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Motivation and background

Common languages

(det.) Context-free language

� �
1 procedure bar()

2 {

3 i f (*)

4 c a l l bar();

5 r e tu rn ;
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L2 = {cn rn | n > 0}
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Nested Word Automata

Motivation and background

Common languages

Comparison

,

/ / /

regular context-free

comparison constants two variables
of numbers
closure

all standard properties not under intersection
and complementation

decidability

all standard problems intersection, inclusion,
equivalence undecidable

determinize

powerset construction not possible

Question: Is there some class of languages in between that is more
expressive than regular languages, but keeps their nice properties?

Answer (Alur & Madhusudan 2004): yes, at least in some sense
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Nested Word Automata

Motivation and background

Visibly pushdown languages

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a
visibly pushdown automaton (VPA).

A VPA A = 〈Q, q0,Qf ,Σ, Γ,⊥, δ〉 is a deterministic PDA with
special rules: Determined by the input symbol, only one symbol per
push is allowed and reading the stack implies a pop.

• states, initial state, final states, stack alphabet,
bottom-of-stack symbol (no change here),

• partitioning of the input alphabet: Σ = Σi ] Σc ] Σr ,

• δ = δi ] δc ] δr ,
• δi ⊆ Q × Σi → Q
• δc ⊆ Q × Σc → (Γ \ {⊥})× Q
• δr ⊆ Q × Σr × Γ→ Q

Note: pops occur implicitly, ⊥ never popped, no ε
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Nested Word Automata

Motivation and background

Visibly pushdown languages

L2 as VPL

Consider again L2 = {cn rn | n > 0}.

We construct a VPA for L2.

q0

q1 q2

q3

⊥, c, ⊥A

B, r, ε

A, r, ε
A, r, ε

A, c, AB
B, c, BB

A, r, ε

Partitioning:
Σi = ∅, Σc = {c}, Σr = {r}

δc = { (q0, c ,A, q1),
(q1, c ,B, q1) }

δr = { (q1, r ,A, q3),
(q1, r ,B, q2),
(q2, r ,A, q3),
(q2, r ,B, q2) }
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Nested Word Automata

Motivation and background

Visibly pushdown languages

From VPAs to NWAs

• main differences between VPAs and PDAs:
• closed under determinism
• partitioning of the alphabet
• very limited use of the stack

• Do we really need the stack?

(Alur & Madhusudan 2006): no, with some further treatment
of the input → nested words (NWs)

• automaton model: nested word automata (NWAs)

• nested word languages (NWLs) and VPLs have same power
→ NWAs � deterministic PDAs

• main idea: call and return symbols are matched in the input
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Nested Word Automata

Nested words and their acceptors

Nested words

Well nested sequences

A sequence of symbols is well nested if calls and returns are
matched without crossing, i.e., for any different call-return-pairs
(ci , ri ), (cj , rj), ci < cj < ri < rj is forbidden.

Examples:

i i i i i

i i

Note: Every sequence has a unique well nesting.
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Nested Word Automata

Nested words and their acceptors

Nested words

Nested words

A relation ;⊂ {−∞, 1, 2, . . . , `} × {1, 2, . . . , `,∞} of length
` ≥ 0 is a matching relation if the following holds:

I if i ; j , then i < j (monotone)

II if i1 ; j and i2 ; j , then i1 = i2 (left-unique)
if i ; j1 and i ; j1, then j1 = j2 (right-unique)

III if i1 ; j1 and i2 ; j2, then we have not i1 < i2 < j1 < j2
(well nested)

Explanation:

I not r c, not reflexive

II not c c r, not c r r

III not c c r r

ex post note: (−∞,∞) 6∈ ;,
±∞ excluded from uniqueness
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(well nested)

If i ; j , i is a call position and j is a return position. All the rest is
an internal position. If i 6= −∞ and j 6=∞, they are well-matched ,
otherwise pending . e ∈ ; is a nesting edge.

