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Introduction

 Automata for tree structures
 Generalization of finite automata
 Two types of tree automata

 (1) top-down, (2) bottom-up

 Applications:
 Compiler construction: generate machine code
 Natural Language Processing: machine translation
 XML: processing XML documents
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Outline

 Tree automata
 Basics of tree automata
 Bottom-up tree automata
 Top-down tree automata
 Decision problems & complexity

 Connection to logic
 Monadic Second Order Logic (MSOL)
 Equivalence between tree automata and MSOL
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Basics

 Definition:        is a ranked alphabet if 
 It is a non-empty finite set
 each symbol           is assigned a finite set             






a∈ rank a⊆ℕ
 i :={a∈ ∣ i∈rank a}
=0∪...∪m
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Basics

 Definition:        is a ranked alphabet if 
 It is a non-empty finite set
 each symbol           is assigned a finite set             




 Definition: A tree over Σ is inductively defined
 each symbol             is a tree
 For            and trees            ,                  is also a 

tree.
 The set of all trees over     is denoted by



a∈ rank a⊆ℕ
 i :={a∈ ∣ i∈rank a}
=0∪...∪m

a∈0

f ∈k t1 ... tk f t1 ... t k 

 T 
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 Definition: A bottom-up tree automaton is a 
quadruple 
      a ranked alphabet 
 Q finite set of states
           set of final states
     finite set of transition rules of the form

where                                                    trees

B= ,Q , F ,


F⊆Q

f q1t 1 , ... , qn tnq

f ∈n , q , q1, ... ,qn∈Q , t 1, ... , t n

Bottom-up tree automata
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 Definition: A bottom-up tree automaton is a 
quadruple 
      a ranked alphabet 
 Q finite set of states
           set of final states
     finite set of transition rules of the form

where                                                    trees
 Rules for constants are „initial rules“

B= ,Q , F ,


F⊆Q

f q1t 1 , ... , qn tnq

f ∈n , q , q1, ... ,qn∈Q , t 1, ... , t n

Bottom-up tree automata

aqa
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 Definition: A bottom-up tree automaton is a 
quadruple 
      a ranked alphabet 
 Q finite set of states
           set of final states
     finite set of transition rules of the form

where                                                    trees
 Rules for constants are „initial rules“
 Definition: Acceptance of a tree

 A tree                 is accepted iff 

B= ,Q , F ,


F⊆Q

f q1t 1 , ... , qn tnq

f ∈n , q , q1, ... ,qn∈Q , t 1, ... , t n

Bottom-up tree automata

aqa

t∈T  t∗ qt  , where q∈F
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 Example: A tree automaton, which accepts 
all true Boolean expressions over ={∧2 , ∨2 , ¬1 ,00 ,10}

Bottom-up tree automata
Example 1
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 Example: A tree automaton, which accepts 
all true Boolean expressions over 

                       with B= ,Q , F , Q={q0,q1}, F={q1}

={0 q0 ,1q1 ,¬q0t q1 ,¬q1t q0,}

∪{∧qi t1 , q j t2qmini , j }

∪{∨qi t1 , q j t2qmax i , j }

Bottom-up tree automata
Example 1

={∧2 , ∨2 , ¬1 ,00 ,10}
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                       with 

 Assume we have the following input:

B= ,Q , F , Q={q0,q1}, F={q1}
={0 q0 ,1q1 ,¬q0t q1 ,¬q1t q0,}

∪{∧qi t1 , q j t2qmini , j }

∪{∨qi t1 , q j t2qmax i , j }

t1=∧∨0,1 ,¬0

Bottom-up tree automata
Example 1
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Bottom-up tree automata
Example 1

                       with 

 Assume we have the following input:

B= ,Q , F , Q={q0,q1}, F={q1}
={0 q0 ,1q1 ,¬q0t q1 ,¬q1t q0,}

∪{∧qi t1 , q j t2qmini , j }
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t1=∧∨0,1 ,¬0



Bottom-up tree automata
Further information

 Non-deterministic if there are at least two 
rules with the same left-hand side

 But expressive power is equal
 Powerset construction

 Regular expressions definable
 Equal power to tree automata

a q1 , ... , qk q
a q1 , ... , qk q ' where q≠q '
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Top-down tree automata

