Automata Theory

Nested Word Automata

Christian Schilling
June 4th, 2012

Overview

Motivation and background

Nested words and their acceptors

Determinization proof

Conclusion

Overview

Motivation and background
Common languages
Visibly pushdown languages

Nested words and their acceptors

Determinization proof

Conclusion

Common languages

Regular language

```
procedure foo()
{
    return;
}
```

$$
\mathcal{L}_{1}=\{c \mathrm{r}\}
$$

Nested Word Automata
Motivation and background
Common languages

Regular language

$$
\mathcal{L}_{1}=\{\mathrm{cr}\}
$$

Motivation and background

Common languages

(det.) Context-free language

$$
\mathcal{L}_{2}=\left\{c^{n} r^{n} \mid n>0\right\}
$$

Motivation and background

Common languages

(det.) Context-free language

Motivation and background
Common languages

Comparison

P)	regular	context-free
comparison of numbers	constants	two variables
closure		
decidability		
determinize		

Motivation and background
Common languages

Comparison

$\odot^{-()}$	regular	context-free
comparison of numbers	constants	two variables
closure	all standard properties	not under intersection and complementation
decidability		
determinize		

Comparison

$\odot \odot+\infty$	regular	context-free
comparison of numbers	constants	two variables
closure	all standard properties	not under intersection and complementation
decidability	all standard problems	intersection, inclusion, equivalence undecidable
determinize		

Comparison

	regular	context-free
comparison of numbers	constants	two variables
closure	all standard properties	not under intersection and complementation
decidability	all standard problems	intersection, inclusion, equivalence undecidable
determinize	powerset construction	not possible

Comparison

$\odot \odot \odot+\odot$	regular	context-free
comparison of numbers	constants	two variables
closure	all standard properties	not under intersection and complementation
decidability	all standard problems	intersection, inclusion, equivalence undecidable
determinize	powerset construction	not possible

Question: Is there some class of languages in between that is more expressive than regular languages, but keeps their nice properties?

Comparison

$\odot \odot \odot+\odot$	regular	context-free
comparison of numbers	constants	two variables
closure	all standard properties	not under intersection and complementation
decidability	all standard problems	intersection, inclusion, equivalence undecidable
determinize	powerset construction	not possible

Question: Is there some class of languages in between that is more expressive than regular languages, but keeps their nice properties?

Answer (Alur \& Madhusudan 2004): yes, at least in some sense

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a visibly pushdown automaton (VPA).
$\mathrm{A} V \mathrm{PA} \mathcal{A}=\left\langle Q, q_{0}, Q_{f}, \Sigma, \Gamma, \perp, \delta\right\rangle$ is a deterministic PDA with special rules: Determined by the input symbol, only one symbol per push is allowed and reading the stack implies a pop.

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a visibly pushdown automaton (VPA).
$\mathrm{A} V \mathrm{PA} \mathcal{A}=\left\langle Q, q_{0}, Q_{f}, \Sigma, \Gamma, \perp, \delta\right\rangle$ is a deterministic PDA with special rules: Determined by the input symbol, only one symbol per push is allowed and reading the stack implies a pop.

- states, initial state, final states, stack alphabet, bottom-of-stack symbol (no change here),

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a visibly pushdown automaton (VPA).
$\mathrm{A} V \mathrm{PA} \mathcal{A}=\left\langle Q, q_{0}, Q_{f}, \Sigma, \Gamma, \perp, \delta\right\rangle$ is a deterministic PDA with special rules: Determined by the input symbol, only one symbol per push is allowed and reading the stack implies a pop.

- states, initial state, final states, stack alphabet, bottom-of-stack symbol (no change here),
- partitioning of the input alphabet: $\Sigma=\Sigma_{i} \uplus \Sigma_{c} \uplus \Sigma_{r}$,

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a visibly pushdown automaton (VPA).
$\mathrm{A} V \mathrm{PA} \mathcal{A}=\left\langle Q, q_{0}, Q_{f}, \Sigma, \Gamma, \perp, \delta\right\rangle$ is a deterministic PDA with special rules: Determined by the input symbol, only one symbol per push is allowed and reading the stack implies a pop.

- states, initial state, final states, stack alphabet, bottom-of-stack symbol (no change here),
- partitioning of the input alphabet: $\Sigma=\Sigma_{i} \uplus \Sigma_{c} \uplus \Sigma_{r}$,
- $\delta=\delta_{i} \uplus \delta_{c} \uplus \delta_{r}$,
- $\delta_{i} \subseteq Q \times \Sigma_{i} \rightarrow Q$
- $\delta_{c} \subseteq Q \times \Sigma_{c} \rightarrow(\Gamma \backslash\{\perp\}) \times Q$
- $\delta_{r} \subseteq Q \times \Sigma_{r} \times \Gamma \rightarrow Q$

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a visibly pushdown automaton (VPA).
$\mathrm{A} V \mathrm{PA} \mathcal{A}=\left\langle Q, q_{0}, Q_{f}, \Sigma, \Gamma, \perp, \delta\right\rangle$ is a deterministic PDA with special rules: Determined by the input symbol, only one symbol per push is allowed and reading the stack implies a pop.

- states, initial state, final states, stack alphabet, bottom-of-stack symbol (no change here),
- partitioning of the input alphabet: $\Sigma=\Sigma_{i} \uplus \Sigma_{c} \uplus \Sigma_{r}$,
- $\delta=\delta_{i} \uplus \delta_{c} \uplus \delta_{r}$,
- $\delta_{i} \subseteq Q \times \Sigma_{i} \rightarrow Q$
- $\delta_{c} \subseteq Q \times \Sigma_{c} \rightarrow(\Gamma \backslash\{\perp\}) \times Q$
- $\delta_{r} \subseteq Q \times \Sigma_{r} \times \Gamma \rightarrow Q$

Note: pops occur implicitly, \perp never popped, no ε

Motivation and background
Visibly pushdown languages

\mathcal{L}_{2} as VPL

Consider again $\mathcal{L}_{2}=\left\{c^{n} r^{n} \mid n>0\right\}$.

