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Introduction

= Automata for tree structures
= Generalization of finite automata

= Two types of tree automata
= (1) top-down, (2) bottom-up

= Applications:
= Compiler construction: generate machine code
= Natural Language Processing: machine translation
= XML: processing XML documents
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Outline

"= Tree automata
= Basics of tree automata
= Bottom-up tree automata
* Top-down tree automata
= Decision problems & complexity

= Connection to logic
= Monadic Second Order Logic (MSOL)
= Equivalence between tree automata and MSOL
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Basics

= Definition: X is a ranked alphabet if

= |t is a non-empty finite set

= each symbol a€X is assigned a finite set rank(a)<IN
3 :=laeX | i€rank(a)}
=3 U..US
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Basics

= Definition: ¥ is a ranked alphabet if
= |t is a non-empty finite set
= each symbol a€X is assigned a finite set rank(a)<IN
3 :=laeX | i€rank(a)}
2=2,U.U2
= Definition: A tree over % is inductively defined
= each symbol a€2, is a tree

= Forf€2, andtrees t,...t, , f(t,..t,) isalsoa
tree.
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Basics

= Definition: ¥ is a ranked alphabet if
= |t is a non-empty finite set
= each symbol a€X is assigned a finite set rank(a)<IN
« X:={a€X | i€rank(a)}
= 2 =2,U... U2
= Definition: A tree over % is inductively defined
= each symbol a€2, is a tree

= Forf€2, andtrees t,...t, , f(t,..t,) isalsoa
tree.

* The set of all trees over X is denoted by T ()
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Bottom-up tree automata

= Definition: A bottom-up tree automaton is a
quadruple B=(X,Q,F,A)
= 2 aranked alphabet
= Q finite set of states
= FCSQ set of final states
= A finite set of transition rules of the form

f(q,(t)),....q,(t,)—q
where f€2,, d,q,--,9,€0Q, t,...,t, trees
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Bottom-up tree automata

= Definition: A bottom-up tree automaton is a
quadruple B=(X,Q,F,A)
= 2 aranked alphabet
= Q finite set of states
= FCSQ set of final states
= A finite set of transition rules of the form

f(q,(t)),....q,(t,)—q
where f€2,, d,q,--,9,€0Q, t,...,t, trees
= Rules for constants are ,,initial rules” a—gq,
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Bottom-up tree automata

= Definition: A bottom-up tree automaton is a
quadruple B=(X,Q,F,A)
= 2 aranked alphabet
= Q finite set of states
= FCSQ set of final states
= A finite set of transition rules of the form

f(q,(t)),....q,(t,)—q
where f€2,, d,q,--,9,€0Q, t,...,t, trees
= Rules for constants are ,,initial rules” a—gq,

= Definition: Acceptance of a tree
= Atree teT(2) is accepted iff t—="q(t), whereqeF
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Bottom-up tree automata
Example 1

= Example: A tree automaton, which accepts
all true Boolean expressions over X={A,, V,, 7,,0,,1,]
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Bottom-up tree automata
Example 1

= Example: A tree automaton, which accepts

all true Boolean expressions over X={A,,V,,

—(Z Q,F,A) with Q={q,q,}, F=lq,
{0—>q0,1—>q1, (qo(t)—=qy,~(q,(t)—qy |
U{ J<t ))quin(i,j)}

RY ( ( ) q;(65)) = Qi )
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Bottom-up tree automata
Example 1

B=(X,Q,F,A) with Q=[q,q,}, F=[q,]
{0—>q0 1-q,,-(qy(t))—~q,.~(q, (1)~ q, ]
[ A

UL A6, (6:) = Qini 1)
U{V(qi(tl):qj'<t2))_>qmax(i,j)}

= Assume we have the following input:
t,= A(V(0,1),-(0))
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Bottom-up tree automata
Example 1

