(Rprt) is a weakly tagged program.
We consider a “less optimized algorithm” in which elimination of duplicate
hypotheses and of tautologies are performed only for facts of the form att(x)
and elimination of subsumed clauses is performed only for the condensing
of rules of Rcryptonestr- We observe that Theorem 9 holds also for the less
optimized algorithm, with the same proof, so this algorithm terminates on
h(Rprot). All resolution steps possible for the less optimized algorithm applied
to Rprot are possible for the less optimized algorithm applied to h(Rprot)
as well (more terms are unifiable, and the remaining optimizations of the
less optimized algorithm commute with the application of h). Then the less
optimized algorithm terminates on Rp,.t. We can show that then the original,
fully optimized algorithm also terminates.

In particular, the algorithm terminates for all tagged protocol programs and
for implicitly tagged protocols, such as the Woo and Lam public key and
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Denning-Sacco protocols without tags by Remark 7.

Theorem 10 The resolution-based wverification algorithm terminates for
tagged protocol programs and closed facts.

We recall that a tagged protocol program may be obtained by translating a
protocol after tagging, and that the algorithm checks the non-derivability of
the closed fact att(M), which shows the secrecy of the message M.

6 Complexity

We will next show that the algorithm performs in exponential time in the
size of the input protocol. We need to define what we mean by the size of
the input protocol. Formally, the input of the algorithm is not the informal
description of a protocol; instead, it is its translation in the form of a set of
Horn clauses. The set of Horn clauses by itself, however, is not sufficient to
define the input size. Remember that the terms in the Horn clauses represent
only a partial information about the messages being sent (the information
that the participants have). The full information about the set of ‘intended’
messages, which is present in the informal description of the input protocol,
is formalized in a protocol program. A protocol program (see Definition 2)
consists of a set of Horn clauses R ap together with the set Sy of closed terms
formalizing the intended messages. The set Ry consists of the set Rpy; of
protocol clauses translating the protocol and the set Rprimitives, the program
for primitives, which is fixed by the signature of the protocol. Therefore, we
define that the parameter for the input size is the size of Rpt and Sy (the
size of a set of clauses and terms is the total size of all their terms).

The cost analysis of our algorithm does not change if we exchange its input
parameter against one that is polynomially smaller or larger. Below we define
the parameter n for the input size; n is the maximal size of a possible instance
o R of a protocol clause R such that the terms in o R are subterms of Sj.

n = maz{size(oR) | R € Rprot, terms(oR) C sub(Sp)} (1)
The size of Rpot and Sy is at most quadratic in that number.

The parameter n is smaller than the size of the messages in the informal de-
scription of the protocol and in the initial knowledge of the attacker, after
replacing each name by the corresponding term that we introduce by skolem-
ization.

Theorem 11 If a protocol is translated to a protocol program with the set
Rewt of protocol clauses in Ro and the set Sy of intended messages, the
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resolution-based verification algorithm is exponential in the size of Rprot and

So-

Equivalently, the algorithm is exponential in the input parameter n defined
in (1).

PROOF. We define the set R of all clauses R derived from the set Rp.o; of
protocol clauses (and the other clauses in Ry, which are part of Rpyimitives, the
program for primitives, fixed by the signature of the protocol). By the proof
of Proposition 8 (see the last paragraph of the proof), the size of each such
clause R is smaller than the size of a possible instance o R’ of a protocol clause
R' such that the terms in o R’ are subterms of Sj.

R C{R| size(R) < n}

Given n, there are exponentially many clauses R whose size is smaller than n.
Thus, the number of clauses in R is exponential; so the cost of the algorithm
is also exponential. O

Exponential Example To show that our cost estimation for the algorithm
is not too conservative, we give an example of a tagged protocol program on
which the algorithm is indeed exponential.

att(c;),7 € {1,...,n}

(
tt(ko)
(

(

<]

att(z) A att(y) — att(sencrypt(x,y)) (sencrypt)
x) — att(sencrypt((c;, a(zr)), ko)),7 € {1,...,n} (Msg 1)
att(sencrypt((ci, z1), ko)) A ... A att(sencrypt((c,, z), ko))

Last
— att(b(zy, ..., x,)) (Last msg)

This example contains 2n + 3 rules, and is of size O(n). The selection is
empty for the first four rules. It is not empty for the last rule. Without loss
of generality, we assume that the first hypothesis is selected in the last rule.
Then, the last rule can resolve with the rules (sencrypt) and (Msg i). If it
resolves with (sencrypt), we obtain

att(cy) A att(zy) A att(ko) A att(sencrypt((ca, x2), ko))
A ... A att(sencrypt((cn, x,), ko)) — att(b(zq, o, ..., z,))