Motivation and background
Visibly pushdown languages

\mathcal{L}_{2} as VPL

Consider again $\mathcal{L}_{2}=\left\{c^{n} r^{n} \mid n>0\right\}$. We construct a VPA for \mathcal{L}_{2}.

Motivation and background
Visibly pushdown languages

\mathcal{L}_{2} as VPL

Consider again $\mathcal{L}_{2}=\left\{c^{n} r^{n} \mid n>0\right\}$. We construct a VPA for \mathcal{L}_{2}.

Partitioning:
$\Sigma_{i}=\emptyset, \Sigma_{c}=\{c\}, \Sigma_{r}=\{r\}$
$\delta_{c}=\left\{\left(q_{0}, c, A, q_{1}\right)\right.$, $\left.\left(q_{1}, c, B, q_{1}\right)\right\}$
$\delta_{r}=\left\{\left(q_{1}, r, A, q_{3}\right)\right.$,
$\left(q_{1}, r, B, q_{2}\right)$,
$\left(q_{2}, r, A, q_{3}\right)$, $\left.\left(q_{2}, r, B, q_{2}\right)\right\}$

Motivation and background
Visibly pushdown languages

From VPAs to NWAs

- main differences between VPAs and PDAs:
- closed under determinism
- partitioning of the alphabet
- very limited use of the stack
- Do we really need the stack?

From VPAs to NWAs

- main differences between VPAs and PDAs:
- closed under determinism
- partitioning of the alphabet
- very limited use of the stack
- Do we really need the stack?
(Alur \& Madhusudan 2006): no, with some further treatment of the input \rightarrow nested words (NWs)
- automaton model: nested word automata (NWAs)

From VPAs to NWAs

- main differences between VPAs and PDAs:
- closed under determinism
- partitioning of the alphabet
- very limited use of the stack
- Do we really need the stack?
(Alur \& Madhusudan 2006): no, with some further treatment of the input \rightarrow nested words (NWs)
- automaton model: nested word automata (NWAs)
- nested word languages (NWLs) and VPLs have same power \rightarrow NWAs \preceq deterministic PDAs

From VPAs to NWAs

- main differences between VPAs and PDAs:
- closed under determinism
- partitioning of the alphabet
- very limited use of the stack
- Do we really need the stack?
(Alur \& Madhusudan 2006): no, with some further treatment of the input \rightarrow nested words (NWs)
- automaton model: nested word automata (NWAs)
- nested word languages (NWLs) and VPLs have same power \rightarrow NWAs \preceq deterministic PDAs
- main idea: call and return symbols are matched in the input

Overview

Motivation and background

Nested words and their acceptors
Nested words
Nested word automata

Determinization proof

Conclusion

Well nested sequences

A sequence of symbols is well nested if calls and returns are matched without crossing, i.e., for any different call-return-pairs $\left(c_{i}, r_{i}\right),\left(c_{j}, r_{j}\right), c_{i}<c_{j}<r_{i}<r_{j}$ is forbidden.

Well nested sequences

A sequence of symbols is well nested if calls and returns are matched without crossing, i.e., for any different call-return-pairs $\left(c_{i}, r_{i}\right),\left(c_{j}, r_{j}\right), c_{i}<c_{j}<r_{i}<r_{j}$ is forbidden.
Examples:

iciciirri

Well nested sequences

A sequence of symbols is well nested if calls and returns are matched without crossing, i.e., for any different call-return-pairs $\left(c_{i}, r_{i}\right),\left(c_{j}, r_{j}\right), c_{i}<c_{j}<r_{i}<r_{j}$ is forbidden.
Examples:

$$
\mathbf{i} c \mathbf{i} c \mathbf{i} \mathbf{i} r r \mathbf{i}
$$

Well nested sequences

A sequence of symbols is well nested if calls and returns are matched without crossing, i.e., for any different call-return-pairs $\left(c_{i}, r_{i}\right),\left(c_{j}, r_{j}\right), c_{i}<c_{j}<r_{i}<r_{j}$ is forbidden.
Examples:

$$
\begin{aligned}
& \mathbf{i c i c i i r r i} \\
& \text { rcrecici}
\end{aligned}
$$

Well nested sequences

A sequence of symbols is well nested if calls and returns are matched without crossing, i.e., for any different call-return-pairs $\left(c_{i}, r_{i}\right),\left(c_{j}, r_{j}\right), c_{i}<c_{j}<r_{i}<r_{j}$ is forbidden.
Examples:

$$
\begin{aligned}
& \mathbf{i c i c i} \mathbf{i r r i} \\
& \operatorname{rcrrcici}
\end{aligned}
$$

Well nested sequences

A sequence of symbols is well nested if calls and returns are matched without crossing, i.e., for any different call-return-pairs $\left(c_{i}, r_{i}\right),\left(c_{j}, r_{j}\right), c_{i}<c_{j}<r_{i}<r_{j}$ is forbidden.
Examples:

$$
\begin{aligned}
& \mathbf{i c i c i} \mathbf{i r r i} \\
& \operatorname{rcrrcici}
\end{aligned}
$$

Note: Every sequence has a unique well nesting.

Nested words

A relation $\leadsto \subset\{-\infty, 1,2, \ldots, \ell\} \times\{1,2, \ldots, \ell, \infty\}$ of length $\ell \geq 0$ is a matching relation if the following holds:

I if $i \leadsto j$, then $i<j$
II if $i_{1} \leadsto j$ and $i_{2} \leadsto j$, then $i_{1}=i_{2}$ if $i \leadsto j_{1}$ and $i \leadsto j_{1}$, then $j_{1}=j_{2}$
(monotone)
(left-unique)
(right-unique)

III if $i_{1} \sim j_{1}$ and $i_{2} \sim j_{2}$, then we have not $i_{1}<i_{2}<j_{1}<j_{2}$
(well nested)
Explanation:

I not rc, not reflexive
II not c c r, not cr r
III not cerr
ex post note: $(-\infty, \infty) \notin \sim$, $\pm \infty$ excluded from uniqueness

Nested words

A relation $\leadsto \subset\{-\infty, 1,2, \ldots, \ell\} \times\{1,2, \ldots, \ell, \infty\}$ of length $\ell \geq 0$ is a matching relation if the following holds:

$$
\begin{array}{lr}
\text { I if } i & \leadsto j \text {, then } i<j \\
\text { II if } i_{1} \leadsto j \text { and } i_{2} \leadsto j \text {, then } i_{1}=i_{2} & \text { (monotone) } \\
\text { if } i & \text { (left-unique) } \\
\text { III if } i_{1} \leadsto j_{1} \text { and } i \leadsto j_{1} \text {, then } j_{1}=j_{2} & \text { (right-unique) } \\
& \\
& \text { (well nested) }
\end{array}
$$

If $i \sim j, i$ is a call position and j is a return position. All the rest is an internal position. If $i \neq-\infty$ and $j \neq \infty$, they are well-matched, otherwise pending. $e \in \sim$ is a nesting edge.

