
Automata Theory

Nested Word Automata

Christian Schilling

June 4th, 2012

Nested Word Automata

Overview

Motivation and background

Nested words and their acceptors

Determinization proof

Conclusion

1 / 30

Nested Word Automata

Motivation and background

Overview

Motivation and background
Common languages
Visibly pushdown languages

Nested words and their acceptors

Determinization proof

Conclusion

1 / 30

Nested Word Automata

Motivation and background

Common languages

Regular language

� �
1 procedure foo()

2 {

3 r e tu rn ;
4 }� �

L1 = {c r}

q0

q1 q2

c

r

2 / 30

Nested Word Automata

Motivation and background

Common languages

Regular language

� �
1 procedure foo()

2 {

3 r e tu rn ;
4 }� �

L1 = {c r}

q0

q1 q2

c

r

2 / 30

Nested Word Automata

Motivation and background

Common languages

(det.) Context-free language

� �
1 procedure bar()

2 {

3 i f (*)

4 c a l l bar();

5 r e tu rn ;
6 }� �

L2 = {cn rn | n > 0}

q0

q1 q2

q3

⊥, c, ⊥A

B, r, ε

A, r, ε
A, r, ε

A, c, AB
B, c, BB

A, r, ε

3 / 30

Nested Word Automata

Motivation and background

Common languages

(det.) Context-free language

� �
1 procedure bar()

2 {

3 i f (*)

4 c a l l bar();

5 r e tu rn ;
6 }� �

L2 = {cn rn | n > 0}

q0

q1 q2

q3

⊥, c, ⊥A

B, r, ε

A, r, ε
A, r, ε

A, c, AB
B, c, BB

A, r, ε

3 / 30

Nested Word Automata

Motivation and background

Common languages

Comparison

,

/ / /

regular context-free

comparison constants two variables
of numbers
closure

all standard properties not under intersection
and complementation

decidability

all standard problems intersection, inclusion,
equivalence undecidable

determinize

powerset construction not possible

Question: Is there some class of languages in between that is more
expressive than regular languages, but keeps their nice properties?

Answer (Alur & Madhusudan 2004): yes, at least in some sense

4 / 30

Nested Word Automata

Motivation and background

Common languages

Comparison

, /

/ /

regular context-free

comparison constants two variables
of numbers
closure all standard properties not under intersection

and complementation

decidability

all standard problems intersection, inclusion,
equivalence undecidable

determinize

powerset construction not possible

Question: Is there some class of languages in between that is more
expressive than regular languages, but keeps their nice properties?

Answer (Alur & Madhusudan 2004): yes, at least in some sense

4 / 30

Nested Word Automata

Motivation and background

Common languages

Comparison

, / /

/

regular context-free

comparison constants two variables
of numbers
closure all standard properties not under intersection

and complementation

decidability all standard problems intersection, inclusion,
equivalence undecidable

determinize

powerset construction not possible

Question: Is there some class of languages in between that is more
expressive than regular languages, but keeps their nice properties?

Answer (Alur & Madhusudan 2004): yes, at least in some sense

4 / 30

Nested Word Automata

Motivation and background

Common languages

Comparison

, / / / regular context-free

comparison constants two variables
of numbers
closure all standard properties not under intersection

and complementation

decidability all standard problems intersection, inclusion,
equivalence undecidable

determinize powerset construction not possible

Question: Is there some class of languages in between that is more
expressive than regular languages, but keeps their nice properties?

Answer (Alur & Madhusudan 2004): yes, at least in some sense

4 / 30

Nested Word Automata

Motivation and background

Common languages

Comparison

, / / / regular context-free

comparison constants two variables
of numbers
closure all standard properties not under intersection

and complementation

decidability all standard problems intersection, inclusion,
equivalence undecidable

determinize powerset construction not possible

Question: Is there some class of languages in between that is more
expressive than regular languages, but keeps their nice properties?

Answer (Alur & Madhusudan 2004): yes, at least in some sense

4 / 30

Nested Word Automata

Motivation and background

Common languages

Comparison

, / / / regular context-free

comparison constants two variables
of numbers
closure all standard properties not under intersection

and complementation

decidability all standard problems intersection, inclusion,
equivalence undecidable

determinize powerset construction not possible

Question: Is there some class of languages in between that is more
expressive than regular languages, but keeps their nice properties?

Answer (Alur & Madhusudan 2004): yes, at least in some sense

4 / 30

Nested Word Automata

Motivation and background

Visibly pushdown languages

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a
visibly pushdown automaton (VPA).

A VPA A = 〈Q, q0,Qf ,Σ, Γ,⊥, δ〉 is a deterministic PDA with
special rules: Determined by the input symbol, only one symbol per
push is allowed and reading the stack implies a pop.

• states, initial state, final states, stack alphabet,
bottom-of-stack symbol (no change here),

• partitioning of the input alphabet: Σ = Σi] Σc] Σr ,

• δ = δi] δc] δr ,
• δi ⊆ Q × Σi → Q
• δc ⊆ Q × Σc → (Γ \ {⊥})× Q
• δr ⊆ Q × Σr × Γ→ Q

Note: pops occur implicitly, ⊥ never popped, no ε

5 / 30

Nested Word Automata

Motivation and background

Visibly pushdown languages

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a
visibly pushdown automaton (VPA).

A VPA A = 〈Q, q0,Qf ,Σ, Γ,⊥, δ〉 is a deterministic PDA with
special rules: Determined by the input symbol, only one symbol per
push is allowed and reading the stack implies a pop.

• states, initial state, final states, stack alphabet,
bottom-of-stack symbol (no change here),

• partitioning of the input alphabet: Σ = Σi] Σc] Σr ,

• δ = δi] δc] δr ,
• δi ⊆ Q × Σi → Q
• δc ⊆ Q × Σc → (Γ \ {⊥})× Q
• δr ⊆ Q × Σr × Γ→ Q

Note: pops occur implicitly, ⊥ never popped, no ε

5 / 30

Nested Word Automata

Motivation and background

Visibly pushdown languages

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a
visibly pushdown automaton (VPA).

A VPA A = 〈Q, q0,Qf ,Σ, Γ,⊥, δ〉 is a deterministic PDA with
special rules: Determined by the input symbol, only one symbol per
push is allowed and reading the stack implies a pop.