Depending on the selection, the hypotheses att(c;) and att(kg) might be
removed by resolving with one of the first two rules. In all cases, a fact
att(sencrypt((c;, 2;), ko)) finally gets selected, and we come back to the sit-
uation of rule (Last msg) with one hypothesis less.
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If it resolves with (Msg i), we obtain

att(x}) A att(sencrypt((ca, x2), ko))
A ... A att(sencrypt((c,, ), ko)) — att(b(a(z)), o, ..., 2n))

A fact att(sencrypt((c;, x;), ko)) gets selected, and we also come back to the
situation of rule (Last msg) with one hypothesis less (and with a(z}) instead
of z; in the conclusion).

In the end, we obtain 2" rules, of the form
H1 VANPIIAN Hn — att(b(Ml, .. 7Mn))

where for each i in 1,. .., n, either H; = att(z}) and M; = a(z}), or H; = att(z;)
(and perhaps att(c;) and/or att(k)) and M; = x;. (Intuitively, these 2" rules
must be generated because no other rules can be used to derive the 2" facts
att(b(My, ..., M,)) where M; is either a(kq) or ko. )

The algorithm is quite efficient in our examples. It would be interesting to
know whether there exists a natural class of ‘realistic’ protocol programs for
which the algorithm is polynomial.

7 Extension to Authentication

In [5], the Horn clause verification technique has been extended to ver-
ify authentication properties of protocols, specified by correspondence asser-
tions [36]. For simplicity, we focus here on the case of non-injective agree-
ment [24]: The protocol can execute events begin(M) and end(M), and one
wants to show that if the protocol executes end(M), then it must have exe-
cuted begin(M) for the same value of M.

The proof technique for authentication involves two extensions to the Horn
clause model:

e Fresh names are functions not only of the messages previously received but
also of a session identifier: an argument that takes a different value for
each execution of a participant of the protocol. This makes it possible to
distinguish different names created after receiving the same messages.

e New predicates are added. A fact begin(M) means that the event begin(M)
has been executed, while a fact end(A/) means that the event end(A/) may
have been executed. When a participant of the protocol executes an end (M)
event after receiving messages My, ..., M,, Rprs contains the clause

att(M;) A ... Aatt(M,) — end (M)
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When a participant of the protocol outputs a message M after receiving
M, ..., M, and executing the event begin(M'), Rp. contains the clause

att(My) A ... Aatt(M,,) A begin(M') — att(M)

As in the case of secrecy, when a participant of the protocol outputs a
message M after receiving My, ..., M, (without executing a begin event),
Rerot contains the clause

att(M) A ... Aatt(M,,) — att(M)

The facts begin(M) can appear only in the hypothesis of clauses, and the
selection function never selects them. The facts end(M) can appear only in
the conclusion of clauses.

We use a result detailed in [5]. Assume that, for all closed terms M, if the fact
end(M) is derivable from the clauses then a fact begin(M) must be present in
the hypotheses. Then, for all closed terms M, if the protocol executes end (M),
then it must have executed begin(AM), so the protocol satisfies non-injective
agreement. More formally:

Theorem 12 Assume that, for any R, set of closed begin facts, if end(M)
is derivable from Ran U Ry, then begin(M) € Ry. Then the protocol satisfies
non-injective agreement.

To apply this result, we modify the selection function such that it never selects
begin facts:

sel(H — C) =
0 if all elements of H are of the form att(z) or begin(M)
{F} where F # att(z), F # begin(M), and F € H, otherwise

The protocol verifier checks that all clauses in saturate(Ry) whose conclusion
is end(M") for some M’ contain begin(M') in their hypothesis. As mentioned
in [5], this implies that, if end(M) is derivable from Ry U R, then begin(M)
€ Ry, so by Theorem 12, the protocol satisfies non-injective agreement.

We can extend our termination result for tagged protocols to authentication
proofs. We add the following condition to the definition of protocol programs
and of weakly tagged programs:

C1’. For all clauses R in Rpot, all variables that occur in the conclusion of R
also occur in att facts in its hypothesis, except session identifiers. Session
identifiers occur only at specific positions as arguments of names function
symbols af...), and only session identifiers occur at those positions.
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This condition is true for all protocols when Horn clauses are built as explained
in [5]. We also add the following optimization to simplify:

e Elimination of useless begin facts: elimbegin eliminates begin facts in which a
variable z occurs, and = only occurs in begin facts and in att(z) hypotheses.