B=(X,Q,F,A) with Q=[q,q,}, F=[q,]
{0—>q0 1-q,,7(q,(t)—q,,~(q,(t)— q}
UL A(Q(t1),q,;(65)) = Qpingi 1)
U{V(qi(tl):qj'<t2))_>qmax(i,j)}

= Assume we have the following input:
t,= A(V(0,1),-(0))

A N\

0 1 0 0 10
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Bottom-up tree automata
Example 1

B=(X,Q,F,A) with Q=[q,q,}, F=[q,]
{0—>q0 1-q,,-(qy(t))—~q,.~(q, (1)~ q, ]
[ A

UL A6, (6:) = Qini 1)
U{V(qi(t1>:qj'<t2)>_>qmax(i,j)}

= Assume we have the following input:
t1: /\< V(O,l),_'(()))

0 1 0 0 10 0
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Bottom-up tree automata
Example 1

B=(X,Q,F,A) with Q=[q,q,}, F=[q,]
{0—>q0 1-q,,-(qy(t))—~q,.~(q, (1)~ q, ]
[ A

UL A6, (6:) = Qini 1)
U{V(qi(tl):qj'<t2))_>qmax(i,j)}

= Assume we have the following input:
t,= A(V(0,1),-(0))
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Bottom-up tree automata
Example 1

B=(X,Q,F,A) with Q=[q,q,}, F=[q,]
{0—>q0 1-q,,7(q,(t)—q,,(q,(t)—q,
LA

UL A6, (6:) = Qini 1)
U{V(qi(tl):qj'<t2))_>qmax(i,j)}

= Assume we have the following input:
t,= A(V(0,1),-(0))

A A
V. = \Y/ O 71V,
- =
q0 1 0 1 lgp 10
0 10 0 10 0
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Bottom-up tree automata
Example 1

B=(X,Q,F,A) with Q=[q,q,}, F=[q,]
{0—>q0 1-q,,-(qy(t))—~q,.~(q, (1)~ q, ]
[ A

UL A6, (6:) = Qini 1)
U{V(qi(tl):qj'<t2))_>qmax(i,j)}

= Assume we have the following input:
t,= A(V(0,1),-(0))

A A
qo 1 9o qo 1 |qo
0 1 0 0 1 0

University of Freiburg - Computer Science Department



Bottom-up tree automata
Example 1

B=(X,Q,F,A) with Q={q,q,}), F=lq
{0—>q0 1-q,,7(q,(t)—q,,~(q,(t))—
(A

UL A6, (6:) = Qini 1)
U{V(qi(tl):qj'<t2))_>qmax(i,j)}

= Assume we have the following input:
t,= A(V(0,1),-(0))

Y
—4

A A
ql\/ ! - Q1\/ — Qi - Q1\/
qo 1 |qo o 1 g qo
0 10 0 1 0 0
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Bottom-up tree automata

Further information

* Non-deterministic if there are at least two
rules with the same left-hand side

a(ql,...,q,)—q
a(ql,...,q,)—q’ where g#q'

= But expressive power is equal
= Powerset construction

= Reqular expressions definable
= Equal power to tree automata



Top-down tree automata

= Definition: A top-down automaton is a structure
T=(2,Q,Q,,A)
= where 2 is a ranked alphabet
= Q is a finite set of states

Q; is a finite set of initial states

A finite set of transition rules of the form

q(f<t1,“"tn))_>f<q1(t1)’"'9qn(tn))

where f€2,, q,q,...,9,€0Q, t,...,t, different trees

= Atree t€T(X) is accepted iff q(t)—"tforsomeqeQ,
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Top-down tree automata
Example 1

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,q,}
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Top-down tree automata
Example 1

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,q,}

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,
A={q,(f(t t,)—f(q,(t)),q,(t,))),q,(g(t)—>g(q,(t))}
Ulq,(a)—al f

= Instance input is: /\

d d
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Top-down tree automata
Example 1

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,q,}

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,
A={q,(f(t t,)—f(q,(t)),q,(t,))),q,(g(t)—>g(q,(t))}
Ulq,(a)—al f