Nested words

A relation $\leadsto \subset\{-\infty, 1,2, \ldots, \ell\} \times\{1,2, \ldots, \ell, \infty\}$ of length $\ell \geq 0$ is a matching relation if the following holds:

I if $i \leadsto j$, then $i<j$
II if $i_{1} \leadsto j$ and $i_{2} \leadsto j$, then $i_{1}=i_{2}$ if $i \leadsto j_{1}$ and $i \leadsto j_{1}$, then $j_{1}=j_{2}$
(monotone)
(left-unique)
(right-unique)

III if $i_{1} \leadsto j_{1}$ and $i_{2} \sim j_{2}$, then we have not $i_{1}<i_{2}<j_{1}<j_{2}$ (well nested)

If $i \leadsto j, i$ is a call position and j is a return position. All the rest is an internal position. If $i \neq-\infty$ and $j \neq \infty$, they are well-matched, otherwise pending. $e \in \leadsto$ is a nesting edge.

A nested word n over Σ is a pair $\left(a_{1} \cdots a_{\ell}, \sim\right)$, where $a_{i} \in \Sigma$ and \sim is a matching relation of length ℓ.

Example 1

$\mathbf{i c} \mathbf{i c i i r r i}$

Here: $2 \sim 8,4 \sim 7$ and the whole word is well-matched.

Nested words

Example 2

$$
\mathbf{r c r r c i c i}
$$

adapted from [1]

Here: $-\infty \sim 1,2 \sim 3,-\infty \sim 4,5 \leadsto \infty, 7 \sim \infty$ and only $2 \leadsto 3$ is well-matched.

Definition of NWAs

$\mathcal{A}=\left\langle Q, q_{0}, Q_{f}, P, p_{0}, P_{f}, \delta_{i}, \delta_{c}, \delta_{r}\right\rangle$ over alphabet Σ

Definition of NWAs

$\mathcal{A}=\left\langle Q, q_{0}, Q_{f}, P, p_{0}, P_{f}, \delta_{i}, \delta_{c}, \delta_{r}\right\rangle$ over alphabet Σ

- Q finite set of linear states,
- $q_{0} \in Q$ initial linear state,
- $Q_{f} \subseteq Q$ set of linear final states,

Definition of NWAs

$\mathcal{A}=\left\langle Q, q_{0}, Q_{f}, P, p_{0}, P_{f}, \delta_{i}, \delta_{c}, \delta_{r}\right\rangle$ over alphabet Σ

- Q finite set of linear states,
- $q_{0} \in Q$ initial linear state,
- $Q_{f} \subseteq Q$ set of linear final states,
- P finite set of hierarchical states,
- $p_{0} \in Q$ initial hierarchical state,
- $P_{f} \subseteq P$ set of hierarchical final states,

Definition of NWAs

$\mathcal{A}=\left\langle Q, q_{0}, Q_{f}, P, p_{0}, P_{f}, \delta_{i}, \delta_{c}, \delta_{r}\right\rangle$ over alphabet Σ

- Q finite set of linear states,
- $q_{0} \in Q$ initial linear state,
- $Q_{f} \subseteq Q$ set of linear final states,
- P finite set of hierarchical states,
- $p_{0} \in Q$ initial hierarchical state,
- $P_{f} \subseteq P$ set of hierarchical final states,
- $\delta_{i} \subseteq Q \times \Sigma \rightarrow Q$ internal transition function,
- $\delta_{c} \subseteq Q \times \Sigma \rightarrow Q \times P$ call transition function,
- $\delta_{r} \subseteq Q \times P \times \Sigma \rightarrow Q$ return transition function

Definition of NWAs

$\mathcal{A}=\left\langle Q, q_{0}, Q_{f}, P, p_{0}, P_{f}, \delta_{i}, \delta_{c}, \delta_{r}\right\rangle$ over alphabet Σ

- Q finite set of linear states,
- $q_{0} \in Q$ initial linear state,
- $Q_{f} \subseteq Q$ set of linear final states,
- P finite set of hierarchical states,
- $p_{0} \in Q$ initial hierarchical state,
- $P_{f} \subseteq P$ set of hierarchical final states,
- $\delta_{i} \subseteq Q \times \Sigma \rightarrow Q$ internal transition function,
- $\delta_{c} \subseteq Q \times \Sigma \rightarrow Q \times P$ call transition function,
- $\delta_{r} \subseteq Q \times P \times \Sigma \rightarrow Q$ return transition function
acceptance via both Q_{f} and P_{f} as VPAs: at return implicitly go to hierarchical state before matching call

Nested word automata

\mathcal{L}_{2} as NWA

Consider again $\mathcal{L}_{2}=\left\{c^{n} r^{n} \mid n>0\right\}$.
We construct an NWA for $\mathcal{L}_{2}^{\prime}:=\left\{\left(\langle\mathrm{c})^{n}(\mathrm{r}\rangle\right)^{n} \mid n>0\right\}$.

Nested word automata

\mathcal{L}_{2} as NWA

Consider again $\mathcal{L}_{2}=\left\{c^{n} r^{n} \mid n>0\right\}$.
We construct an NWA for $\mathcal{L}_{2}^{\prime}:=\left\{\left(\langle\mathrm{c})^{n}(\mathrm{r}\rangle\right)^{n} \mid n>0\right\}$.