• states, initial state, final states, stack alphabet,
bottom-of-stack symbol (no change here),

• partitioning of the input alphabet: Σ = Σi] Σc] Σr ,

• δ = δi] δc] δr ,
• δi ⊆ Q × Σi → Q
• δc ⊆ Q × Σc → (Γ \ {⊥})× Q
• δr ⊆ Q × Σr × Γ→ Q

Note: pops occur implicitly, ⊥ never popped, no ε

5 / 30

Nested Word Automata

Motivation and background

Visibly pushdown languages

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a
visibly pushdown automaton (VPA).

A VPA A = 〈Q, q0,Qf ,Σ, Γ,⊥, δ〉 is a deterministic PDA with
special rules: Determined by the input symbol, only one symbol per
push is allowed and reading the stack implies a pop.

• states, initial state, final states, stack alphabet,
bottom-of-stack symbol (no change here),

• partitioning of the input alphabet: Σ = Σi] Σc] Σr ,

• δ = δi] δc] δr ,
• δi ⊆ Q × Σi → Q
• δc ⊆ Q × Σc → (Γ \ {⊥})× Q
• δr ⊆ Q × Σr × Γ→ Q

Note: pops occur implicitly, ⊥ never popped, no ε

5 / 30

Nested Word Automata

Motivation and background

Visibly pushdown languages

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a
visibly pushdown automaton (VPA).

A VPA A = 〈Q, q0,Qf ,Σ, Γ,⊥, δ〉 is a deterministic PDA with
special rules: Determined by the input symbol, only one symbol per
push is allowed and reading the stack implies a pop.

• states, initial state, final states, stack alphabet,
bottom-of-stack symbol (no change here),

• partitioning of the input alphabet: Σ = Σi] Σc] Σr ,

• δ = δi] δc] δr ,
• δi ⊆ Q × Σi → Q
• δc ⊆ Q × Σc → (Γ \ {⊥})× Q
• δr ⊆ Q × Σr × Γ→ Q

Note: pops occur implicitly, ⊥ never popped, no ε

5 / 30

Nested Word Automata

Motivation and background

Visibly pushdown languages

L2 as VPL

Consider again L2 = {cn rn | n > 0}.

We construct a VPA for L2.

q0

q1 q2

q3

⊥, c, ⊥A

B, r, ε

A, r, ε
A, r, ε

A, c, AB
B, c, BB

A, r, ε

Partitioning:
Σi = ∅, Σc = {c}, Σr = {r}

δc = { (q0, c ,A, q1),
(q1, c ,B, q1) }

δr = { (q1, r ,A, q3),
(q1, r ,B, q2),
(q2, r ,A, q3),
(q2, r ,B, q2) }

6 / 30

Nested Word Automata

Motivation and background

Visibly pushdown languages

L2 as VPL

Consider again L2 = {cn rn | n > 0}. We construct a VPA for L2.

q0

q1 q2

q3

⊥, c, ⊥A

B, r, ε

A, r, ε
A, r, ε

A, c, AB
B, c, BB

A, r, ε

Partitioning:
Σi = ∅, Σc = {c}, Σr = {r}

δc = { (q0, c ,A, q1),
(q1, c ,B, q1) }

δr = { (q1, r ,A, q3),
(q1, r ,B, q2),
(q2, r ,A, q3),
(q2, r ,B, q2) }

6 / 30

Nested Word Automata

Motivation and background

Visibly pushdown languages

L2 as VPL

Consider again L2 = {cn rn | n > 0}. We construct a VPA for L2.

q0

q1 q2

q3

c, A

r, B

r, A
r, A

c, B r, B

Partitioning:
Σi = ∅, Σc = {c}, Σr = {r}

δc = { (q0, c ,A, q1),
(q1, c ,B, q1) }

δr = { (q1, r ,A, q3),
(q1, r ,B, q2),
(q2, r ,A, q3),
(q2, r ,B, q2) }

6 / 30

Nested Word Automata

Motivation and background

Visibly pushdown languages

From VPAs to NWAs

• main differences between VPAs and PDAs:
• closed under determinism
• partitioning of the alphabet
• very limited use of the stack

• Do we really need the stack?

(Alur & Madhusudan 2006): no, with some further treatment
of the input → nested words (NWs)

• automaton model: nested word automata (NWAs)

• nested word languages (NWLs) and VPLs have same power
→ NWAs � deterministic PDAs

• main idea: call and return symbols are matched in the input

7 / 30

Nested Word Automata

Motivation and background

Visibly pushdown languages

From VPAs to NWAs

• main differences between VPAs and PDAs:
• closed under determinism
• partitioning of the alphabet
• very limited use of the stack

• Do we really need the stack?
(Alur & Madhusudan 2006): no, with some further treatment
of the input → nested words (NWs)

• automaton model: nested word automata (NWAs)

• nested word languages (NWLs) and VPLs have same power
→ NWAs � deterministic PDAs

• main idea: call and return symbols are matched in the input

7 / 30

Nested Word Automata

Motivation and background

Visibly pushdown languages

From VPAs to NWAs

• main differences between VPAs and PDAs:
• closed under determinism
• partitioning of the alphabet
• very limited use of the stack

• Do we really need the stack?
(Alur & Madhusudan 2006): no, with some further treatment
of the input → nested words (NWs)

• automaton model: nested word automata (NWAs)

• nested word languages (NWLs) and VPLs have same power
→ NWAs � deterministic PDAs

• main idea: call and return symbols are matched in the input

7 / 30

Nested Word Automata

Motivation and background

Visibly pushdown languages

From VPAs to NWAs

• main differences between VPAs and PDAs:
• closed under determinism
• partitioning of the alphabet
• very limited use of the stack

• Do we really need the stack?
(Alur & Madhusudan 2006): no, with some further treatment
of the input → nested words (NWs)

• automaton model: nested word automata (NWAs)

• nested word languages (NWLs) and VPLs have same power
→ NWAs � deterministic PDAs

• main idea: call and return symbols are matched in the input

7 / 30

Nested Word Automata

Nested words and their acceptors

Overview

Motivation and background

Nested words and their acceptors
Nested words
Nested word automata

Determinization proof

Conclusion

8 / 30

Nested Word Automata

Nested words and their acceptors

Nested words

Well nested sequences

A sequence of symbols is well nested if calls and returns are
matched without crossing, i.e., for any different call-return-pairs
(ci , ri), (cj , rj), ci < cj < ri < rj is forbidden.

Examples:

i i i i i

i i

Note: Every sequence has a unique well nesting.

9 / 30

Nested Word Automata

Nested words and their acceptors

Nested words

Well nested sequences

A sequence of symbols is well nested if calls and returns are
matched without crossing, i.e., for any different call-return-pairs
(ci , ri), (cj , rj), ci < cj < ri < rj is forbidden.