= Instance input is: /\

f.dg

AN

d d -
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Top-down tree automata
Example 1

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,q,}

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,
A={q,(f(t t,)—f(q,(t)),q,(t,))),q,(g(t)—>g(q,(t))}
Ulq,(a)—al f

= Instance input is: /\

f.do f
/\-} q1/\q1
a a d d
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Top-down tree automata
Example 1

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,q,}

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,
A={q,(f(t t,)—f(q,(t)),q,(t,))),q,(g(t)—>g(q,(t))}
Ulq,(a)—al f

= Instance input is: /\

f f f
/\-» q1/\q1-> /\
a a d d a a: -
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Top-down tree automata
Example 2

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,q,}

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,

A={q,(f(t,t,) =1 (q,(t)),q,(t;)),q,(g(t) = glq,(t)))
Ulg,(a)=a] J

* |Input, which is not accepted: g

d
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Top-down tree automata
Example 2

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,a,

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,
A={q,(f (t, )= (q,(t,),q,(t,)),q,(g(t)) = g(q,(t)))

Ulq,(a)—a] f
* |Input, which is not accepted: g
f o a
g
d
3 _
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Top-down tree automata
Example 2

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,a,

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,
A={q,(f (t, )= (q,(t,),q,(t,)),q,(g(t)) = g(q,(t)))

Ulq,(a)—a] f
* |Input, which is not accepted: g
f o f a
g ud
a RN
d d -
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Top-down tree automata
Example 2

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,a,

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,
A={q,(f (t, )= (q,(t,),q,(t,)),q,(g(t)) = g(q,(t)))

Ulq,(a)—a] f
* |Input, which is not accepted: g
f o f f a
n o o 3 d
a 3 d -
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Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata
are strictly less powerful than the non-
deterministic ones
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Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata
are strictly less powerful than the non-
deterministic ones

= Remark: The doubleton set DT={f(a,b)f(b,a)}

IS acceptable by non-determinstic top-down tree
automata
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Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata
are strictly less powerful than the non-
deterministic ones

*= Remark: The doubleton set DT={f(a,b)f(b,a)}

IS acceptable by non-determinstic top-down tree
automata

" T=(X,Q,Q,,A) where X={f,,a,,b,},Q0=1q,,9,,9,}»Q,=19q,)

A={q,(f(t,,t,)=F(q,(t)),q,(t,)),qo(f(t;,t,))=f(q,(t,),q,(t,))]
Uiq,(a)—a,q,(b)—b]
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Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata are
strictly less powerful than the non-deterministic
ones

" T=(X,Q,Q,,A)where X=\f,,a,,b,},Q=1q,,9,,9,}>Q,=14,)
A:{q0<f(t1’t2)>_>f<qa(t1)’qb(t2))’q0<f<t1’t2>)_>f(qb<t1)’qa<t2>)}
ulq,(a)—a,q,(b)—b}

= Assume that there is a determinstic top-down
automaton which recognizes the doubleton set
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Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata are

strictly less powerful than the non-deterministic
ones

" T=(X,Q,Q,,A)where X=\f,,a,,b,},Q=1q,,9,,9,}>Q,=14,)
t

A:{qo(f<t1’tz))_)f(qa(t1>’Qb(t2)>’qo(f(tl’tz))ﬁf(Qb“,l)’qa( 2))}
Ulq,(a)—a,q,(b)—b]

= Assume that there is a determinstic top-down
automaton which recognizes the doubleton set

= |t must have the following transition rules

A={qo(f (t,,t,)) = [ (q,(t,),q,(t,))]
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Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata are

strictly less powerful than the non-deterministic
ones

" T=(X,Q,Q,,A)where X=\f,,a,,b,},Q=1q,,9,,9,}>Q,=14,)
t

A:{qo(f<t1’tz))_)f(qa(t1>’Qb(t2)>’qo(f(tl’tz))ﬁf(Qb“,l)’qa( 2))}
Ulq,(a)—a,q,(b)—b]

