
Tree Automata

Betim Musa

Seminar: Automata Theory

Albert-Ludwigs-University of Freiburg

University of Freiburg - Computer Science Department

Introduction

 Automata for tree structures
 Generalization of finite automata
 Two types of tree automata

 (1) top-down, (2) bottom-up

 Applications:
 Compiler construction: generate machine code
 Natural Language Processing: machine translation
 XML: processing XML documents

University of Freiburg - Computer Science Department

Outline

 Tree automata
 Basics of tree automata
 Bottom-up tree automata
 Top-down tree automata
 Decision problems & complexity

 Connection to logic
 Monadic Second Order Logic (MSOL)
 Equivalence between tree automata and MSOL

University of Freiburg - Computer Science Department

Basics

 Definition: is a ranked alphabet if
 It is a non-empty finite set
 each symbol is assigned a finite set

a∈ rank a⊆ℕ
 i :={a∈ ∣ i∈rank a}
=0∪...∪m

University of Freiburg - Computer Science Department

Basics

 Definition: is a ranked alphabet if
 It is a non-empty finite set
 each symbol is assigned a finite set

 Definition: A tree over Σ is inductively defined
 each symbol is a tree
 For and trees , is also a

tree.

a∈ rank a⊆ℕ
 i :={a∈ ∣ i∈rank a}
=0∪...∪m

a∈0

f ∈k t1 ... tk f t1 ... t k

University of Freiburg - Computer Science Department

Basics

 Definition: is a ranked alphabet if
 It is a non-empty finite set
 each symbol is assigned a finite set

 Definition: A tree over Σ is inductively defined
 each symbol is a tree
 For and trees , is also a

tree.
 The set of all trees over is denoted by

a∈ rank a⊆ℕ
 i :={a∈ ∣ i∈rank a}
=0∪...∪m

a∈0

f ∈k t1 ... tk f t1 ... t k

 T

University of Freiburg - Computer Science Department

 Definition: A bottom-up tree automaton is a
quadruple
 a ranked alphabet
 Q finite set of states
 set of final states
 finite set of transition rules of the form

where trees

B= ,Q , F ,

F⊆Q

f q1t 1 , ... , qn tnq

f ∈n , q , q1, ... ,qn∈Q , t 1, ... , t n

Bottom-up tree automata

University of Freiburg - Computer Science Department

 Definition: A bottom-up tree automaton is a
quadruple
 a ranked alphabet
 Q finite set of states
 set of final states
 finite set of transition rules of the form

where trees
 Rules for constants are „initial rules“

B= ,Q , F ,

F⊆Q

f q1t 1 , ... , qn tnq

f ∈n , q , q1, ... ,qn∈Q , t 1, ... , t n

Bottom-up tree automata

aqa

University of Freiburg - Computer Science Department

 Definition: A bottom-up tree automaton is a
quadruple
 a ranked alphabet
 Q finite set of states
 set of final states
 finite set of transition rules of the form

where trees
 Rules for constants are „initial rules“
 Definition: Acceptance of a tree

 A tree is accepted iff

B= ,Q , F ,

F⊆Q

f q1t 1 , ... , qn tnq

f ∈n , q , q1, ... ,qn∈Q , t 1, ... , t n

Bottom-up tree automata

aqa

t∈T t∗ qt , where q∈F

University of Freiburg - Computer Science Department

 Example: A tree automaton, which accepts
all true Boolean expressions over ={∧2 , ∨2 , ¬1 ,00 ,10}

Bottom-up tree automata
Example 1

University of Freiburg - Computer Science Department

 Example: A tree automaton, which accepts
all true Boolean expressions over

 with B= ,Q , F , Q={q0,q1}, F={q1}

={0 q0 ,1q1 ,¬q0t q1 ,¬q1t q0,}

∪{∧qi t1 , q j t2qmini , j }

∪{∨qi t1 , q j t2qmax i , j }

Bottom-up tree automata
Example 1

={∧2 , ∨2 , ¬1 ,00 ,10}

University of Freiburg - Computer Science Department

 with

 Assume we have the following input:

B= ,Q , F , Q={q0,q1}, F={q1}
={0 q0 ,1q1 ,¬q0t q1 ,¬q1t q0,}

∪{∧qi t1 , q j t2qmini , j }

∪{∨qi t1 , q j t2qmax i , j }

t1=∧∨0,1 ,¬0

Bottom-up tree automata
Example 1

University of Freiburg - Computer Science Department

 with

 Assume we have the following input:

B= ,Q , F , Q={q0,q1}, F={q1}
={0 q0 ,1q1 ,¬q0t q1 ,¬q1t q0,}

∪{∧qi t1 , q j t2qmini , j }

∪{∨qi t1 , q j t2qmax i , j }

t1=∧∨0,1 ,¬0

Bottom-up tree automata
Example 1

University of Freiburg - Computer Science Department

 with

 Assume we have the following input:

B= ,Q , F , Q={q0,q1}, F={q1}
={0 q0 ,1q1 ,¬q0t q1 ,¬q1t q0,}

∪{∧qi t1 , q j t2qmini , j }

∪{∨qi t1 , q j t2qmax i , j }

t1=∧∨0,1 ,¬0

Bottom-up tree automata
Example 1

University of Freiburg - Computer Science Department

 with

 Assume we have the following input:

B= ,Q , F , Q={q0,q1}, F={q1}
={0 q0 ,1q1 ,¬q0t q1 ,¬q1t q0,}

∪{∧qi t1 , q j t2qmini , j }

∪{∨qi t1 , q j t2qmax i , j }

t1=∧∨0,1 ,¬0

Bottom-up tree automata
Example 1

University of Freiburg - Computer Science Department

 with

 Assume we have the following input:

B= ,Q , F , Q={q0,q1}, F={q1}
={0 q0 ,1q1 ,¬q0t q1 ,¬q1t q0,}

∪{∧qi t1 , q j t2qmini , j }

∪{∨qi t1 , q j t2qmax i , j }

t1=∧∨0,1 ,¬0

Bottom-up tree automata
Example 1

University of Freiburg - Computer Science Department

Bottom-up tree automata
Example 1

 with

 Assume we have the following input:

B= ,Q , F , Q={q0,q1}, F={q1}
={0 q0 ,1q1 ,¬q0t q1 ,¬q1t q0,}

∪{∧qi t1 , q j t2qmini , j }

∪{∨qi t1 , q j t2qmax i , j }

t1=∧∨0,1 ,¬0

University of Freiburg - Computer Science Department

Bottom-up tree automata
Example 1

 with

 Assume we have the following input:

B= ,Q , F , Q={q0,q1}, F={q1}
={0 q0 ,1q1 ,¬q0t q1 ,¬q1t q0,}

∪{∧qi t1 , q j t2qmini , j }

∪{∨qi t1 , q j t2qmax i , j }

t1=∧∨0,1 ,¬0

Bottom-up tree automata
Further information

 Non-deterministic if there are at least two
rules with the same left-hand side

 But expressive power is equal
 Powerset construction

 Regular expressions definable
 Equal power to tree automata

a q1 , ... , qk q
a q1 , ... , qk q ' where q≠q '

University of Freiburg - Computer Science Department

Top-down tree automata

 Definition: A top-down automaton is a structure

 where is a ranked alphabet
 Q is a finite set of states
 is a finite set of initial states
 finite set of transition rules of the form

 where different trees

 A tree is accepted iff

T= ,Q ,QI ,

Q I

q f t1, ... , tn f q1t1 , ... , qn tn

f ∈n , q , q1, ... ,qn∈Q , t 1, ... , t n

t∈T q t ∗ t for someq∈QI

University of Freiburg - Computer Science Department

Top-down tree automata
Example 1

 A top-down automaton, which accepts all trees
with depth 1 over ={f 2 , g1 , a0}

University of Freiburg - Computer Science Department

Top-down tree automata
Example 1

 A top-down automaton, which accepts all trees
with depth 1 over

 Define where

 Instance input is:

={f 2 , g1 , a0}

T= ,Q ,QI , Q={q0 , q1}, Q I={q0}

={q0 f t1, t 2 f q1t1 , q1t2 , q0g t g q1t }

∪{q1aa}

University of Freiburg - Computer Science Department

Top-down tree automata
Example 1

 A top-down automaton, which accepts all trees
with depth 1 over

 Define where

 Instance input is:

={f 2 , g1 , a0}

T= ,Q ,QI , Q={q0 , q1}, Q I={q0}

={q0 f t1, t 2 f q1t1 , q1t2 , q0g t g q1t }

∪{q1aa}

University of Freiburg - Computer Science Department

Top-down tree automata
Example 1

 A top-down automaton, which accepts all trees
with depth 1 over

 Define where

 Instance input is:

={f 2 , g1 , a0}

T= ,Q ,QI , Q={q0 , q1}, Q I={q0}

={q0 f t1, t 2 f q1t1 , q1t2 , q0g t g q1t }

∪{q1aa}

University of Freiburg - Computer Science Department

Top-down tree automata
Example 1

 A top-down automaton, which accepts all trees
with depth 1 over

 Define where

 Instance input is:

={f 2 , g1 , a0}

T= ,Q ,QI , Q={q0 , q1}, Q I={q0}

={q0 f t1, t 2 f q1t1 , q1t2 , q0g t g q1t }

∪{q1aa}

University of Freiburg - Computer Science Department

Top-down tree automata
Example 2

 A top-down automaton, which accepts all trees
with depth 1 over

 Define where

 Input, which is not accepted:

={f 2 , g1 , a0}

T= ,Q ,QI , Q={q0 , q1}, Q I={q0}

={q0 f t1, t 2 f q1t1 , q1t2 , q0g t g q1t }

∪{q1aa}

University of Freiburg - Computer Science Department

Top-down tree automata
Example 2

 A top-down automaton, which accepts all trees
with depth 1 over

 Define where

 Input, which is not accepted:

={f 2 , g1 , a0}

T= ,Q ,QI , Q={q0 , q1}, Q I={q0}

={q0 f t1, t 2 f q1t1 , q1t2 , q0g t g q1t }

∪{q1aa}

University of Freiburg - Computer Science Department

Top-down tree automata
Example 2

 A top-down automaton, which accepts all trees
with depth 1 over

 Define where

 Input, which is not accepted:

={f 2 , g1 , a0}

T= ,Q ,QI , Q={q0 , q1}, Q I={q0}

={q0 f t1, t 2 f q1t1 , q1t2 , q0g t g q1t }

∪{q1aa}

University of Freiburg - Computer Science Department

Top-down tree automata
Example 2

 A top-down automaton, which accepts all trees
with depth 1 over

 Define where

 Input, which is not accepted:

={f 2 , g1 , a0}

T= ,Q ,QI , Q={q0 , q1}, Q I={q0}

={q0 f t1, t 2 f q1t1 , q1t2 , q0g t g q1t }

∪{q1aa}

University of Freiburg - Computer Science Department

Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata
are strictly less powerful than the non-
deterministic ones

University of Freiburg - Computer Science Department

Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata
are strictly less powerful than the non-
deterministic ones

 Remark: The doubleton set
is acceptable by non-determinstic top-down tree
automata

DT={f a ,b f b ,a}

University of Freiburg - Computer Science Department

Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata
are strictly less powerful than the non-
deterministic ones

 Remark: The doubleton set
is acceptable by non-determinstic top-down tree
automata

 where

DT={f a ,b f b ,a}

T= ,Q ,QI , ={f 2 , a0 , b0} ,Q={q0 , qa , qb} ,QI={q0}

={q0 f t1 , t 2 f qa t1 ,qb t2 ,q0 f t1 , t2 f qb t1 ,qa t2}
∪{qaaa ,qb b b}

University of Freiburg - Computer Science Department

Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata are
strictly less powerful than the non-deterministic
ones

 where

 Assume that there is a determinstic top-down
automaton which recognizes the doubleton set

T= ,Q ,QI , ={f 2 , a0 , b0} ,Q={q0 , qa , qb} ,Q I={q0}

={q0 f t1 , t2 f qat1 ,qb t2 ,q0 f t1 , t2 f qbt 1 ,qat 2}
∪{qa a a ,qb bb}

University of Freiburg - Computer Science Department

Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata are
strictly less powerful than the non-deterministic
ones

 where

 Assume that there is a determinstic top-down
automaton which recognizes the doubleton set