\mathcal{L}_{2} as NWA

Consider again $\mathcal{L}_{2}=\left\{c^{n} r^{n} \mid n>0\right\}$.
We construct an NWA for $\mathcal{L}_{2}^{\prime}:=\left\{\left(\langle c)^{n}(r\rangle\right)^{n} \mid n>0\right\}$.
We can also use hierarchical states for acceptance.

$$
P=\left\{p_{0}, p_{1}\right\}, P_{f}=\left\{p_{0}\right\}
$$

Nested words and their acceptors
Nested word automata
Remarks

- no stack anymore, but structure on the input word

Remarks

- no stack anymore, but structure on the input word
- nondeterministic NWAs: $Q_{0} \subseteq Q, P_{0} \subseteq P, \delta$

Remarks

- no stack anymore, but structure on the input word
- nondeterministic NWAs: $Q_{0} \subseteq Q, P_{0} \subseteq P, \delta$ possibly exponentially more states for deterministic NWAs

Remarks

- no stack anymore, but structure on the input word
- nondeterministic NWAs: $Q_{0} \subseteq Q, P_{0} \subseteq P, \delta$ possibly exponentially more states for deterministic NWAs
- not all sets of NWs acceptable by NWAs $\left\{\left(\langle a)^{n}(b\rangle\right)^{n} \mid n>0\right\}$ vs. $\left\{a^{n} b^{n} \mid n>0\right\}$

Nested words and their acceptors

Nested word automata

Comparison of properties

	DFA	DNWA	PDA	DPDA
pre-/suffix	\checkmark	\checkmark	\checkmark	\checkmark
$\cup, \cdot, *$				
complement				
\cap				
emptiness				
equivalence				
inclusion				

Nested words and their acceptors

Nested word automata

Comparison of properties

	DFA	DNWA	PDA	DPDA
pre-/suffix	\checkmark	\checkmark	\checkmark	\checkmark
$\cup, \cdot, *$	\checkmark	\checkmark	\checkmark	X
complement	\checkmark	\checkmark	X	\checkmark
\cap	\checkmark	\checkmark	X	X
emptiness				
equivalence				
inclusion				

Nested words and their acceptors

Nested word automata

Comparison of properties

	DFA	DNWA	PDA	DPDA
pre-/suffix	\checkmark	\checkmark	\checkmark	\checkmark
$\cup, \cdot, *$	\checkmark	\checkmark	\checkmark	X
complement	\checkmark	\checkmark	X	\checkmark
\cap	\checkmark	\checkmark	X	X
emptiness	NLOGSPACE	PTIME	PTIME	PTIME
equivalence	NLOGSPACE	PTIME	undecidable	decidable
inclusion	NLOGSPACE	PTIME	undecidable	undecidable

Comparison of properties

	DFA	DNWA	PDA	DPDA
pre-/suffix	\checkmark	\checkmark	\checkmark	\checkmark
$\cup, \cdot, *$	\checkmark	\checkmark	\checkmark	X
complement	\checkmark	\checkmark	X	\checkmark
\cap	\checkmark	\checkmark	X	X
emptiness	NLOGSPACE	PTIME	PTIME	PTIME
equivalence	NLOGSPACE	PTIME	undecidable	decidable
inclusion	NLOGSPACE	PTIME	undecidable	undecidable

Note: Equivalence and inclusion problem are Exptime-complete for nondeterministic NWAs.
Implication: determinization $\in \Omega$ (EXPTIME) if at all possible

Overview

Motivation and background

Nested words and their acceptors

Determinization proof
Intuition
Construction

Conclusion

Nested Word Automata
Determinization proof
Intuition
Idea behind the proof

- goal: determinize a nondeterministic NWA (NNWA)

Idea behind the proof

- goal: determinize a nondeterministic NWA (NNWA)
- state of automaton \mathcal{A} for nested word n with position k : deterministic NWA (DNWA): $\left(q_{k}, p_{k}\right)$ NNWA: one of $\left(q_{k_{1}}, p_{k_{1}}\right), \ldots,\left(q_{k_{i}}, p_{k_{j}}\right)$

Idea behind the proof

- goal: determinize a nondeterministic NWA (NNWA)
- state of automaton \mathcal{A} for nested word n with position k : deterministic NWA (DNWA): $\left(q_{k}, p_{k}\right)$ NNWA: one of $\left(q_{k_{1}}, p_{k_{1}}\right), \ldots,\left(q_{k_{i}}, p_{k_{j}}\right)$
- finite automata: call the states $\left\{q_{k_{1}}, \ldots, q_{k_{i}}\right\}$

Idea behind the proof

- goal: determinize a nondeterministic NWA (NNWA)
- state of automaton \mathcal{A} for nested word n with position k : deterministic NWA (DNWA): $\left(q_{k}, p_{k}\right)$ NNWA: one of $\left(q_{k_{1}}, p_{k_{1}}\right), \ldots,\left(q_{k_{i}}, p_{k_{j}}\right)$
- finite automata: call the states $\left\{q_{k_{1}}, \ldots, q_{k_{i}}\right\}$
- NWAs: also need information about hierarchical states
\rightarrow powerset construction over nesting edges hierarchical states $=$ nesting edges + call symbol so far

Idea behind the proof

- goal: determinize a nondeterministic NWA (NNWA)
- state of automaton \mathcal{A} for nested word n with position k : deterministic NWA (DNWA): $\left(q_{k}, p_{k}\right)$ NNWA: one of $\left(q_{k_{1}}, p_{k_{1}}\right), \ldots,\left(q_{k_{i}}, p_{k_{j}}\right)$
- finite automata: call the states $\left\{q_{k_{1}}, \ldots, q_{k_{i}}\right\}$
- NWAs: also need information about hierarchical states
\rightarrow powerset construction over nesting edges hierarchical states $=$ nesting edges + call symbol so far
- handle hierarchical proceeding when reading return symbols