= Assume that there is a determinstic top-down
automaton which recognizes the doubleton set

= |t must have the following transition rules

A:{QO(f(tl’tz))_’f((h(tl):(b(tz)):Q1(a>_’a’Q2(b)_’b}
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Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata are
strictly less powerful than the non-deterministic

ones
- T:<2,QaQ1’A) where Z:{fZ’GO’bO}’Q:{qO’qa’qb}’QI:{qO}
AZ{QO(f(Q’tz))_)f(qa(t1>’%(tz)):q()(f(tptz))*f(%(ﬁ)’qa(tz))}
ulq,(a)—a,q,(b)— b}
= Assume that there is a determinstic top-down
automaton which recognizes the doubleton set
It must have the following transition rules

A:{CI()(f(tptz))_)f(CI1<t1>:CI2(t2>>:Q1<a)_’a’CI2(b)_)b}
Ulq,(a)—a,q,(b)—b]
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Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata are

strictly less powerful than the non-deterministic
ones

" T=(X,Q,Q,,A)where X=\f,,a,,b,},Q=1q,,9,,9,},Q,=19,]
A={qy(f(t;,t,))=f(q,(t)),q,(t;)),qo(f (t15t,)) = f(q,(t)),q,(t,))]
Uiq,(a)—a,q,(b)—b]

= Assume that there is a determinstic top-down
automaton which recognizes the doubleton set

= |t must have the following transition rules
A:{QO(f(tptz))_>f(Q1<t1):Q2<t2)>:CI1(a>_>a’%(b)_)b}
Ulq,(a)—a,q,(b)—b]

= |t accepts also f(a, a) = Contradiction.
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Decision problems & complexity

U L)

complement v v X
Intersection 4 v X

emptiness
equivalence

Inclusion
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Decision problems & complexity

* v v v

U,-,
complement v v X
Intersection 4 v X
emptiness linear time PTIME PTIME
equivalence EXPTIME PTIME undecidable
Inclusion EXPTIME PTIME undecidable

FREIBUR
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Outline

" Tree automata
* Basics of tree automata
= Bottom-up tree automata
* Top-down tree automata
= Decision problems & complexity

= Connection to logic
= Monadic Second Order Logic (MSOL)
= Equivalence between tree automata and MSOL
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Monadic Second Order Logic
Why?

= Why consider logic on trees?
= To specify languages in a more comfortable way

= L= ,Thereis a path which consists of only a“

= Reqular expression of L would become too
large

= A formula for L:
« ¢p:=AxJy(x<yAVz((x<zAnz<y)— P, (z)))
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Monadic Second Order Logic

= Extension of first-order logic

= Second-order because quantification over

sets is allowed
« 3X(X(min)— P (min))

= Monadic because quantification is restricted
to sets (unary relations)
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Monadic Second Order Logic

over trees

* Formulae are built up from
= Variables x, y, z denoting positions of branches
= Constant min , Position of the root node
= Set variables X, Y, Z denoting sets of positions
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Monadic Second Order Logic

over trees

* Formulae are built up from
= Variables x, y, z denoting positions of branches
= Constant min , Position of the root node
= Set variables X, Y, Z denoting sets of positions
= Atomic formulae (with explicit semantics)
= X =Y (equality)

= < prefix relation

= S.(x,y) i-th successor relation

g Pa(X) ,at position x there is an a“
= X(y) »Y is element of X“

= And the usual connectors, quantifiers A,V ,—,..., 3,V
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Monadic Second Order Logic

over trees

= How can we describe the properties of trees
in terms of MSOL-formulae?
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Monadic Second Order Logic

over trees

= How can we describe the properties of trees
In terms of MSOL-formulae?

" Let X=X u..uX_ be aranked alphabet.
Following structure encodes a tree t:

_ t t t t
u E_(domtasl )")Sm ’ < )(Pa)a€Z)
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Monadic Second Order Logic

over trees

= How can we describe the properties of trees
In terms of MSOL-formulae?