Examples:

i c i c i i r r i

i i

Note: Every sequence has a unique well nesting.

9 / 30

Nested Word Automata

Nested words and their acceptors

Nested words

Well nested sequences

A sequence of symbols is well nested if calls and returns are
matched without crossing, i.e., for any different call-return-pairs
(ci , ri), (cj , rj), ci < cj < ri < rj is forbidden.

Examples:

i c i c i i r r i

i i

Note: Every sequence has a unique well nesting.

9 / 30

Nested Word Automata

Nested words and their acceptors

Nested words

Well nested sequences

A sequence of symbols is well nested if calls and returns are
matched without crossing, i.e., for any different call-return-pairs
(ci , ri), (cj , rj), ci < cj < ri < rj is forbidden.

Examples:

i c i c i i r r i

r c r r c i c i

Note: Every sequence has a unique well nesting.

9 / 30

Nested Word Automata

Nested words and their acceptors

Nested words

Well nested sequences

A sequence of symbols is well nested if calls and returns are
matched without crossing, i.e., for any different call-return-pairs
(ci , ri), (cj , rj), ci < cj < ri < rj is forbidden.

Examples:

i c i c i i r r i

r c r r c i c i

Note: Every sequence has a unique well nesting.

9 / 30

Nested Word Automata

Nested words and their acceptors

Nested words

Well nested sequences

A sequence of symbols is well nested if calls and returns are
matched without crossing, i.e., for any different call-return-pairs
(ci , ri), (cj , rj), ci < cj < ri < rj is forbidden.

Examples:

i c i c i i r r i

r c r r c i c i

Note: Every sequence has a unique well nesting.

9 / 30

Nested Word Automata

Nested words and their acceptors

Nested words

Nested words

A relation ;⊂ {−∞, 1, 2, . . . , `} × {1, 2, . . . , `,∞} of length
` ≥ 0 is a matching relation if the following holds:

I if i ; j , then i < j (monotone)

II if i1 ; j and i2 ; j , then i1 = i2 (left-unique)
if i ; j1 and i ; j1, then j1 = j2 (right-unique)

III if i1 ; j1 and i2 ; j2, then we have not i1 < i2 < j1 < j2
(well nested)

Explanation:

I not r c, not reflexive

II not c c r, not c r r

III not c c r r

ex post note: (−∞,∞) 6∈ ;,
±∞ excluded from uniqueness

10 / 30

Nested Word Automata

Nested words and their acceptors

Nested words

Nested words

A relation ;⊂ {−∞, 1, 2, . . . , `} × {1, 2, . . . , `,∞} of length
` ≥ 0 is a matching relation if the following holds:

I if i ; j , then i < j (monotone)

II if i1 ; j and i2 ; j , then i1 = i2 (left-unique)
if i ; j1 and i ; j1, then j1 = j2 (right-unique)

III if i1 ; j1 and i2 ; j2, then we have not i1 < i2 < j1 < j2
(well nested)

If i ; j , i is a call position and j is a return position. All the rest is
an internal position. If i 6= −∞ and j 6=∞, they are well-matched ,
otherwise pending . e ∈ ; is a nesting edge.

A nested word n over Σ is a pair (a1 · · · a`,;), where ai ∈ Σ and
; is a matching relation of length `.

10 / 30

Nested Word Automata

Nested words and their acceptors

Nested words

Nested words

A relation ;⊂ {−∞, 1, 2, . . . , `} × {1, 2, . . . , `,∞} of length
` ≥ 0 is a matching relation if the following holds:

I if i ; j , then i < j (monotone)

II if i1 ; j and i2 ; j , then i1 = i2 (left-unique)
if i ; j1 and i ; j1, then j1 = j2 (right-unique)

III if i1 ; j1 and i2 ; j2, then we have not i1 < i2 < j1 < j2
(well nested)

If i ; j , i is a call position and j is a return position. All the rest is
an internal position. If i 6= −∞ and j 6=∞, they are well-matched ,
otherwise pending . e ∈ ; is a nesting edge.

A nested word n over Σ is a pair (a1 · · · a`,;), where ai ∈ Σ and
; is a matching relation of length `.

10 / 30

Nested Word Automata

Nested words and their acceptors

Nested words

Example 1

i c i c i i r r i

1 2

3

4

5 6

7

8 9

Here: 2 ; 8, 4 ; 7 and the whole word is well-matched.

11 / 30

adapted from [1]

Nested Word Automata

Nested words and their acceptors

Nested words

Example 2

r c r r c i c i

1 2 3

4 5

6

7

8

Here: −∞; 1, 2 ; 3, −∞; 4, 5 ;∞, 7 ;∞ and only 2 ; 3
is well-matched.

12 / 30

adapted from [1]