 Definition: A top-down automaton is a structure

 where       is a ranked alphabet
 Q is a finite set of states
      is a finite set of initial states
      finite set of transition rules of the form

 where                                                    different trees  

 A tree              is accepted iff 

T= ,Q ,QI ,



Q I


q f t1, ... , tn f q1t1 , ... , qn tn

f ∈n , q , q1, ... ,qn∈Q , t 1, ... , t n

t∈T  q t ∗ t for someq∈QI
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Top-down tree automata
Example 1

 A top-down automaton, which accepts  all trees 
with depth 1 over ={f 2 , g1 , a0}
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Top-down tree automata
Example 1

 A top-down automaton, which accepts  all trees 
with depth 1 over 

 Define                         where 

 Instance input is: 

={f 2 , g1 , a0}

T= ,Q ,QI , Q={q0 , q1}, Q I={q0}

={q0 f t1, t 2 f q1t1 , q1t2 , q0g t  g q1t }

∪{q1aa}
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Top-down tree automata
Example 2

 A top-down automaton, which accepts  all trees 
with depth 1 over 

 Define                         where 

 Input, which is not accepted:

={f 2 , g1 , a0}

T= ,Q ,QI , Q={q0 , q1}, Q I={q0}

={q0 f t1, t 2 f q1t1 , q1t2 , q0g t  g q1t }

∪{q1aa}
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Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata 
are strictly less powerful than the non-
deterministic ones 
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Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata 
are strictly less powerful than the non-
deterministic ones 

 Remark: The doubleton set 
is acceptable by non-determinstic top-down tree 
automata

DT={f a ,b f b ,a}
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Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata 
are strictly less powerful than the non-
deterministic ones 

 Remark: The doubleton set 
is acceptable by non-determinstic top-down tree 
automata

                        where 

DT={f a ,b  f b ,a}

T= ,Q ,QI , ={f 2 , a0 , b0} ,Q={q0 , qa , qb} ,QI={q0}

={q0 f t1 , t 2 f qa t1 ,qb t2 ,q0 f t1 , t2 f qb t1 ,qa t2}
∪{qaaa ,qb b  b}
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Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata are 
strictly less powerful than the non-deterministic 
ones 

                        where 

 Assume that there is a determinstic top-down 
automaton which recognizes the doubleton set

T= ,Q ,QI , ={f 2 , a0 , b0} ,Q={q0 , qa , qb} ,Q I={q0}

={q0  f t1 , t2 f qat1 ,qb t2 ,q0 f t1 , t2 f qbt 1 ,qat 2}
∪{qa a a ,qb bb}
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Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata are 
strictly less powerful than the non-deterministic 
ones 

                        where 

 Assume that there is a determinstic top-down 
automaton which recognizes the doubleton set

 It must have the following transition rules

T= ,Q ,QI , ={f 2 , a0 , b0} ,Q={q0 , qa , qb} ,Q I={q0}

={q0  f t1 , t2 f qat1 ,qb t2 ,q0 f t1 , t2 f qbt 1 ,qat 2}
∪{qa a a ,qb bb}

={q0 f t1 , t 2 f q1t1 , q2t2}
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Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata are 
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                        where 
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Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata are 
strictly less powerful than the non-deterministic 
ones 

                        where 

 Assume that there is a determinstic top-down 
automaton which recognizes the doubleton set
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Top-down tree automata
Non-deterministic vs. deterministic

 Claim: Deterministic top-down tree automata are 
strictly less powerful than the non-deterministic 
ones 

                        where 

 Assume that there is a determinstic top-down 
automaton which recognizes the doubleton set

 It must have the following transition rules

 It accepts also f(a, a) → Contradiction.