The states: definition

Consider the NNWA $\mathcal{A}=\langle Q, Q_{0}, Q_{f}, P, P_{0}, \overbrace{P_{f}}, \delta_{i}, \delta_{c}, \delta_{r}\rangle$. We construct the DNWA $\mathcal{B}=\left\langle Q^{\prime}, q_{0}^{\prime}, Q_{f}^{\prime}, P^{\prime}, p_{0}^{\prime}, P_{f}^{\prime}, \delta_{i}^{\prime}, \delta_{c}^{\prime}, \delta_{r}^{\prime}\right\rangle$:

The states: definition

Consider the NNWA $\mathcal{A}=\langle Q, Q_{0}, Q_{f}, P, P_{0}, \overbrace{P_{f}}, \delta_{i}, \delta_{c}, \delta_{r}\rangle$. We construct the DNWA $\mathcal{B}=\left\langle Q^{\prime}, q_{0}^{\prime}, Q_{f}^{\prime}, P^{\prime}, p_{0}^{\prime}, P_{f}^{\prime}, \delta_{i}^{\prime}, \delta_{c}^{\prime}, \delta_{r}^{\prime}\right\rangle$:

- $Q^{\prime}:=2^{Q \times Q}=\left\{S_{1}, \ldots, S_{i}\right\}$

The states: definition

Consider the NNWA $\mathcal{A}=\langle Q, Q_{0}, Q_{f}, P, P_{0}, \overbrace{P_{f}}, \delta_{i}, \delta_{c}, \delta_{r}\rangle$. We construct the DNWA $\mathcal{B}=\left\langle Q^{\prime}, q_{0}^{\prime}, Q_{f}^{\prime}, P^{\prime}, p_{0}^{\prime}, P_{f}^{\prime}, \delta_{i}^{\prime}, \delta_{c}^{\prime}, \delta_{r}^{\prime}\right\rangle$:

- $Q^{\prime}:=2^{Q \times Q}=\left\{S_{1}, \ldots, S_{i}\right\}$
- $q_{0}^{\prime}:=Q_{0} \times Q_{0}$

The states: definition

Consider the NNWA $\mathcal{A}=\langle Q, Q_{0}, Q_{f}, P, P_{0}, \overbrace{P_{f}}, \delta_{i}, \delta_{c}, \delta_{r}\rangle$. We construct the DNWA $\mathcal{B}=\left\langle Q^{\prime}, q_{0}^{\prime}, Q_{f}^{\prime}, P^{\prime}, p_{0}^{\prime}, P_{f}^{\prime}, \delta_{i}^{\prime}, \delta_{c}^{\prime}, \delta_{r}^{\prime}\right\rangle$:

- $Q^{\prime}:=2^{Q \times Q}=\left\{S_{1}, \ldots, S_{i}\right\}$
- $q_{0}^{\prime}:=Q_{0} \times Q_{0}$
- $Q_{f}^{\prime}:=\left\{S \mid \exists q, q^{\prime} \cdot\left(q, q^{\prime}\right) \in S \wedge q^{\prime} \in Q_{f}\right\}$ or: $S \in Q_{f}^{\prime}: \Leftrightarrow S$ contains $\left(q, q^{\prime}\right)$ with $q^{\prime} \in Q_{f}$

The states: definition

Consider the NNWA $\mathcal{A}=\langle Q, Q_{0}, Q_{f}, P, P_{0}, \overbrace{P_{f}}, \delta_{i}, \delta_{c}, \delta_{r}\rangle$. We construct the DNWA $\mathcal{B}=\left\langle Q^{\prime}, q_{0}^{\prime}, Q_{f}^{\prime}, P^{\prime}, p_{0}^{\prime}, P_{f}^{\prime}, \delta_{i}^{\prime}, \delta_{c}^{\prime}, \delta_{r}^{\prime}\right\rangle$:

- $Q^{\prime}:=2^{Q \times Q}=\left\{S_{1}, \ldots, S_{i}\right\}$
- $q_{0}^{\prime}:=Q_{0} \times Q_{0}$
- $Q_{f}^{\prime}:=\left\{S \mid \exists q, q^{\prime} \cdot\left(q, q^{\prime}\right) \in S \wedge q^{\prime} \in Q_{f}\right\}$ or: $S \in Q_{f}^{\prime}: \Leftrightarrow S$ contains $\left(q, q^{\prime}\right)$ with $q^{\prime} \in Q_{f}$
- $P^{\prime}:=\left\{p_{0}^{\prime}\right\} \cup\left(Q^{\prime} \times \Sigma\right)$

The states: definition

Consider the NNWA $\mathcal{A}=\langle Q, Q_{0}, Q_{f}, P, P_{0}, \overbrace{P_{f}}, \delta_{i}, \delta_{c}, \delta_{r}\rangle$. We construct the DNWA $\mathcal{B}=\left\langle Q^{\prime}, q_{0}^{\prime}, Q_{f}^{\prime}, P^{\prime}, p_{0}^{\prime}, P_{f}^{\prime}, \delta_{i}^{\prime}, \delta_{c}^{\prime}, \delta_{r}^{\prime}\right\rangle$:

- $Q^{\prime}:=2^{Q \times Q}=\left\{S_{1}, \ldots, S_{i}\right\}$
- $q_{0}^{\prime}:=Q_{0} \times Q_{0}$
- $Q_{f}^{\prime}:=\left\{S \mid \exists q, q^{\prime} \cdot\left(q, q^{\prime}\right) \in S \wedge q^{\prime} \in Q_{f}\right\}$ or: $S \in Q_{f}^{\prime}: \Leftrightarrow S$ contains $\left(q, q^{\prime}\right)$ with $q^{\prime} \in Q_{f}$
- $P^{\prime}:=\left\{p_{0}^{\prime}\right\} \cup\left(Q^{\prime} \times \Sigma\right)$
- $p_{0}^{\prime}:=$ fresh hierarchical state

The states: definition

Consider the NNWA $\mathcal{A}=\langle Q, Q_{0}, Q_{f}, P, P_{0}, \overbrace{P_{f}}, \delta_{i}, \delta_{c}, \delta_{r}\rangle$. We construct the DNWA $\mathcal{B}=\left\langle Q^{\prime}, q_{0}^{\prime}, Q_{f}^{\prime}, P^{\prime}, p_{0}^{\prime}, P_{f}^{\prime}, \delta_{i}^{\prime}, \delta_{c}^{\prime}, \delta_{r}^{\prime}\right\rangle$:

- $Q^{\prime}:=2^{Q \times Q}=\left\{S_{1}, \ldots, S_{i}\right\}$
- $q_{0}^{\prime}:=Q_{0} \times Q_{0}$
- $Q_{f}^{\prime}:=\left\{S \mid \exists q, q^{\prime} \cdot\left(q, q^{\prime}\right) \in S \wedge q^{\prime} \in Q_{f}\right\}$ or: $S \in Q_{f}^{\prime}: \Leftrightarrow S$ contains $\left(q, q^{\prime}\right)$ with $q^{\prime} \in Q_{f}$
- $P^{\prime}:=\left\{p_{0}^{\prime}\right\} \cup\left(Q^{\prime} \times \Sigma\right)$
- $p_{0}^{\prime}:=$ fresh hierarchical state
- $P_{f}^{\prime}:=P^{\prime}$

The states: semantics

Consider a nested word n with k pending calls. We can write this

$$
n=n_{1}\left\langlec _ { 1 } n _ { 2 } \left\langlec _ { 2 } \cdots n _ { k } \left\langle c_{k} n_{k+1}\right.\right.\right.
$$

where the n_{i} have no pending calls.

The states: semantics

Consider a nested word n with k pending calls. We can write this

$$
n=n_{1}\left\langlec _ { 1 } n _ { 2 } \left\langlec _ { 2 } \cdots n _ { k } \left\langle c_{k} n_{k+1}\right.\right.\right.
$$

where the n_{i} have no pending calls.
Invariants
I After reading n, \mathcal{B} will be in state S_{k+1}, where $\left(S_{i}, c_{i}\right)$ will be the hierarchical state for each $\left\langle c_{i}\right.$.

The states: semantics

Consider a nested word n with k pending calls. We can write this

$$
n=n_{1}\left\langlec _ { 1 } n _ { 2 } \left\langlec _ { 2 } \cdots n _ { k } \left\langle c_{k} n_{k+1}\right.\right.\right.
$$

where the n_{i} have no pending calls.
Invariants
I After reading n, \mathcal{B} will be in state S_{k+1}, where $\left(S_{i}, c_{i}\right)$ will be the hierarchical state for each $\left\langle c_{i}\right.$.

II S_{i} contains the pair $\left(q, q^{\prime}\right)$ iff $q{ }^{n_{i}} \mathcal{A} q^{\prime}$.

The states: semantics

Consider a nested word n with k pending calls. We can write this

$$
n=n_{1}\left\langlec _ { 1 } n _ { 2 } \left\langlec _ { 2 } \cdots n _ { k } \left\langle c_{k} n_{k+1}\right.\right.\right.
$$

where the n_{i} have no pending calls.
Invariants
I After reading n, \mathcal{B} will be in state S_{k+1}, where $\left(S_{i}, c_{i}\right)$ will be the hierarchical state for each $\left\langle c_{i}\right.$.

II S_{i} contains the pair $\left(q, q^{\prime}\right)$ iff $q \xrightarrow{n_{i}} q^{\prime}$.
Question: acceptance condition of \mathcal{B} for n ?

The states: semantics

Consider a nested word n with k pending calls. We can write this

$$
n=n_{1}\left\langlec _ { 1 } n _ { 2 } \left\langlec _ { 2 } \cdots n _ { k } \left\langle c_{k} n_{k+1}\right.\right.\right.
$$

where the n_{i} have no pending calls.
Invariants
I After reading n, \mathcal{B} will be in state S_{k+1}, where $\left(S_{i}, c_{i}\right)$ will be the hierarchical state for each $\left\langle c_{i}\right.$.

II S_{i} contains the pair $\left(q, q^{\prime}\right)$ iff $q \xrightarrow{n_{i}} q^{\prime}$.
Question: acceptance condition of \mathcal{B} for n ?
Answer: $S_{k+1} \in Q_{f}^{\prime}$

The states: semantics

Consider a nested word n with k pending calls. We can write this

$$
n=n_{1}\left\langlec _ { 1 } n _ { 2 } \left\langlec _ { 2 } \cdots n _ { k } \left\langle c_{k} n_{k+1}\right.\right.\right.
$$

where the n_{i} have no pending calls.
Invariants
I After reading n, \mathcal{B} will be in state S_{k+1}, where $\left(S_{i}, c_{i}\right)$ will be the hierarchical state for each $\left\langle c_{i}\right.$.

II S_{i} contains the pair $\left(q, q^{\prime}\right)$ iff $q \xrightarrow{n_{i}} q^{\prime}$.
Question: acceptance condition of \mathcal{B} for n ?
Answer: $S_{k+1} \in Q_{f}^{\prime}$,
i.e., $\exists q, q^{\prime} .\left(q, q^{\prime}\right) \in S_{k+1} \wedge q \xrightarrow{n_{k+1}} \mathcal{A} q^{\prime} \wedge q^{\prime} \in Q_{f}$

Internal transitions

I After reading n, \mathcal{B} will be in state S_{k+1}, where $\left(S_{i}, c_{i}\right)$ will be the hierarchical state for each $\left\langle c_{i}\right.$.
II S_{i} contains the pair $\left(q, q^{\prime}\right)$ iff $q \xrightarrow{n_{i}} q^{\prime}$.

$$
n^{\prime}=n \cdot i=n_{1}\left\langlec _ { 1 } n _ { 2 } \left\langlec _ { 2 } \cdots n _ { k } \left\langle c_{k} n_{k+1} i\right.\right.\right.
$$