Nested Word Automata

Nested words and their acceptors

Nested word automata

Definition of NWAs

A = 〈Q, q0,Qf ,P, p0,Pf , δi , δc , δr 〉 over alphabet Σ

• Q finite set of linear states,

• q0 ∈ Q initial linear state,

• Qf ⊆ Q set of linear final states,

• P finite set of hierarchical states,

• p0 ∈ Q initial hierarchical state,

• Pf ⊆ P set of hierarchical final states,

• δi ⊆ Q × Σ→ Q internal transition function,

• δc ⊆ Q × Σ→ Q × P call transition function,

• δr ⊆ Q × P × Σ→ Q return transition function

acceptance via both Qf and Pf

as VPAs: at return implicitly go to hierarchical state before
matching call

13 / 30

Nested Word Automata

Nested words and their acceptors

Nested word automata

Definition of NWAs

A = 〈Q, q0,Qf ,P, p0,Pf , δi , δc , δr 〉 over alphabet Σ

• Q finite set of linear states,

• q0 ∈ Q initial linear state,

• Qf ⊆ Q set of linear final states,

• P finite set of hierarchical states,

• p0 ∈ Q initial hierarchical state,

• Pf ⊆ P set of hierarchical final states,

• δi ⊆ Q × Σ→ Q internal transition function,

• δc ⊆ Q × Σ→ Q × P call transition function,

• δr ⊆ Q × P × Σ→ Q return transition function

acceptance via both Qf and Pf

as VPAs: at return implicitly go to hierarchical state before
matching call

13 / 30

Nested Word Automata

Nested words and their acceptors

Nested word automata

Definition of NWAs

A = 〈Q, q0,Qf ,P, p0,Pf , δi , δc , δr 〉 over alphabet Σ

• Q finite set of linear states,

• q0 ∈ Q initial linear state,

• Qf ⊆ Q set of linear final states,

• P finite set of hierarchical states,

• p0 ∈ Q initial hierarchical state,

• Pf ⊆ P set of hierarchical final states,

• δi ⊆ Q × Σ→ Q internal transition function,

• δc ⊆ Q × Σ→ Q × P call transition function,

• δr ⊆ Q × P × Σ→ Q return transition function

acceptance via both Qf and Pf

as VPAs: at return implicitly go to hierarchical state before
matching call

13 / 30

Nested Word Automata

Nested words and their acceptors

Nested word automata

Definition of NWAs

A = 〈Q, q0,Qf ,P, p0,Pf , δi , δc , δr 〉 over alphabet Σ

• Q finite set of linear states,

• q0 ∈ Q initial linear state,

• Qf ⊆ Q set of linear final states,

• P finite set of hierarchical states,

• p0 ∈ Q initial hierarchical state,

• Pf ⊆ P set of hierarchical final states,

• δi ⊆ Q × Σ→ Q internal transition function,

• δc ⊆ Q × Σ→ Q × P call transition function,

• δr ⊆ Q × P × Σ→ Q return transition function

acceptance via both Qf and Pf

as VPAs: at return implicitly go to hierarchical state before
matching call

13 / 30

Nested Word Automata

Nested words and their acceptors

Nested word automata

Definition of NWAs

A = 〈Q, q0,Qf ,P, p0,Pf , δi , δc , δr 〉 over alphabet Σ

• Q finite set of linear states,

• q0 ∈ Q initial linear state,

• Qf ⊆ Q set of linear final states,

• P finite set of hierarchical states,

• p0 ∈ Q initial hierarchical state,

• Pf ⊆ P set of hierarchical final states,

• δi ⊆ Q × Σ→ Q internal transition function,

• δc ⊆ Q × Σ→ Q × P call transition function,

• δr ⊆ Q × P × Σ→ Q return transition function

acceptance via both Qf and Pf

as VPAs: at return implicitly go to hierarchical state before
matching call

13 / 30

Nested Word Automata

Nested words and their acceptors

Nested word automata

L2 as NWA

Consider again L2 = {cn rn | n > 0}.

We construct an NWA for L′2 := {(〈c)n (r〉)n | n > 0}.

We can also use hierarchical states for acceptance.

q0

q1 q2

q3

c, A

r, B

r, A
r, A

c, B r, B

14 / 30

Nested Word Automata

Nested words and their acceptors

Nested word automata

L2 as NWA

Consider again L2 = {cn rn | n > 0}.

We construct an NWA for L′2 := {(〈c)n (r〉)n | n > 0}.

We can also use hierarchical states for acceptance.

q0

q1 q2

q3

〈c/p0

r〉/p1

r〉/p0
r〉/p0

〈c/p1 r〉/p1

P = {p0, p1}, Pf ⊆ {p0}

14 / 30

Nested Word Automata

Nested words and their acceptors

Nested word automata

L2 as NWA

Consider again L2 = {cn rn | n > 0}.

We construct an NWA for L′2 := {(〈c)n (r〉)n | n > 0}.

We can also use hierarchical states for acceptance.

q0

q1 q2

〈c/p1

r〉/p1

〈c/p1 r〉/p1

P = {p0, p1}, Pf = {p0}

14 / 30

Nested Word Automata

Nested words and their acceptors

Nested word automata

Remarks

• no stack anymore, but structure on the input word

• nondeterministic NWAs: Q0 ⊆ Q, P0 ⊆ P, δ

possibly exponentially more states for deterministic NWAs

• not all sets of NWs acceptable by NWAs

{(〈a)n(b〉)n | n > 0} vs. {anbn | n > 0}

15 / 30

Nested Word Automata

Nested words and their acceptors

Nested word automata

Remarks

• no stack anymore, but structure on the input word

• nondeterministic NWAs: Q0 ⊆ Q, P0 ⊆ P, δ

possibly exponentially more states for deterministic NWAs

• not all sets of NWs acceptable by NWAs

{(〈a)n(b〉)n | n > 0} vs. {anbn | n > 0}

15 / 30

Nested Word Automata

Nested words and their acceptors

Nested word automata

Remarks

• no stack anymore, but structure on the input word

• nondeterministic NWAs: Q0 ⊆ Q, P0 ⊆ P, δ
possibly exponentially more states for deterministic NWAs

• not all sets of NWs acceptable by NWAs

{(〈a)n(b〉)n | n > 0} vs. {anbn | n > 0}

15 / 30

Nested Word Automata

Nested words and their acceptors

Nested word automata

Remarks

• no stack anymore, but structure on the input word

• nondeterministic NWAs: Q0 ⊆ Q, P0 ⊆ P, δ
possibly exponentially more states for deterministic NWAs

• not all sets of NWs acceptable by NWAs
{(〈a)n(b〉)n | n > 0} vs. {anbn | n > 0}

15 / 30

Nested Word Automata

Nested words and their acceptors

Nested word automata

Comparison of properties

DFA DNWA PDA DPDA

pre-/suffix ! ! ! !

∪, ·, ∗

! ! ! %

complement

! ! % !

∩

! ! % %

emptiness

Nlogspace ptime ptime ptime

equivalence

Nlogspace ptime undecidable decidable

inclusion

Nlogspace ptime undecidable undecidable

Note: Equivalence and inclusion problem are exptime-complete
for nondeterministic NWAs.
Implication: determinization ∈ Ω(exptime) if at all possible

16 / 30

Nested Word Automata

Nested words and their acceptors

Nested word automata

Comparison of properties

DFA DNWA PDA DPDA

pre-/suffix ! ! ! !

∪, ·, ∗ ! ! ! %

complement ! ! % !

∩ ! ! % %

emptiness

Nlogspace ptime ptime ptime

equivalence

Nlogspace ptime undecidable decidable

inclusion

Nlogspace ptime undecidable undecidable

Note: Equivalence and inclusion problem are exptime-complete
for nondeterministic NWAs.
Implication: determinization ∈ Ω(exptime) if at all possible

16 / 30

Nested Word Automata

Nested words and their acceptors

Nested word automata

Comparison of properties

DFA DNWA PDA DPDA

pre-/suffix ! ! ! !

∪, ·, ∗ ! ! ! %

complement ! ! % !