A nested word n over Σ is a pair (a1 · · · a`,;), where ai ∈ Σ and
; is a matching relation of length `.
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Nested Word Automata

Nested words and their acceptors

Nested words

Example 1

i c i c i i r r i

1 2

3

4

5 6

7

8 9

Here: 2 ; 8, 4 ; 7 and the whole word is well-matched.
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Nested Word Automata

Nested words and their acceptors

Nested words

Example 2

r c r r c i c i

1 2 3

4 5

6

7

8

Here: −∞; 1, 2 ; 3, −∞; 4, 5 ;∞, 7 ;∞ and only 2 ; 3
is well-matched.
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adapted from [1]



Nested Word Automata

Nested words and their acceptors

Nested word automata

Definition of NWAs

A = 〈Q, q0,Qf ,P, p0,Pf , δi , δc , δr 〉 over alphabet Σ

• Q finite set of linear states,

• q0 ∈ Q initial linear state,

• Qf ⊆ Q set of linear final states,

• P finite set of hierarchical states,

• p0 ∈ Q initial hierarchical state,

• Pf ⊆ P set of hierarchical final states,

• δi ⊆ Q × Σ→ Q internal transition function,

• δc ⊆ Q × Σ→ Q × P call transition function,

• δr ⊆ Q × P × Σ→ Q return transition function

acceptance via both Qf and Pf

as VPAs: at return implicitly go to hierarchical state before
matching call
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Nested Word Automata

Nested words and their acceptors

Nested word automata

L2 as NWA

Consider again L2 = {cn rn | n > 0}.

We construct an NWA for L′2 := {(〈c)n (r〉)n | n > 0}.

We can also use hierarchical states for acceptance.

q0

q1 q2

q3

c, A

r, B

r, A
r, A

c, B r, B
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q1 q2

q3
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P = {p0, p1}, Pf ⊆ {p0}
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Nested Word Automata

Nested words and their acceptors

Nested word automata

Remarks

• no stack anymore, but structure on the input word

• nondeterministic NWAs: Q0 ⊆ Q, P0 ⊆ P, δ

possibly exponentially more states for deterministic NWAs

• not all sets of NWs acceptable by NWAs

{(〈a)n(b〉)n | n > 0} vs. {anbn | n > 0}
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Nested Word Automata

Nested words and their acceptors

Nested word automata

Comparison of properties

DFA DNWA PDA DPDA

pre-/suffix ! ! ! !

∪, ·, ∗

! ! ! %

complement

! ! % !

∩

! ! % %

emptiness

Nlogspace ptime ptime ptime

equivalence

Nlogspace ptime undecidable decidable

inclusion

Nlogspace ptime undecidable undecidable

Note: Equivalence and inclusion problem are exptime-complete
for nondeterministic NWAs.
Implication: determinization ∈ Ω(exptime) if at all possible
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Determinization proof

Intuition

Idea behind the proof

• goal: determinize a nondeterministic NWA (NNWA)

• state of automaton A for nested word n with position k :
deterministic NWA (DNWA): (qk , pk)
NNWA: one of (qk1 , pk1), . . . , (qki , pkj )

• finite automata: call the states {qk1 , . . . , qki}
• NWAs: also need information about hierarchical states
→ powerset construction over nesting edges
hierarchical states = nesting edges + call symbol so far

• handle hierarchical proceeding when reading return symbols
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Nested Word Automata

Determinization proof

Construction

The states: definition

Consider the NNWA A = 〈Q,Q0,Qf ,P,P0,

wlog

=P︷︸︸︷
Pf , δi , δc , δr 〉.