This optimization is always sound, because it creates a stronger clause. It does
not lead to a loss of precision in the case of authentication. Indeed, assume that
begin(M) contains a variable which does not occur in the conclusion. This is
preserved by resolution, so when we obtain a clause begin(M')AH — end(M"),
where begin(M') comes from begin(M), M’ cannot be equal to M", so this oc-
currence of begin(M') cannot be used to prove authentication. However, in the
more general case when we want to know which begin events must be exe-
cuted to reach a given end event, this optimization leads to a loss of precision
(it may miss some begin events). That is why this optimization was present in
early implementations which verified only authentication, and was later aban-
doned. We could consider reintroducing it when testing authentication, if we
had termination problems on practical examples, which was not the case up
to now.

Note that, after this optimization, the fact att(x) will also be eliminated by
elimattr. Thanks to this optimization, in a clause R such that sel(R) = (), all
variables that occur in the hypothesis also occur in the conclusion. Indeed, if
a variable occurs only in the hypothesis, either it occurs in a begin fact, and
this fact is eliminated by elimbegin, or it occurs only in att(z), and this fact
is eliminated by elimattx.

Theorem 13 The resolution-based verification algorithm that proves authen-
tication terminates for weakly tagged programs and for tagged protocol pro-
grams.

PROOF. As explained at the end of Sect. 3, the conclusion of a rule R is not
of the form att(xz) when sel(R) = (). The presence of begin facts complicates
the proof of this point. This is why Condition C1’ is useful. We can show that
Condition C1’ is in fact true for all clauses generated by the algorithm (it is
preserved by resolution).

Using this property, if sel(R) = (), then the conclusion of R is not att(z).
Indeed, if the conclusion of R was att(z), = is not a session identifier, since it
is not an argument of a name function symbol, so & would occur in the att
facts in the hypothesis of R. Since sel(R) = (), all these hypotheses are att(z;)
for some variables x;, then one of the hypotheses would be att(z), so R would
be a tautology, so it would have been removed by elimtaut. This proves the
result.
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So we still have the property that facts att(z) are never unified during the
resolution. The proof of Prop. 8 then needs only minor changes. In case 1, the
terms of R are M',z1,...,x,, Mj,..., M] , where we resolve on att(M') and
R’ has hypotheses att(z;), ..., att(z,), begin(M]), ..., begin(M/ ). Thanks
to the optimization elimbegin, x1,...,x, occur in M'. By hypothesis, there
exists a substitution o’ such that o'M’, o'xy, ..., o'z, o'M{, ..., 0'M] are
in sub(Sp). As in the proof of Prop. 8, we build ¢”, such that the terms of
o"R" are o'xy, ..., o'xp, o'M|, ..., o'M] , oM, ..., cM,. By definition of
o and o', these terms are in sub(Sp).

We do not count begin facts in the definition of the size of a clause. (Otherwise,
we could have size(c”R") > size(c R) because of begin facts coming from R'.)
We show that size(c”"R") < size(cR) and that the terms of R" are fully
tagged as in Prop. 8. To prove termination, we have to show that there is a
finite number of rules with size(R) smaller than a given constant. The size of
att facts is bounded by this constant, and the number of variables in begin
facts is also bounded by this constant thanks to the optimization elimbegin.
Then the size of begin facts is also bounded, since they must be more general
than terms in sub(Sp). This proves termination.

In the case of authentication, no depth-first search is performed, so Prop. 8
immediately implies termination for weakly tagged programs. We handle the
case of tagged protocol programs with several keys as in the proof of Theo-
rem 10. O

When the optimization elimbegin is turned off, we can find examples of tagged
protocols on which our algorithm for authentication does not terminate. For
example, consider the clause:

begin(h((c1,z,y))) A att(sencrypt((c, x), k)) A att(y) — att(sencrypt((c, y), k))

(2)
The selected hypothesis is att(sencrypt((c, z),k)). By the resolution with the
constructor clauses and with att(k), att(c), we can obtain

begin(h((c1, z,y))) A att(z) A att(y) — att(sencrypt((c,y), k))

This clause has no selected hypothesis and resolves with (2), and the result
of this resolution again resolves with (2), so we obtain an infinite sequence of
clauses:

begin(h((c1,z1,x2))) A ... Abegin(h((c1,zn 1,2,)))
Aatt(zi) A ... Aatt(z,) — att(sencrypt((c, z,,),k))

This example then does not terminate. Note that the clause (2) is not very
natural since it creates a term sencrypt((c, ), k) from a term sencrypt((c, z), k)
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with the same tag c. One would rather expect the participant to use a new tag
when creating a new term. However, this clause can belong to a tagged protocol
program. Indeed, we choose Sy containing h((c, k', k’)) and sencrypt((c, k'), k)
for some constant k/, and = and y are instantiated to the same value k' by the
substitution that maps terms of clauses to sub(Sp). The clause (2) can also
be inferred during the resolution algorithm from more natural clauses coming
from tagged protocols, although such a situation did not occur during our
experiments.