∩ ! ! % %

emptiness Nlogspace ptime ptime ptime

equivalence Nlogspace ptime undecidable decidable

inclusion Nlogspace ptime undecidable undecidable

Note: Equivalence and inclusion problem are exptime-complete
for nondeterministic NWAs.
Implication: determinization ∈ Ω(exptime) if at all possible

16 / 30

Nested Word Automata

Nested words and their acceptors

Nested word automata

Comparison of properties

DFA DNWA PDA DPDA

pre-/suffix ! ! ! !

∪, ·, ∗ ! ! ! %

complement ! ! % !

∩ ! ! % %

emptiness Nlogspace ptime ptime ptime

equivalence Nlogspace ptime undecidable decidable

inclusion Nlogspace ptime undecidable undecidable

Note: Equivalence and inclusion problem are exptime-complete
for nondeterministic NWAs.
Implication: determinization ∈ Ω(exptime) if at all possible

16 / 30

Nested Word Automata

Determinization proof

Overview

Motivation and background

Nested words and their acceptors

Determinization proof
Intuition
Construction

Conclusion

17 / 30

Nested Word Automata

Determinization proof

Intuition

Idea behind the proof

• goal: determinize a nondeterministic NWA (NNWA)

• state of automaton A for nested word n with position k :
deterministic NWA (DNWA): (qk , pk)
NNWA: one of (qk1 , pk1), . . . , (qki , pkj)

• finite automata: call the states {qk1 , . . . , qki}
• NWAs: also need information about hierarchical states
→ powerset construction over nesting edges
hierarchical states = nesting edges + call symbol so far

• handle hierarchical proceeding when reading return symbols

18 / 30

Nested Word Automata

Determinization proof

Intuition

Idea behind the proof

• goal: determinize a nondeterministic NWA (NNWA)

• state of automaton A for nested word n with position k :
deterministic NWA (DNWA): (qk , pk)
NNWA: one of (qk1 , pk1), . . . , (qki , pkj)

• finite automata: call the states {qk1 , . . . , qki}
• NWAs: also need information about hierarchical states
→ powerset construction over nesting edges
hierarchical states = nesting edges + call symbol so far

• handle hierarchical proceeding when reading return symbols

18 / 30

Nested Word Automata

Determinization proof

Intuition

Idea behind the proof

• goal: determinize a nondeterministic NWA (NNWA)

• state of automaton A for nested word n with position k :
deterministic NWA (DNWA): (qk , pk)
NNWA: one of (qk1 , pk1), . . . , (qki , pkj)

• finite automata: call the states {qk1 , . . . , qki}

• NWAs: also need information about hierarchical states
→ powerset construction over nesting edges
hierarchical states = nesting edges + call symbol so far

• handle hierarchical proceeding when reading return symbols

18 / 30

Nested Word Automata

Determinization proof

Intuition

Idea behind the proof

• goal: determinize a nondeterministic NWA (NNWA)

• state of automaton A for nested word n with position k :
deterministic NWA (DNWA): (qk , pk)
NNWA: one of (qk1 , pk1), . . . , (qki , pkj)

• finite automata: call the states {qk1 , . . . , qki}
• NWAs: also need information about hierarchical states
→ powerset construction over nesting edges
hierarchical states = nesting edges + call symbol so far

• handle hierarchical proceeding when reading return symbols

18 / 30

Nested Word Automata

Determinization proof

Intuition

Idea behind the proof

• goal: determinize a nondeterministic NWA (NNWA)

• state of automaton A for nested word n with position k :
deterministic NWA (DNWA): (qk , pk)
NNWA: one of (qk1 , pk1), . . . , (qki , pkj)

• finite automata: call the states {qk1 , . . . , qki}
• NWAs: also need information about hierarchical states
→ powerset construction over nesting edges
hierarchical states = nesting edges + call symbol so far

• handle hierarchical proceeding when reading return symbols

18 / 30

Nested Word Automata

Determinization proof

Construction

The states: definition

Consider the NNWA A = 〈Q,Q0,Qf ,P,P0,

wlog

=P︷︸︸︷
Pf , δi , δc , δr 〉.

We construct the DNWA B = 〈Q ′, q′0,Q ′f ,P ′, p′0,P ′f , δ′i , δ′c , δ′r 〉:

• Q ′ := 2Q×Q = {S1, . . . ,Si}
• q′0 := Q0 × Q0

• Q ′f := {S | ∃q, q′.(q, q′) ∈ S ∧ q′ ∈ Qf }
or: S ∈ Q ′f :⇔ S contains (q, q′) with q′ ∈ Qf

• P ′ := {p′0} ∪ (Q ′ × Σ)

• p′0 := fresh hierarchical state

• P ′f := P ′

19 / 30

Nested Word Automata

Determinization proof

Construction

The states: definition

Consider the NNWA A = 〈Q,Q0,Qf ,P,P0,

wlog

=P︷︸︸︷
Pf , δi , δc , δr 〉.

We construct the DNWA B = 〈Q ′, q′0,Q ′f ,P ′, p′0,P ′f , δ′i , δ′c , δ′r 〉:
• Q ′ := 2Q×Q = {S1, . . . ,Si}

• q′0 := Q0 × Q0

• Q ′f := {S | ∃q, q′.(q, q′) ∈ S ∧ q′ ∈ Qf }
or: S ∈ Q ′f :⇔ S contains (q, q′) with q′ ∈ Qf

• P ′ := {p′0} ∪ (Q ′ × Σ)

• p′0 := fresh hierarchical state

• P ′f := P ′

19 / 30

Nested Word Automata

Determinization proof

Construction

The states: definition

Consider the NNWA A = 〈Q,Q0,Qf ,P,P0,

wlog

=P︷︸︸︷
Pf , δi , δc , δr 〉.

We construct the DNWA B = 〈Q ′, q′0,Q ′f ,P ′, p′0,P ′f , δ′i , δ′c , δ′r 〉:
• Q ′ := 2Q×Q = {S1, . . . ,Si}
• q′0 := Q0 × Q0

• Q ′f := {S | ∃q, q′.(q, q′) ∈ S ∧ q′ ∈ Qf }
or: S ∈ Q ′f :⇔ S contains (q, q′) with q′ ∈ Qf

• P ′ := {p′0} ∪ (Q ′ × Σ)

• p′0 := fresh hierarchical state

• P ′f := P ′

19 / 30

Nested Word Automata

Determinization proof

Construction

The states: definition

Consider the NNWA A = 〈Q,Q0,Qf ,P,P0,

wlog

=P︷︸︸︷
Pf , δi , δc , δr 〉.