 It must have the following transition rules

T= ,Q ,QI , ={f 2 , a0 , b0} ,Q={q0 , qa , qb} ,Q I={q0}

={q0 f t1 , t2 f qat1 ,qb t2 ,q0 f t1 , t2 f qbt 1 ,qat 2}
∪{qa a a ,qb bb}

={q0 f t1 , t 2 f q1t1 , q2t2}

University of Freiburg - Computer Science Department

Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata are
strictly less powerful than the non-deterministic
ones

 where

 Assume that there is a determinstic top-down
automaton which recognizes the doubleton set

 It must have the following transition rules

T= ,Q ,QI , ={f 2 , a0 , b0} ,Q={q0 , qa , qb} ,Q I={q0}

={q0 f t1 , t2 f qat1 ,qb t2 ,q0 f t1 , t2 f qbt 1 ,qat 2}
∪{qa a a ,qb bb}

={q0 f t1 , t 2 f q1t1 , q2t2 ,q1a a ,q2bb}

University of Freiburg - Computer Science Department

Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata are
strictly less powerful than the non-deterministic
ones

 where

 Assume that there is a determinstic top-down
automaton which recognizes the doubleton set

 It must have the following transition rules

T= ,Q ,QI , ={f 2 , a0 , b0} ,Q={q0 , qa , qb} ,QI={q0}

={q0 f t1 , t 2 f qa t1 ,qb t2 ,q0 f t1 , t2 f qb t1 ,qa t2}
∪{qaaa ,qb b b}

={q0 f t1 , t 2 f q1t1 , q2t2 ,q1a a ,q2b b}
∪{q2 a a ,q1bb}

University of Freiburg - Computer Science Department

Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata are
strictly less powerful than the non-deterministic
ones

 where

 Assume that there is a determinstic top-down
automaton which recognizes the doubleton set

 It must have the following transition rules

 It accepts also f(a, a) → Contradiction.

T= ,Q ,QI , ={f 2 , a0 , b0} ,Q={q0 , qa , qb} ,QI={q0}

={q0 f t1 , t 2 f qa t1 ,qb t2 ,q0 f t1 , t2 f qb t1 ,qa t2}
∪{qaaa ,qb b b}

={q0 f t1 , t 2 f q1t1 , q2t2 ,q1a a ,q2bb}
∪{q2 a a ,q1bb}

University of Freiburg - Computer Science Department

Decision problems & complexity

NDTA NWA PDA

complement

intersection

emptiness

equivalence

inclusion

∪ ,⋅,∗ ✔ ✔

✔

✔ ✘✔

✔

✔

✘

University of Freiburg - Computer Science Department

Decision problems & complexity

NDTA NWA PDA

complement

intersection

emptiness linear time PTIME PTIME

equivalence EXPTIME PTIME undecidable

inclusion EXPTIME PTIME undecidable

∪ ,⋅,∗ ✔ ✔

✔

✔ ✘✔

✔

✔

✘

University of Freiburg - Computer Science Department

Outline

 Tree automata
 Basics of tree automata
 Bottom-up tree automata
 Top-down tree automata
 Decision problems & complexity

 Connection to logic
 Monadic Second Order Logic (MSOL)
 Equivalence between tree automata and MSOL

University of Freiburg - Computer Science Department

Monadic Second Order Logic
Why?