8 Related Work

Although several definitions exist, it has been shown for a reasonable defini-
tion of protocols, that the verification problem of cryptographic protocols is
undecidable [16], so one either restricts the problem, or approximates it.

Decision procedures have been published for restricted cases. In the case of
a bounded number of sessions, for protocols using public-key cryptography
with atomic keys and shared-key cryptography, protocol insecurity is NP-
complete [33], and decisions procedures appear in [13,25, 33]. When messages
are bounded and no nonces are created, secrecy is DEXPTIME-complete [16].
Strong syntactic restrictions on protocols also yield decidability: [11] for an
extension of ping-pong protocols, [3] with a bound on the number of parallel
sessions, and restricted matching on incoming messages (in particular, this
matching should be linear and independent of previous messages). Model-
checking also provides a decision technique for a bounded number of ses-
sions [23] (with additional conditions). It has been extended, with approxi-
mations, to an unbounded number of sessions using data independence tech-
niques [7,8,32], for sequential runs, or when the agents are “factorisable”.
(Essentially, a single run of the agent has to be split into several runs, such
that each run contains only one fresh value.)

On the other hand, some analyses terminate for all protocols, but at the
cost of approximations. For instance, control-flow analysis [27] runs in cubic
time, but does not preserve relations between components of messages, hence
introduces an important approximation. Interestingly, the proof that control
flow analysis runs in cubic time also relies on the study of a particular class of
Horn clauses. Techniques using tree automata [19] and rank functions [22] also
provide a terminating but approximate analysis. For instance, a rank function
does not distinguish between a case where either of two messages could be
sent out, and a case where both messages can be sent out. Moreover, the
computation algorithm of rank functions assumes atomic keys.

It has been shown in [21] that tagging prevents type flaw attacks. It may be
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possible to infer from [21] that the depth of closed terms can be bounded in
the search for an attack. This yields the decidability by exhaustive search,
but does not imply the termination of our algorithm (in particular, because
clauses can have an unbounded number of hypotheses, so there is an infinite
number of clauses with a bounded term depth). [20] shows that two proto-
cols are independent when messages of different protocols cannot be mixed
(i.e. unified). Tagging relies on the same idea: it prevents mixing a message
with another, here in the same protocol, and this is the key of our termination
proof.

Ramanujam and Suresh [30, 31] show that secrecy is decidable for tagged pro-
tocols. Their result differs from ours for two reasons. Their tagging scheme is
more restrictive, since it does not allow blind copies. A blind copy happens
when a participant sends back part of a message he received without looking
at what is contained inside this part. On the other hand, they obtain a decid-
ability result, while we obtain a termination result for an algorithm which is
sound, efficient in practice, but approximate.

As for the approach based on Horn clauses, Weidenbach [34] already gave
conditions under which his algorithm terminates. These conditions may give
some idea of why the algorithm terminates on protocols. They do not seem to
apply to many examples of cryptographic protocols. Comon and Cortier [12]
show that an algorithm using ordered binary resolution, ordered factorization
and splitting terminates on protocols which blindly copy at most one term
in each message. In contrast, our result puts no limit on the number of blind
copies, but requires tagging.

Other techniques such as theorem proving [29] in general require human in-
tervention, even if some cases can be proved automatically [10, 14]. In general,
typing [1, 18] requires human intervention in the form of type annotations, that
can be automatically checked. The idea of tagging already appears in [18] in
a different context (tagged union types).

9 Conclusion

We have given the theory behind an experimental observation: tagging a pro-
tocol enforces the termination of the resolution-based verification technique
used. Our work has an obvious consequence to protocol design, namely when
one agrees that a design choice in view of a posteriori verification is desirable.

Our termination result for weakly tagged protocols explains only in part an-
other experimental observation, namely the termination for protocols without
explicit tags. Although many of those are weakly tagged, some of them are
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not (for instance, the Needham-Schroeder public key protocol). The existence
of a termination condition that applies also to those cases is open.
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