We construct the DNWA B = 〈Q ′, q′0,Q ′f ,P ′, p′0,P ′f , δ′i , δ′c , δ′r 〉:
• Q ′ := 2Q×Q = {S1, . . . ,Si}
• q′0 := Q0 × Q0

• Q ′f := {S | ∃q, q′.(q, q′) ∈ S ∧ q′ ∈ Qf }
or: S ∈ Q ′f :⇔ S contains (q, q′) with q′ ∈ Qf

• P ′ := {p′0} ∪ (Q ′ × Σ)

• p′0 := fresh hierarchical state

• P ′f := P ′

19 / 30

Nested Word Automata

Determinization proof

Construction

The states: definition

Consider the NNWA A = 〈Q,Q0,Qf ,P,P0,

wlog

=P︷︸︸︷
Pf , δi , δc , δr 〉.

We construct the DNWA B = 〈Q ′, q′0,Q ′f ,P ′, p′0,P ′f , δ′i , δ′c , δ′r 〉:
• Q ′ := 2Q×Q = {S1, . . . ,Si}
• q′0 := Q0 × Q0

• Q ′f := {S | ∃q, q′.(q, q′) ∈ S ∧ q′ ∈ Qf }
or: S ∈ Q ′f :⇔ S contains (q, q′) with q′ ∈ Qf

• P ′ := {p′0} ∪ (Q ′ × Σ)

• p′0 := fresh hierarchical state

• P ′f := P ′

19 / 30

Nested Word Automata

Determinization proof

Construction

The states: definition

Consider the NNWA A = 〈Q,Q0,Qf ,P,P0,

wlog

=P︷︸︸︷
Pf , δi , δc , δr 〉.

We construct the DNWA B = 〈Q ′, q′0,Q ′f ,P ′, p′0,P ′f , δ′i , δ′c , δ′r 〉:
• Q ′ := 2Q×Q = {S1, . . . ,Si}
• q′0 := Q0 × Q0

• Q ′f := {S | ∃q, q′.(q, q′) ∈ S ∧ q′ ∈ Qf }
or: S ∈ Q ′f :⇔ S contains (q, q′) with q′ ∈ Qf

• P ′ := {p′0} ∪ (Q ′ × Σ)

• p′0 := fresh hierarchical state

• P ′f := P ′

19 / 30

Nested Word Automata

Determinization proof

Construction

The states: definition

Consider the NNWA A = 〈Q,Q0,Qf ,P,P0,

wlog

=P︷︸︸︷
Pf , δi , δc , δr 〉.

We construct the DNWA B = 〈Q ′, q′0,Q ′f ,P ′, p′0,P ′f , δ′i , δ′c , δ′r 〉:
• Q ′ := 2Q×Q = {S1, . . . ,Si}
• q′0 := Q0 × Q0

• Q ′f := {S | ∃q, q′.(q, q′) ∈ S ∧ q′ ∈ Qf }
or: S ∈ Q ′f :⇔ S contains (q, q′) with q′ ∈ Qf

• P ′ := {p′0} ∪ (Q ′ × Σ)

• p′0 := fresh hierarchical state

• P ′f := P ′

19 / 30

Nested Word Automata

Determinization proof

Construction

The states: semantics

Consider a nested word n with k pending calls. We can write this

n = n1〈c1n2〈c2 · · · nk〈cknk+1

where the ni have no pending calls.

Invariants

I After reading n, B will be in state Sk+1, where (Si , ci) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

Question: acceptance condition of B for n?
Answer: Sk+1 ∈ Q ′f ,

i.e., ∃q, q′.(q, q′) ∈ Sk+1 ∧ q
nk+1→ A q′ ∧ q′ ∈ Qf

20 / 30

Nested Word Automata

Determinization proof

Construction

The states: semantics

Consider a nested word n with k pending calls. We can write this

n = n1〈c1n2〈c2 · · · nk〈cknk+1

where the ni have no pending calls.

Invariants

I After reading n, B will be in state Sk+1, where (Si , ci) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

Question: acceptance condition of B for n?
Answer: Sk+1 ∈ Q ′f ,

i.e., ∃q, q′.(q, q′) ∈ Sk+1 ∧ q
nk+1→ A q′ ∧ q′ ∈ Qf

20 / 30

Nested Word Automata

Determinization proof

Construction

The states: semantics

Consider a nested word n with k pending calls. We can write this

n = n1〈c1n2〈c2 · · · nk〈cknk+1

where the ni have no pending calls.

Invariants

I After reading n, B will be in state Sk+1, where (Si , ci) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

Question: acceptance condition of B for n?
Answer: Sk+1 ∈ Q ′f ,

i.e., ∃q, q′.(q, q′) ∈ Sk+1 ∧ q
nk+1→ A q′ ∧ q′ ∈ Qf

20 / 30

Nested Word Automata

Determinization proof

Construction

The states: semantics

Consider a nested word n with k pending calls. We can write this

n = n1〈c1n2〈c2 · · · nk〈cknk+1

where the ni have no pending calls.

Invariants

I After reading n, B will be in state Sk+1, where (Si , ci) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

Question: acceptance condition of B for n?

Answer: Sk+1 ∈ Q ′f ,

i.e., ∃q, q′.(q, q′) ∈ Sk+1 ∧ q
nk+1→ A q′ ∧ q′ ∈ Qf

20 / 30

Nested Word Automata

Determinization proof

Construction

The states: semantics

Consider a nested word n with k pending calls. We can write this

n = n1〈c1n2〈c2 · · · nk〈cknk+1

where the ni have no pending calls.

Invariants

I After reading n, B will be in state Sk+1, where (Si , ci) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

Question: acceptance condition of B for n?
Answer: Sk+1 ∈ Q ′f

,

i.e., ∃q, q′.(q, q′) ∈ Sk+1 ∧ q
nk+1→ A q′ ∧ q′ ∈ Qf

20 / 30

Nested Word Automata

Determinization proof

Construction

The states: semantics

Consider a nested word n with k pending calls. We can write this

n = n1〈c1n2〈c2 · · · nk〈cknk+1

where the ni have no pending calls.