$\delta_{i}^{\prime}\left(S_{k+1}, i\right)=$

Internal transitions

I After reading n, \mathcal{B} will be in state S_{k+1}, where $\left(S_{i}, c_{i}\right)$ will be the hierarchical state for each $\left\langle c_{i}\right.$.
II S_{i} contains the pair $\left(q, q^{\prime}\right)$ iff $q \xrightarrow{n_{i}} \mathcal{A} q^{\prime} . \quad q \xrightarrow{n_{k+1}} q^{\prime} \xrightarrow{i} q^{\prime \prime}$

$$
\begin{array}{r}
n^{\prime}=n \cdot i=n_{1}\left\langlec _ { 1 } n _ { 2 } \left\langlec _ { 2 } \cdots n _ { k } \left\langle c_{k} n_{k+1} i\right.\right.\right. \\
\delta_{i}^{\prime}\left(S_{k+1}, i\right)=\left\{\left(q, q^{\prime \prime}\right) \mid\left(q, q^{\prime}\right) \in S_{k+1} \wedge q^{\prime \prime} \in \delta_{i}\left(q^{\prime}, i\right)\right\}
\end{array}
$$

Nested Word Automata
Determinization proof

Construction

Example

Nested Word Automata
Determinization proof

Construction

Example

Call transitions

I After reading n, \mathcal{B} will be in state S_{k+1}, where $\left(S_{i}, c_{i}\right)$ will be the hierarchical state for each $\left\langle c_{i}\right.$.
II S_{i} contains the pair $\left(q, q^{\prime}\right)$ iff $q \xrightarrow{n_{i}} q^{\prime}$.

$$
n^{\prime}=n \cdot\left\langle c_{k+1}=n_{1}\left\langlec _ { 1 } n _ { 2 } \left\langlec _ { 2 } \cdots n _ { k } \left\langlec _ { k } n _ { k + 1 } \left\langle c_{k+1}\right.\right.\right.\right.\right.
$$

$\delta_{c}^{\prime}\left(S_{k+1}, c_{k+1}\right)=$
new hierarchical state that keeps track of the old state/symbol

Call transitions

I After reading n, \mathcal{B} will be in state S_{k+1}, where $\left(S_{i}, c_{i}\right)$ will be the hierarchical state for each $\left\langle c_{i}\right.$.
II S_{i} contains the pair $\left(q, q^{\prime}\right)$ iff $q \xrightarrow{n_{i}} q^{\prime}$.

$$
\begin{aligned}
n^{\prime}= & n \cdot\left\langle c_{k+1}=n_{1}\left\langlec _ { 1 } n _ { 2 } \left\langlec _ { 2 } \cdots n _ { k } \left\langlec _ { k } n _ { k + 1 } \left\langle c_{k+1}\right.\right.\right.\right.\right. \\
\delta_{c}^{\prime}\left(S_{k+1}, c_{k+1}\right) & =\left(S^{\prime},\left(S_{k+1}, c_{k+1}\right)\right),
\end{aligned}
$$

new hierarchical state that keeps track of the old state/symbol

Call transitions

I After reading n, \mathcal{B} will be in state S_{k+1}, where $\left(S_{i}, c_{i}\right)$ will be the hierarchical state for each $\left\langle c_{i}\right.$.
II S_{i} contains the pair $\left(q, q^{\prime}\right)$ iff $q{ }^{n_{i}} \mathcal{A} q^{\prime}$.

$$
q \xrightarrow{n_{k+1}} q^{\prime}
$$

$$
c_{k+1} / p \downarrow
$$

$$
n^{\prime}=n \cdot\left\langle c_{k+1}=n_{1}\left\langlec _ { 1 } n _ { 2 } \left\langlec _ { 2 } \cdots n _ { k } \left\langlec _ { k } n _ { k + 1 } \left\langle c_{k+1} \quad q^{\prime \prime}\right.\right.\right.\right.\right.
$$

$\delta_{c}^{\prime}\left(S_{k+1}, c_{k+1}\right)=\left(S^{\prime},\left(S_{k+1}, c_{k+1}\right)\right)$,
$S^{\prime}=\left\{\left(q^{\prime \prime}, q^{\prime \prime}\right) \mid\left(q, q^{\prime}\right) \in S_{k+1} \wedge \exists p \in P .\left(q^{\prime \prime}, p\right) \in \delta_{c}\left(q^{\prime}, c_{k+1}\right)\right\}$
new hierarchical state that keeps track of the old state/symbol

Nested Word Automata
Determinization proof

Construction

Example

Nested Word Automata
Determinization proof

Construction

Example

Return transitions

I After reading n, \mathcal{B} will be in state S_{k+1}, where $\left(S_{i}, c_{i}\right)$ will be the hierarchical state for each $\left\langle c_{i}\right.$.
II S_{i} contains the pair $\left(q, q^{\prime}\right)$ iff $q \xrightarrow{n_{i}} q^{\prime}$.

$$
\left.n^{\prime}=n \cdot r\right\rangle=n_{1}\left\langlec _ { 1 } n _ { 2 } \left\langle c_{2} \cdots n_{k}\left\langle c_{k} n_{k+1} r\right\rangle\right.\right.
$$

We have two cases here:
$k=0$ no matching call, like internal transition
$\delta_{r}^{\prime}\left(S_{k+1}, p_{0}^{\prime}, r\right)=$

Return transitions

I After reading n, \mathcal{B} will be in state S_{k+1}, where $\left(S_{i}, c_{i}\right)$ will be the hierarchical state for each $\left\langle c_{i}\right.$.
II S_{i} contains the pair $\left(q, q^{\prime}\right)$ iff $q \xrightarrow{n_{i}} q^{\prime}$.

$$
\left.n^{\prime}=n \cdot r\right\rangle=n_{1}\left\langlec _ { 1 } n _ { 2 } \left\langle c_{2} \cdots n_{k}\left\langle c_{k} n_{k+1} r\right\rangle \quad r / p \uparrow\right.\right.
$$

We have two cases here:

$$
q \underset{n_{k+1}}{ } q^{\prime}
$$

$k=0$ no matching call, like internal transition

$$
\delta_{r}^{\prime}\left(S_{k+1}, p_{0}^{\prime}, r\right)=
$$

$$
\left\{\left(q, q^{\prime \prime}\right) \mid\left(q, q^{\prime}\right) \in S_{k+1} \wedge \exists p \in P_{0} \cdot q^{\prime \prime} \in \delta_{r}\left(q^{\prime}, p, r\right)\right\}
$$

