

Infinite Parity Game (2)	3	Playing a Game	\odot
DEFINITION (Game) A game for a WAPA $\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$ and $w = a_0 a_1 a_2 \ldots \in \Sigma^{\omega}$ is a directed graph $G_{\mathcal{A},w} := \langle V_A \cup V_P, E \rangle$ where $V_A := Q \times \mathbb{N}$ (decision nodes of player A) $V_P := 2^Q \times \mathbb{N}$ (decision nodes of player P) $E \subseteq (V_A \times V_P) \cup (V_P \times V_A)$ s.t. the only contained edges are $\circ \langle \langle q, i \rangle, \langle M, i \rangle \rangle$ iff $M \in \text{Mod}_{\downarrow}(\delta(q, a_i))$ $\circ \langle \langle M, i \rangle, \langle q, i + 1 \rangle \rangle$ iff $q \in M$ for $q \in Q, M \subseteq Q, i \in \mathbb{N}$ (Thomas and Löding, ~ 2000)		DEFINITION (Play) A play γ in a game $G_{A,w}$ is an infinite path starting with $\langle q_{in}, 0 \rangle$. DEFINITION (Winner) The winner of a play γ is \blacksquare player A iff the smallest parity of occurring V_A -nodes is even \blacksquare player P $\cdots \cdots $	
	20 / 33		21/33
Let $\theta \in \mathbb{B}^+(Q)$ be a formula over Q . SUBLEMMA $S \subseteq Q$ is a model of $\overline{\theta}$ iff for all $M \in Mod_{\downarrow}(\theta)$: $S \cap M \neq \emptyset$. PROOF: I W.I.o.g. θ is in DNF, i.e. $\theta = \bigvee_{M \in Mod_{\downarrow}(\theta)} \bigwedge_{q \in M} q$ I Then $\overline{\theta}$ is in CNF, i.e. $\overline{\theta} = \bigwedge_{M \in Mod_{\downarrow}(\theta)} \bigvee_{q \in M} q$ I Thus $S \subseteq Q$ is a model of $\overline{\theta}$ iff it contains at least one element from each disjunct of θ .		Let \mathcal{A} be a WAPA, $\overline{\mathcal{A}}$ its dual and $w \in \Sigma^{\omega}$. LEMMA 1 Player A has a winning strategy in $G_{\mathcal{A},w}$ iff \mathcal{A} accepts w . LEMMA 2 Player P has a winning strategy in $G_{\mathcal{A},w}$ iff \mathcal{A} does <i>not</i> accept w . LEMMA 3 Player A has a winning strategy in $G_{\mathcal{A},w}$ iff player P has a winning strategy in $G_{\overline{\mathcal{A}},w}$.	
COMPLEMENTATION THEOREM THEOREM (Complementation) The dual $\overline{\mathcal{A}}$ of a WAPA \mathcal{A} accepts its complement, i.e. $\mathcal{L}(\overline{\mathcal{A}}) = \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$ (Thomas and Löding, ~ 2000) PROOF: \mathcal{A} accepts $w \stackrel{(lemma 1)}{\iff}$ player \mathcal{A} has a winning strategy in $\mathcal{G}_{\mathcal{A},w}$ $\stackrel{(lemma 3)}{\iff}$ player \mathcal{P} has a winning strategy in $\mathcal{G}_{\overline{\mathcal{A}},w}$ $\stackrel{(lemma 2)}{\iff} \overline{\mathcal{A}}$ does not accept w		BÜCHI COMPLEMENTATION ALGORITHM $\begin{array}{c} BA & \mathcal{B} & & & & \\ \mathcal{D}(n^2) & & & & \\ \mathcal{D}(n^2) & & & & \\ \mathcal{D}(n^2) & & & & \\ \mathcal{D}(1) & & & \\ WAPA & \mathcal{A} & & & \\ \mathcal{D}(1) & & & \\ WAPA & \overline{\mathcal{A}} & & \\ \end{array}$ $= \text{ Total complexity: } 2^{\mathcal{O}(n^2)}$ $= \text{ Can reach } 2^{\mathcal{O}(n\log n)} \text{ (lower bound) by improving } \overline{\mathcal{A}} \to \overline{\mathcal{B}}.$	
FROM BA TO WAPA GIVEN: $ \begin{array}{c} \blacksquare \mathcal{B} = \langle Q, \Sigma, \delta, q_{in}, F \rangle : \ BA \\ \blacksquare n = Q \end{array} $ CONSTRUCTION (BA \rightarrow WAPA) $ \mathcal{A} := \langle \underline{Q \times \{0, \dots, 2n\}}, \ \Sigma, \ \delta', \ \langle q_{in}, 2n \rangle, \ \pi \rangle \\ \text{where} \\ \blacksquare \delta'(\langle p, i \rangle, a) := \begin{cases} \bigvee_{q \in \delta(p, a)} \langle q, 0 \rangle & \text{if } i = 0 \\ \bigvee_{q \in \delta(p, a)} \langle q, i \rangle \land \langle q, i - 1 \rangle & \text{if } i \text{ odd, } p \notin F \\ \bigvee_{q \in \delta(p, a)} \langle q, i \rangle & \text{if } i \text{ odd, } p \notin F \\ \bigvee_{q \in \delta(p, a)} \langle q, i - 1 \rangle & \text{if } i \text{ odd, } p \notin F \end{cases} \\ \blacksquare \pi(\langle p, i \rangle) := i \\ \text{for } p \in Q, \ a \in \Sigma, \ i \in \{0, \dots, 2n\} \end{cases} $ (Thomas and Löding, ~2000)	<u>۹۱/33</u>	FROM WAPA TO BA GIVEN:	33/33