Invariants

I After reading n, B will be in state Sk+1, where (Si , ci) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

Question: acceptance condition of B for n?
Answer: Sk+1 ∈ Q ′f ,

i.e., ∃q, q′.(q, q′) ∈ Sk+1 ∧ q
nk+1→ A q′ ∧ q′ ∈ Qf

20 / 30

Nested Word Automata

Determinization proof

Construction

Internal transitions

n′ = n · i = n1〈c1n2〈c2 · · · nk〈cknk+1i

δ′i (Sk+1, i) =

{(q, q′′) | (q, q′) ∈ Sk+1 ∧ q′′ ∈ δi (q′, i)}

21 / 30

I After reading n, B will be in state Sk+1, where (Si , ci) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

Nested Word Automata

Determinization proof

Construction

Internal transitions

n′ = n · i = n1〈c1n2〈c2 · · · nk〈cknk+1i

δ′i (Sk+1, i) = {(q, q′′) | (q, q′) ∈ Sk+1 ∧ q′′ ∈ δi (q′, i)}

21 / 30

I After reading n, B will be in state Sk+1, where (Si , ci) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

q q′ q′′
nk+1 i

Nested Word Automata

Determinization proof

Construction

Example

0

1

2

3

4

a

a

b

c

⇒

{(0, 0)} {(0, 1),
(0, 2)}

{(0, 3)}

{(0, 4)}

a

b

c

22 / 30

Nested Word Automata

Determinization proof

Construction

Example

0

1

2

3

4

a

a

b

c

⇒

{(0, 0)} {(0, 1),
(0, 2)}

{(0, 3)}

{(0, 4)}

a

b

c

22 / 30

Nested Word Automata

Determinization proof

Construction

Call transitions

n′ = n · 〈ck+1 = n1〈c1n2〈c2 · · · nk〈cknk+1〈ck+1

δ′c(Sk+1, ck+1) =

(S ′, (Sk+1, ck+1)),

S ′ = {(q′′, q′′) | (q, q′) ∈ Sk+1 ∧ ∃p ∈ P.(q′′, p) ∈ δc(q′, ck+1)}

new hierarchical state that keeps track of the old state/symbol

23 / 30

I After reading n, B will be in state Sk+1, where (Si , ci) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

Nested Word Automata

Determinization proof

Construction

Call transitions

n′ = n · 〈ck+1 = n1〈c1n2〈c2 · · · nk〈cknk+1〈ck+1

δ′c(Sk+1, ck+1) = (S ′, (Sk+1, ck+1)),

S ′ = {(q′′, q′′) | (q, q′) ∈ Sk+1 ∧ ∃p ∈ P.(q′′, p) ∈ δc(q′, ck+1)}

new hierarchical state that keeps track of the old state/symbol

23 / 30

I After reading n, B will be in state Sk+1, where (Si , ci) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

Nested Word Automata

Determinization proof

Construction

Call transitions

n′ = n · 〈ck+1 = n1〈c1n2〈c2 · · · nk〈cknk+1〈ck+1

δ′c(Sk+1, ck+1) = (S ′, (Sk+1, ck+1)),

S ′ = {(q′′, q′′) | (q, q′) ∈ Sk+1 ∧ ∃p ∈ P.(q′′, p) ∈ δc(q′, ck+1)}

new hierarchical state that keeps track of the old state/symbol

23 / 30

I After reading n, B will be in state Sk+1, where (Si , ci) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

q q′

q′′

nk+1

ck+1/p

Nested Word Automata

Determinization proof

Construction

Example

0

1

2

〈c/p1

〈c/p1

⇒

{(0, 0)} {(1, 1),
(2, 2)}

〈c/({(0, 0)}, c)

24 / 30

Nested Word Automata

Determinization proof

Construction

Example

0

1

2

〈c/p1

〈c/p1

⇒

{(0, 0)} {(1, 1),
(2, 2)}

〈c/({(0, 0)}, c)

24 / 30

Nested Word Automata

Determinization proof

Construction

Return transitions

n′ = n · r〉 = n1〈c1n2〈c2 · · · nk〈cknk+1r〉

We have two cases here:

k = 0 no matching call, like internal transition

δ′r (Sk+1, p
′
0, r) =

{(q, q′′) | (q, q′) ∈ Sk+1 ∧ ∃p ∈ P0.q
′′ ∈ δr (q′, p, r)}

k > 0 subword nk〈cknk+1r〉, hierarchical state = (Sk , ck)

δ′r (Sk+1, (Sk , ck), r) = {(q, q′′) | (q, q′) ∈ Sk ∧ (q1, q2) ∈ Sk+1

∧∃p ∈ P.(q1, p) ∈ δc(q′, ck) ∧ q′′ ∈ δr (q2, p, r)}

25 / 30

I After reading n, B will be in state Sk+1, where (Si , ci) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

Nested Word Automata

Determinization proof

Construction

Return transitions

n′ = n · r〉 = n1〈c1n2〈c2 · · · nk〈cknk+1r〉

We have two cases here:

k = 0 no matching call, like internal transition

δ′r (Sk+1, p
′
0, r) =
{(q, q′′) | (q, q′) ∈ Sk+1 ∧ ∃p ∈ P0.q

′′ ∈ δr (q′, p, r)}

k > 0 subword nk〈cknk+1r〉, hierarchical state = (Sk , ck)

δ′r (Sk+1, (Sk , ck), r) = {(q, q′′) | (q, q′) ∈ Sk ∧ (q1, q2) ∈ Sk+1

∧∃p ∈ P.(q1, p) ∈ δc(q′, ck) ∧ q′′ ∈ δr (q2, p, r)}

25 / 30

I After reading n, B will be in state Sk+1, where (Si , ci) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

q q′

q′′

nk+1

r/p

Nested Word Automata

Determinization proof

Construction

Return transitions

n′ = n · r〉 = n1〈c1n2〈c2 · · · nk〈cknk+1r〉

We have two cases here:

k = 0 no matching call, like internal transition

δ′r (Sk+1, p
′
0, r) =
{(q, q′′) | (q, q′) ∈ Sk+1 ∧ ∃p ∈ P0.q

′′ ∈ δr (q′, p, r)}
k > 0 subword nk〈cknk+1r〉, hierarchical state = (Sk , ck)

δ′r (Sk+1, (Sk , ck), r) =

{(q, q′′) | (q, q′) ∈ Sk ∧ (q1, q2) ∈ Sk+1

∧∃p ∈ P.(q1, p) ∈ δc(q′, ck) ∧ q′′ ∈ δr (q2, p, r)}

25 / 30

I After reading n, B will be in state Sk+1, where (Si , ci) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

Nested Word Automata

Determinization proof

Construction

Return transitions

n′ = n · r〉 = n1〈c1n2〈c2 · · · nk〈cknk+1r〉

We have two cases here:

k = 0 no matching call, like internal transition

δ′r (Sk+1, p
′
0, r) =
{(q, q′′) | (q, q′) ∈ Sk+1 ∧ ∃p ∈ P0.q

′′ ∈ δr (q′, p, r)}
k > 0 subword nk〈cknk+1r〉, hierarchical state = (Sk , ck)

δ′r (Sk+1, (Sk , ck), r) = {(q, q′′) | (q, q′) ∈ Sk ∧ (q1, q2) ∈ Sk+1

∧∃p ∈ P.(q1, p) ∈ δc(q′, ck) ∧ q′′ ∈ δr (q2, p, r)}

25 / 30

I After reading n, B will be in state Sk+1, where (Si , ci) will be
the hierarchical state for each 〈ci .