 Why consider logic on trees?
 To specify languages in a more comfortable way

 L = „There is a path which consists of only a“
 Regular expression of L would become too

large
 A formula for L:

 :=∃x∃ y x y∧∀ z xz∧z y Pa z

University of Freiburg - Computer Science Department

Monadic Second Order Logic

 Extension of first-order logic
 Second-order because quantification over

sets is allowed

 Monadic because quantification is restricted
to sets (unary relations)

∃X X min Pamin

University of Freiburg - Computer Science Department

Monadic Second Order Logic
over trees

 Formulae are built up from
 Variables x, y, z denoting positions of branches
 Constant min , Position of the root node
 Set variables X, Y, Z denoting sets of positions

University of Freiburg - Computer Science Department

Monadic Second Order Logic
over trees

 Formulae are built up from
 Variables x, y, z denoting positions of branches
 Constant min , Position of the root node
 Set variables X, Y, Z denoting sets of positions
 Atomic formulae (with explicit semantics)
 x = y (equality)
 prefix relation
 i-th successor relation
 „at position x there is an a“
 X(y) „y is element of X“
 And the usual connectors, quantifiers

Si x , y
Pa x

∧ ,∨ ,¬ , ... , ∃ , ∀

University of Freiburg - Computer Science Department

Monadic Second Order Logic
over trees

 How can we describe the properties of trees
in terms of MSOL-formulae?

University of Freiburg - Computer Science Department

Monadic Second Order Logic
over trees

 How can we describe the properties of trees
in terms of MSOL-formulae?

 Let be a ranked alphabet.
Following structure encodes a tree t:

=0∪..∪m

t=domt , S1
t , .. ,Sm

t , t ,Pa
t a∈

University of Freiburg - Computer Science Department

Monadic Second Order Logic
over trees

 How can we describe the properties of trees
in terms of MSOL-formulae?

 Let be a ranked alphabet.
Following structure encodes a tree t:

 domain of t (i.e. set of all positions in t)
 the i-th successor relation on the domain
 prefix relation (between two positions in t

 that are on the same path)
 set of all positions of t labeled with an a

=0∪..∪m

t=domt , S1
t , .. ,Sm

t , t ,Pa
t a∈

dom t
Si

t

 t

Pa
t

University of Freiburg - Computer Science Department

Monadic Second Order Logic
Example

 Let where

=0∪1∪2 0={a },1={g},2={f}
t=domt , S1

t , .. ,Sm
t , t ,Pa

t a∈

University of Freiburg - Computer Science Department

Monadic Second Order Logic
Example

 Let where

=0∪1∪2 0={a },1={g},2={f}
t=domt , S1

t , .. ,Sm
t , t ,Pa

t a∈

University of Freiburg - Computer Science Department

Monadic Second Order Logic
Example

 Let where

=0∪1∪2 0={a },1={g},2={f}
t=domt , S1

t , .. ,Sm
t , t ,Pa

t a∈

dom t={min ,1,11,12,2,21,211}

University of Freiburg - Computer Science Department

Monadic Second Order Logic
Example

 Let where

=0∪1∪2 0={a },1={g},2={f}
t=domt , S1

t , .. ,Sm
t , t ,Pa

t a∈

dom t={min ,1,11,12,2,21,211}

S1
t ,S2

t

S2
t min ,2 ,S1

t 2,21

University of Freiburg - Computer Science Department

Monadic Second Order Logic
Example

 Let where

=0∪1∪2 0={a },1={g},2={f}
t=domt , S1

t , .. ,Sm
t , t ,Pa

t a∈

dom t={min ,1,11,12,2,21,211}

S1
t ,S2

t

S2
t min ,2 ,S1

t 2,21

Pa={11,12,211}, Pf={min ,1}

Pg={2,21}

University of Freiburg - Computer Science Department

Monadic Second Order Logic

 Given a sentence in MSO-L, the expression

 states that satisfies if there is an
automaton A, which accepts t.

 Tree languages
 defines
 is called MSO-definable

domt ,S1
t , .. ,Sm

t , t ,Pa
t a∈

⊨

t

 T :={t∈T ∣ t ⊨ }
T

University of Freiburg - Computer Science Department

Equivalence
between tree automata and MSOL

 Theorem(Doner, Thatcher-Wright, 1968):
A tree language is recognizable by a finite
tree automaton iff it is MSO-definable.

University of Freiburg - Computer Science Department

Equivalence
between tree automata and MSOL

 Theorem(Doner, Thatcher-Wright, 1968):
A tree language is recognizable by a finite
tree automaton iff it is MSO-definable.