Return transitions

I After reading n, \mathcal{B} will be in state S_{k+1}, where $\left(S_{i}, c_{i}\right)$ will be the hierarchical state for each $\left\langle c_{i}\right.$.
II S_{i} contains the pair $\left(q, q^{\prime}\right)$ iff $q \xrightarrow{n_{i}} q^{\prime}$.

$$
\left.n^{\prime}=n \cdot r\right\rangle=n_{1}\left\langlec _ { 1 } n _ { 2 } \left\langle c_{2} \cdots n_{k}\left\langle c_{k} n_{k+1} r\right\rangle\right.\right.
$$

We have two cases here:
$k=0$ no matching call, like internal transition
$\delta_{r}^{\prime}\left(S_{k+1}, p_{0}^{\prime}, r\right)=$

$$
\left\{\left(q, q^{\prime \prime}\right) \mid\left(q, q^{\prime}\right) \in S_{k+1} \wedge \exists p \in P_{0} \cdot q^{\prime \prime} \in \delta_{r}\left(q^{\prime}, p, r\right)\right\}
$$

$k>0$ subword $n_{k}\left\langle c_{k} n_{k+1} r\right\rangle$, hierarchical state $=\left(S_{k}, c_{k}\right)$
$\delta_{r}^{\prime}\left(S_{k+1},\left(S_{k}, c_{k}\right), r\right)=$

Return transitions

I After reading n, \mathcal{B} will be in state S_{k+1}, where $\left(S_{i}, c_{i}\right)$ will be the hierarchical state for each $\left\langle c_{i}\right.$.
II S_{i} contains the pair $\left(q, q^{\prime}\right)$ iff $q \xrightarrow{n_{i}} q^{\prime}$.

We have two cases here:
$k=0$ no matching call, like internal transition

$$
\delta_{r}^{\prime}\left(S_{k+1}, p_{0}^{\prime}, r\right)=
$$

$$
\left\{\left(q, q^{\prime \prime}\right) \mid\left(q, q^{\prime}\right) \in S_{k+1} \wedge \exists p \in P_{0} \cdot q^{\prime \prime} \in \delta_{r}\left(q^{\prime}, p, r\right)\right\}
$$

$k>0$ subword $n_{k}\left\langle c_{k} n_{k+1} r\right\rangle$, hierarchical state $=\left(S_{k}, c_{k}\right)$

$$
\begin{aligned}
\delta_{r}^{\prime}\left(S_{k+1},\left(S_{k}, c_{k}\right), r\right) & =\left\{\left(q, q^{\prime \prime}\right) \mid\left(q, q^{\prime}\right) \in S_{k} \wedge\left(q_{1}, q_{2}\right) \in S_{k+1}\right. \\
& \left.\wedge \exists p \in P .\left(q_{1}, p\right) \in \delta_{c}\left(q^{\prime}, c_{k}\right) \wedge q^{\prime \prime} \in \delta_{r}\left(q_{2}, p, r\right)\right\}
\end{aligned}
$$

Nested Word Automata
Determinization proof

Construction

Example

Nested Word Automata
Determinization proof

Construction

Example

Nested Word Automata
Determinization proof

Construction

Example

Nested Word Automata
Determinization proof

Construction

Example

Nested Word Automata
Determinization proof

Construction

Résumé

- now all components of \mathcal{B} defined

Nested Word Automata
Determinization proof

Construction

Résumé

- now all components of \mathcal{B} defined
- correctness results from invariants

Résumé

- now all components of \mathcal{B} defined
- correctness results from invariants
- complexity: if $|Q|=s$, then $\left|Q^{\prime}\right|=2^{s^{2}}$ and $\left|P^{\prime}\right| \in \mathcal{O}\left(2^{s^{2}}\right)$ This is succinct, so there exists an example where the DNWA cannot have less states.

Overview

Motivation and background

Nested words and their acceptors

Determinization proof

Conclusion

Conclusion

- nested word languages as a (proper) fragment of deterministic context-free languages strictly more expressive than regular languages

Conclusion

- nested word languages as a (proper) fragment of deterministic context-free languages strictly more expressive than regular languages
- visibly pushdown automata and nested word automata as suitable models for this class

Conclusion

- nested word languages as a (proper) fragment of deterministic context-free languages strictly more expressive than regular languages
- visibly pushdown automata and nested word automata as suitable models for this class
- no stack, but complexity shifted to the input word

Conclusion

- nested word languages as a (proper) fragment of deterministic context-free languages strictly more expressive than regular languages
- visibly pushdown automata and nested word automata as suitable models for this class
- no stack, but complexity shifted to the input word
- all relevant closure properties, all interesting problems decidable

Conclusion

- nested word languages as a (proper) fragment of deterministic context-free languages strictly more expressive than regular languages
- visibly pushdown automata and nested word automata as suitable models for this class
- no stack, but complexity shifted to the input word
- all relevant closure properties, all interesting problems decidable
- determinization always possible in $\mathcal{O}\left(2^{s^{2}}\right)$

Conclusion

- nested word languages as a (proper) fragment of deterministic context-free languages strictly more expressive than regular languages
- visibly pushdown automata and nested word automata as suitable models for this class
- no stack, but complexity shifted to the input word
- all relevant closure properties, all interesting problems decidable
- determinization always possible in $\mathcal{O}\left(2^{s^{2}}\right)$
- many practical problems describable as nested words

Conclusion

- nested word languages as a (proper) fragment of deterministic context-free languages strictly more expressive than regular languages
- visibly pushdown automata and nested word automata as suitable models for this class
- no stack, but complexity shifted to the input word
- all relevant closure properties, all interesting problems decidable
- determinization always possible in $\mathcal{O}\left(2^{s^{2}}\right)$
- many practical problems describable as nested words
- recent concept, time will show the relevance

References

Reajeev Alur and Parthasarathy Madhusudan. Adding Nested Structure to Words.
In Journal of the ACM, 2009.
R Rajeev Alur and Parthasarathy Madhusudan.
Visibly Pushdown Languages.
In STOC '04, 2004.