II Si contains the pair (q, q′) iff q
ni→A q′.

q q′

q1 q2

q′′
nk

ck/p
nk+1

r/p

Nested Word Automata

Determinization proof

Construction

Example

0

1

2

r〉/p0

r〉/p0

⇒

{(0, 0)} {(0, 1),
(0, 2)}

r〉/p′0

26 / 30

Nested Word Automata

Determinization proof

Construction

Example

0

1

2

r〉/p0

r〉/p0

⇒

{(0, 0)} {(0, 1),
(0, 2)}

r〉/p′0

26 / 30

Nested Word Automata

Determinization proof

Construction

Example

0 1

2

3

〈c/p1
r〉/p1

r〉/p1

⇒

{(0, 0)}

{(1, 1)}

{(0, 2),
(0, 3)}

〈c/({(0, 0)}, c) r〉/({(0, 0)}, c)

27 / 30

Nested Word Automata

Determinization proof

Construction

Example

0 1

2

3

〈c/p1
r〉/p1

r〉/p1

⇒

{(0, 0)}

{(1, 1)}

{(0, 2),
(0, 3)}

〈c/({(0, 0)}, c) r〉/({(0, 0)}, c)

27 / 30

Nested Word Automata

Determinization proof

Construction

Résumé

• now all components of B defined

• correctness results from invariants

• complexity: if |Q| = s, then |Q ′| = 2s
2

and |P ′| ∈ O(2s
2
)

This is succinct, so there exists an example where the DNWA
cannot have less states.

28 / 30

Nested Word Automata

Determinization proof

Construction

Résumé

• now all components of B defined

• correctness results from invariants

• complexity: if |Q| = s, then |Q ′| = 2s
2

and |P ′| ∈ O(2s
2
)

This is succinct, so there exists an example where the DNWA
cannot have less states.

28 / 30

Nested Word Automata

Determinization proof

Construction

Résumé

• now all components of B defined

• correctness results from invariants

• complexity: if |Q| = s, then |Q ′| = 2s
2

and |P ′| ∈ O(2s
2
)

This is succinct, so there exists an example where the DNWA
cannot have less states.

28 / 30

Nested Word Automata

Conclusion

Overview

Motivation and background

Nested words and their acceptors

Determinization proof

Conclusion

29 / 30

Nested Word Automata

Conclusion

Conclusion

• nested word languages as a (proper) fragment of deterministic
context-free languages strictly more expressive than regular
languages

• visibly pushdown automata and nested word automata as
suitable models for this class

• no stack, but complexity shifted to the input word

• all relevant closure properties, all interesting problems
decidable

• determinization always possible in O(2s
2
)

• many practical problems describable as nested words

• recent concept, time will show the relevance

30 / 30

Nested Word Automata

Conclusion

Conclusion

• nested word languages as a (proper) fragment of deterministic
context-free languages strictly more expressive than regular
languages

• visibly pushdown automata and nested word automata as
suitable models for this class

• no stack, but complexity shifted to the input word

• all relevant closure properties, all interesting problems
decidable

• determinization always possible in O(2s
2
)

• many practical problems describable as nested words

• recent concept, time will show the relevance

30 / 30

Nested Word Automata

Conclusion

Conclusion

• nested word languages as a (proper) fragment of deterministic
context-free languages strictly more expressive than regular
languages

• visibly pushdown automata and nested word automata as
suitable models for this class

• no stack, but complexity shifted to the input word

• all relevant closure properties, all interesting problems
decidable

• determinization always possible in O(2s
2
)

• many practical problems describable as nested words

• recent concept, time will show the relevance

30 / 30

Nested Word Automata

Conclusion

Conclusion

• nested word languages as a (proper) fragment of deterministic
context-free languages strictly more expressive than regular
languages

• visibly pushdown automata and nested word automata as
suitable models for this class

• no stack, but complexity shifted to the input word

• all relevant closure properties, all interesting problems
decidable

• determinization always possible in O(2s
2
)

• many practical problems describable as nested words

• recent concept, time will show the relevance

30 / 30

Nested Word Automata

Conclusion

Conclusion

• nested word languages as a (proper) fragment of deterministic
context-free languages strictly more expressive than regular
languages

• visibly pushdown automata and nested word automata as
suitable models for this class

• no stack, but complexity shifted to the input word

• all relevant closure properties, all interesting problems
decidable

• determinization always possible in O(2s
2
)

• many practical problems describable as nested words

• recent concept, time will show the relevance

30 / 30

Nested Word Automata

Conclusion

Conclusion

• nested word languages as a (proper) fragment of deterministic
context-free languages strictly more expressive than regular
languages

• visibly pushdown automata and nested word automata as
suitable models for this class

• no stack, but complexity shifted to the input word

• all relevant closure properties, all interesting problems
decidable

• determinization always possible in O(2s
2
)

• many practical problems describable as nested words

• recent concept, time will show the relevance

30 / 30

Nested Word Automata

Conclusion

Conclusion

• nested word languages as a (proper) fragment of deterministic
context-free languages strictly more expressive than regular
languages

• visibly pushdown automata and nested word automata as
suitable models for this class

• no stack, but complexity shifted to the input word

• all relevant closure properties, all interesting problems
decidable

• determinization always possible in O(2s
2
)

• many practical problems describable as nested words

• recent concept, time will show the relevance

30 / 30

References

Rajeev Alur and Parthasarathy Madhusudan.
Adding Nested Structure to Words.
In Journal of the ACM, 2009.

Rajeev Alur and Parthasarathy Madhusudan.
Visibly Pushdown Languages.
In STOC ’04, 2004.

	Motivation and background
	Common languages
	Visibly pushdown languages

	Nested words and their acceptors
	Nested words
	Nested word automata

	Determinization proof
	Intuition
	Construction

	Conclusion