 Proof: Direction from tree automata to MSOL
 Given automaton A, specify a formula such

that:

t∈LA ⇔ t ⊨

University of Freiburg - Computer Science Department

Equivalence
between tree automata and MSOL

 Observation 1: If states of A are
then every run of of A on a tree t can be
represented by sets of nodes

{q1, ... ,qn}

Q1 , ... ,Qn

University of Freiburg - Computer Science Department

Equivalence
between tree automata and MSOL

 Observation 1: If states of A are
then every run of of A on a tree t can be
represented by sets of nodes

 Observation 2: We can define that
represent an accepting run

{q1, ... ,qn}

Q1 , ... ,Qn

Q1 , ... ,Qn

University of Freiburg - Computer Science Department

Equivalence
between tree automata and MSOL

 Observation 1: If states of A are
then every run of of A on a tree t can be
represented by sets of nodes

 Observation 2: We can define that
represent an accepting run
 every node is labeled with at most one state

{q1, ... ,qn}

Q1 , ... ,Qn

Q1 , ... ,Qn

1 :=∧
i≠ j

∀ x Q i x ¬Q jx

University of Freiburg - Computer Science Department

Equivalence
between tree automata and MSOL

 Observation 1: If states of A are
then every run of of A on a tree t can be
represented by sets of nodes

 Observation 2: We can define that
represent an accepting run
 every node is labeled with at most one state

 root node is labeled with an accepting state

{q1, ... ,qn}

Q1 , ... ,Qn

Q1 , ... ,Qn

1 :=∧
i≠ j

∀ x Q i x ¬Q jx

2 :=∨
q i∈F

Qimin

University of Freiburg - Computer Science Department

Equivalence
between tree automata and MSOL

 Observation 2: We can define that
represents an accepting run
 Leaf nodes are labeled with a state according to

the rules

Q1 , ... ,Qn

3 :=∧
a∈0

∀ x Pa x ∨
aq i∈

Q ix

University of Freiburg - Computer Science Department

Equivalence
between tree automata and MSOL

 Observation 2: We can define that
represents an accepting run
 Leaf nodes are labeled with a state according to

the rules

 Inner nodes are labeled as follows:

Q1 , ... ,Qn

3 :=∧
a∈0

∀ x Pa x ∨
aq i∈

Q ix
4 :=∧

a∈r

∀ x∀ y1 ...∀ yn

Pa x ∧Sr x , y1∧...∧Sr x ,yn∧y1y2.. yn−1yn

 ∨
a q i1

, .. , q in
q i∈

Q i1
y1∧..∧Q in

yn∧Q ix

University of Freiburg - Computer Science Department

Equivalence
between tree automata and MSOL

 Observation 3: In MSO we can guess

Q1 , ... ,Qn

 :=∃Q1 ..∃Qn1∧2∧3∧4

University of Freiburg - Computer Science Department

Equivalence
between tree automata and MSOL

 Observation 3: In MSO we can guess

 Then A accepts t iff
 It is clear, that
 Hence, every finite tree language is MSO-

definable.

Q1 , ... ,Qn

 :=∃Q1 ..∃Qn1∧2∧3∧4

LA=L

t ⊨

University of Freiburg - Computer Science Department

Equivalence
between tree automata and MSOL

 Proof: Direction from formulae to tree
automata

University of Freiburg - Computer Science Department

Equivalence
between tree automata and MSOL

 Proof: Direction from formulae to tree
automata
 Induction over construction of MSO-L formulae
 Use closure properties of tree automata

 If a tree language is MSO-definable, then it is
recognizable by a tree automaton A.

University of Freiburg - Computer Science Department

Summary

 Tree automata
 Basics of tree automata
 Bottom-up tree automata
 Top-down tree automata
 Decision problems & complexity

 Connection to logic
 Monadic Second Order Logic (MSOL)
 Equivalence between tree automata and MSOL

University of Freiburg - Computer Science Department

References

 M.Dauchet, H.Comon,..
Tree Automata Techniques and Applications
(TATA), chapter 1, 2008

 Prof. Dr. W.Thomas, RWTH Aachen
Applied Automata Theory, chapter 3, 2005

 Wim Martens, Stijn Vansummeren
Automata and Logic on Trees
University of Dortmund

	Title
	Motivation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