T= ,Q ,QI , ={f 2 , a0 , b0} ,Q={q0 , qa , qb} ,QI={q0}

={q0 f t1 , t 2 f qa t1 ,qb t2 ,q0 f t1 , t2 f qb t1 ,qa t2}
∪{qaaa ,qb b  b}

={q0 f t1 , t 2 f q1t1 , q2t2 ,q1a a ,q2bb}
∪{q2 a a ,q1bb}
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Decision problems & complexity

NDTA NWA PDA

  

complement

intersection

emptiness

equivalence

inclusion

∪ ,⋅,∗ ✔ ✔

✔

✔ ✘✔

✔

✔

✘
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Decision problems & complexity

NDTA NWA PDA

  

complement

intersection

emptiness linear time PTIME PTIME

equivalence EXPTIME PTIME undecidable

inclusion EXPTIME PTIME undecidable

∪ ,⋅,∗ ✔ ✔

✔

✔ ✘✔

✔

✔

✘
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Monadic Second Order Logic
Why?

 Why consider logic on trees?
 To specify languages in a more comfortable way

 L = „There is a path which consists of only a“
 Regular expression of L would become too 

large
 A formula for L:

  :=∃x∃ y x y∧∀ z xz∧z y Pa z 
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Monadic Second Order Logic

 Extension of first-order logic
 Second-order because quantification over 

sets is allowed


 Monadic because quantification is restricted 
to sets (unary relations)

∃X X min Pamin
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Monadic Second Order Logic
over trees

 Formulae are built up from
 Variables x, y, z denoting positions of branches
 Constant min , Position of the root node
 Set variables X, Y, Z  denoting sets of positions
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Monadic Second Order Logic
over trees

 Formulae are built up from
 Variables x, y, z denoting positions of branches
 Constant min , Position of the root node
 Set variables X, Y, Z  denoting sets of positions
 Atomic formulae (with explicit semantics)
 x = y (equality)
                   prefix relation
                   i-th successor relation
                   „at position x there is an a“
 X(y)           „y is element of X“
 And the usual connectors, quantifiers 

Si x , y 
Pa x 

∧ ,∨ ,¬ , ... , ∃ , ∀
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Monadic Second Order Logic
over trees

 How can we describe the properties of trees 
in terms of MSOL-formulae?
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Monadic Second Order Logic
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 How can we describe the properties of trees 
in terms of MSOL-formulae?

 Let                        be a ranked alphabet. 
Following structure encodes a tree t:



=0∪..∪m

t=domt , S1
t , .. ,Sm

t ,  t ,Pa
t a∈
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Monadic Second Order Logic
over trees

 How can we describe the properties of trees 
in terms of MSOL-formulae?

 Let                        be a ranked alphabet. 
Following structure encodes a tree t:



              domain of t (i.e. set of all positions in t)
              the i-th successor relation on the domain
              prefix relation (between two positions in t   

                                      that are on the same path)
              set of all positions of t labeled with an a

=0∪..∪m

t=domt , S1
t , .. ,Sm

t ,  t ,Pa
t a∈



dom t
Si

t

 t

Pa
t
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Monadic Second Order Logic
Example

 Let                        where 


=0∪1∪2 0={a },1={g},2={f}
t=domt , S1

t , .. ,Sm
t ,  t ,Pa

t a∈
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 Let                        where 


=0∪1∪2 0={a },1={g},2={f}
t=domt , S1

t , .. ,Sm
t ,  t ,Pa

t a∈
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Monadic Second Order Logic
Example

 Let                        where 




=0∪1∪2 0={a },1={g},2={f}
t=domt , S1

t , .. ,Sm
t ,  t ,Pa

t a∈


dom t={min ,1,11,12,2,21,211}
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Monadic Second Order Logic
Example

 Let                        where 








=0∪1∪2 0={a },1={g},2={f}
t=domt , S1

t , .. ,Sm
t ,  t ,Pa

t a∈


dom t={min ,1,11,12,2,21,211}

S1
t ,S2

t

S2
t min ,2 ,S1

t 2,21
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Monadic Second Order Logic
Example

 Let                        where 










=0∪1∪2 0={a },1={g},2={f}
t=domt , S1

t , .. ,Sm
t ,  t ,Pa

t a∈


dom t={min ,1,11,12,2,21,211}

S1
t ,S2

t

S2
t min ,2 ,S1

t 2,21

Pa={11,12,211}, Pf={min ,1}

Pg={2,21}
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Monadic Second Order Logic

 Given a sentence     in MSO-L, the expression


 states that    satisfies      if there is an 
automaton A, which accepts t.