We construct the DNWA B = 〈Q ′, q′0,Q ′f ,P ′, p′0,P ′f , δ′i , δ′c , δ′r 〉:

• Q ′ := 2Q×Q = {S1, . . . ,Si}
• q′0 := Q0 × Q0

• Q ′f := {S | ∃q, q′.(q, q′) ∈ S ∧ q′ ∈ Qf }
or: S ∈ Q ′f :⇔ S contains (q, q′) with q′ ∈ Qf

• P ′ := {p′0} ∪ (Q ′ × Σ)

• p′0 := fresh hierarchical state

• P ′f := P ′

19 / 30
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Nested Word Automata

Determinization proof

Construction

The states: semantics

Consider a nested word n with k pending calls. We can write this

n = n1〈c1n2〈c2 · · · nk〈cknk+1

where the ni have no pending calls.

Invariants

I After reading n, B will be in state Sk+1, where (Si , ci ) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

Question: acceptance condition of B for n?
Answer: Sk+1 ∈ Q ′f ,

i.e., ∃q, q′.(q, q′) ∈ Sk+1 ∧ q
nk+1→ A q′ ∧ q′ ∈ Qf
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Nested Word Automata

Determinization proof

Construction

Internal transitions

n′ = n · i = n1〈c1n2〈c2 · · · nk〈cknk+1i

δ′i (Sk+1, i) =

{(q, q′′) | (q, q′) ∈ Sk+1 ∧ q′′ ∈ δi (q′, i)}

21 / 30

I After reading n, B will be in state Sk+1, where (Si , ci ) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.
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n′ = n · i = n1〈c1n2〈c2 · · · nk〈cknk+1i

δ′i (Sk+1, i) = {(q, q′′) | (q, q′) ∈ Sk+1 ∧ q′′ ∈ δi (q′, i)}

21 / 30

I After reading n, B will be in state Sk+1, where (Si , ci ) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

q q′ q′′
nk+1 i
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Determinization proof

Construction

Example

0

1
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⇒

{(0, 0)} {(0, 1),
(0, 2)}

{(0, 3)}

{(0, 4)}
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b

c

22 / 30



Nested Word Automata

Determinization proof

Construction

Example

0

1

2

3

4

a

a

b

c

⇒

{(0, 0)} {(0, 1),
(0, 2)}

{(0, 3)}

{(0, 4)}

a

b

c

22 / 30



Nested Word Automata

Determinization proof

Construction

Call transitions

n′ = n · 〈ck+1 = n1〈c1n2〈c2 · · · nk〈cknk+1〈ck+1

δ′c(Sk+1, ck+1) =

(S ′, (Sk+1, ck+1)),

S ′ = {(q′′, q′′) | (q, q′) ∈ Sk+1 ∧ ∃p ∈ P.(q′′, p) ∈ δc(q′, ck+1)}

new hierarchical state that keeps track of the old state/symbol

23 / 30

I After reading n, B will be in state Sk+1, where (Si , ci ) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.
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I After reading n, B will be in state Sk+1, where (Si , ci ) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

q q′

q′′

nk+1

ck+1/p
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〈c/({(0, 0)}, c)
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Nested Word Automata

Determinization proof

Construction

Return transitions

n′ = n · r〉 = n1〈c1n2〈c2 · · · nk〈cknk+1r〉

We have two cases here:

k = 0 no matching call, like internal transition

δ′r (Sk+1, p
′
0, r) =

{(q, q′′) | (q, q′) ∈ Sk+1 ∧ ∃p ∈ P0.q
′′ ∈ δr (q′, p, r)}

k > 0 subword nk〈cknk+1r〉, hierarchical state = (Sk , ck)

δ′r (Sk+1, (Sk , ck), r) = {(q, q′′) | (q, q′) ∈ Sk ∧ (q1, q2) ∈ Sk+1

∧∃p ∈ P.(q1, p) ∈ δc(q′, ck) ∧ q′′ ∈ δr (q2, p, r)}

25 / 30

I After reading n, B will be in state Sk+1, where (Si , ci ) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.
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Nested Word Automata

Determinization proof

Construction

Résumé

• now all components of B defined

• correctness results from invariants

• complexity: if |Q| = s, then |Q ′| = 2s
2

and |P ′| ∈ O(2s
2
)

This is succinct, so there exists an example where the DNWA
cannot have less states.
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