 Tree languages
     defines 
          is called MSO-definable

domt ,S1
t , .. ,Sm

t ,  t ,Pa
t a∈

⊨



t

 T :={t∈T ∣ t ⊨  }
T 
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Equivalence 
between tree automata and MSOL

 Theorem(Doner, Thatcher-Wright, 1968):
A tree language is recognizable by a finite 
tree automaton iff it is MSO-definable.
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Equivalence 
between tree automata and MSOL

 Theorem(Doner, Thatcher-Wright, 1968):
A tree language is recognizable by a finite 
tree automaton iff it is MSO-definable.

 Proof: Direction from tree automata to MSOL
 Given automaton A, specify a formula such 

that:


 

t∈LA ⇔ t ⊨ 
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Equivalence 
between tree automata and MSOL

 Observation 1: If states of A are               
then every run of of A on a tree t can be 
represented by sets of nodes 

 

{q1, ... ,qn}

Q1 , ... ,Qn
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represented by sets of nodes 
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represent an accepting run
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Equivalence 
between tree automata and MSOL

 Observation 1: If states of A are               
then every run of of A on a tree t can be 
represented by sets of nodes 

 Observation 2: We can define that                
represent an accepting run
 every node is labeled with at most one state

 

{q1, ... ,qn}

Q1 , ... ,Qn

Q1 , ... ,Qn

1 :=∧
i≠ j

∀ x Q i x ¬Q jx  
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Equivalence 
between tree automata and MSOL

 Observation 1: If states of A are               
then every run of of A on a tree t can be 
represented by sets of nodes 

 Observation 2: We can define that                
represent an accepting run
 every node is labeled with at most one state

 root node is labeled with an accepting state

 

{q1, ... ,qn}

Q1 , ... ,Qn

Q1 , ... ,Qn

1 :=∧
i≠ j

∀ x Q i x ¬Q jx  

2 :=∨
q i∈F

Qimin 
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Equivalence 
between tree automata and MSOL

 Observation 2: We can define that                
represents an accepting run
 Leaf nodes are labeled with a state according to 

the rules

Q1 , ... ,Qn

3 :=∧
a∈0

∀ x Pa x  ∨
aq i∈

Q ix 
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Equivalence 
between tree automata and MSOL

 Observation 2: We can define that                
represents an accepting run
 Leaf nodes are labeled with a state according to 

the rules

 Inner nodes are labeled as follows:

Q1 , ... ,Qn

3 :=∧
a∈0

∀ x Pa x  ∨
aq i∈

Q ix 
4 :=∧

a∈r

∀ x∀ y1 ...∀ yn

Pa x ∧Sr x , y1∧...∧Sr x ,yn∧y1y2.. yn−1yn 

 ∨
a q i1

, .. , q in
q i∈

Q i1
y1∧..∧Q in

yn∧Q ix 
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Equivalence 
between tree automata and MSOL

 Observation 3: In MSO we can guess 


Q1 , ... ,Qn

 :=∃Q1 ..∃Qn1∧2∧3∧4
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Equivalence 
between tree automata and MSOL

 Observation 3: In MSO we can guess 


 Then A accepts t iff 
 It is clear, that
 Hence, every finite tree language is MSO-

definable. 

Q1 , ... ,Qn

 :=∃Q1 ..∃Qn1∧2∧3∧4

LA=L

t ⊨ 
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Equivalence 
between tree automata and MSOL

 Proof: Direction from formulae to tree 
automata
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Equivalence 
between tree automata and MSOL

 Proof: Direction from formulae to tree 
automata
 Induction over construction of MSO-L formulae
 Use closure properties of tree automata

 If a tree language is MSO-definable, then it is 
recognizable by a tree automaton A.
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Summary

 Tree automata
 Basics of tree automata
 Bottom-up tree automata
 Top-down tree automata
 Decision problems & complexity

 Connection to logic
 Monadic Second Order Logic (MSOL)
 Equivalence between tree automata and MSOL
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