" Let X=X u..uX_ be aranked alphabet.
Following structure encodes a tree t:

. Lz(domt, Slt,..,Smt, < t,(P;)aez)
. domt domain of t (i.e. set of all positions in t)
. Sit the i-th successor relation on the domain
- <! prefix relation (between two positions in t
that are on the same path)
0 P; set of all positions of t labeled with an a
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Monadic Second Order Logic

Example

= Let =3 ,UX UX, where X,={a},>,=(g},>,={f]

_ t t t t
u I_<d0mtasl )“)Sm ’ < )(Pa)a62)
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Monadic Second Order Logic

Example

= Let =3 ,UX UX, where X,={a},>,=(g},>,={f]

_ t t t t
u I_(domtasl )")Sm ’ < )(Pa)a€Z)
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Monadic Second Order Logic

Example

= Let =3 ,UX UX, where X,={a},>,=(g},>,={f]

_ t t t t
u I_(domtasl 3°°3Sm ’ < ’<Pa)a€Z) f

- dom =[min,1,11,12,2,21,211]
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Monadic Second Order Logic

Example

= Let =3 UX UX, where X,={a},> =g}, > =[f]
u I:(domtasltaﬂasmt:<t3<P;)aEZ) f

- dom =[min,1,11,12,2,21,211]

{ t
- Sl’SZ
. S, (min, 2),5;(2,21)
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Monadic Second Order Logic

Example

: Let =3 uZluz2 where X ={a},> =(g},2,={f]
t t {

- (domt,S1 vrS S L(P) ) f

o dOInt {m1n,1,11,12,2,21,211}

{ t
. SIS,
. S, (min, 2),5;(2,21)
= P =(11,12 211} P.={min, 1]
P ={2,21]
g 211e
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Monadic Second Order Logic

= Given a sentence ¢ in MSO-L, the expression
" (domtys t)ﬂasmta <t><Pg)a€Z)|=¢

= states that t satisfies ¢ if there is an
automaton A, which accepts t.

* Tree languages
= ¢ defines T(¢p):={teT, | t E ¢ |
= T(¢) is called MSO-definable
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Equivalence

between tree automata and MSOL

* Theorem(Doner, Thatcher-Wright, 1968):

A tree language is recognizable by a finite
tree automaton iff it is MSO-definable.
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Equivalence

between tree automata and MSOL

* Theorem(Doner, Thatcher-Wright, 1968):

A tree language is recognizable by a finite
tree automaton iff it is MSO-definable.

* Proof: Direction from tree automata to MSOL

= Given automaton A, specify a formula such
that:

= teL(A) o t E ¢
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Equivalence

between tree automata and MSOL

= Observation 1: If states of A are (4, ---,q,]
then every run of of A on a tree t can be
represented by sets of nodes Q,,--.,Q,
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Equivalence

between tree automata and MSOL

= Observation 1: If states of A are (4, ---,q,]
then every run of of A on a tree t can be
represented by sets of nodes Q,,--.,Q,

= Observation 2: We can define that Q,,...,Q,
represent an accepting run
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Equivalence

between tree automata and MSOL

= Observation 1: If states of A are (4, ---,q,]
then every run of of A on a tree t can be
represented by sets of nodes Q,,--.,Q,

= Observation 2: We can define that Q,,...,Q,
represent an accepting run
= every node is labeled with at most one state

b= /N Vx(Q(x)=-Q(x)

17 ]
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Equivalence

between tree automata and MSOL

= Observation 1: If states of A are (4, ---,q,]
then every run of of A on a tree t can be
represented by sets of nodes Q,,...,Q,

= Observation 2: We can define that Q,,...,Q,
represent an accepting run
= every node is labeled with at most one state
b= /\ Vx[Q(x)--Q,(x)
17 ]
= root node is labeled with an accepting state
¢, = \/ Q.(min)

q.€F
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Equivalence

between tree automata and MSOL

= Observation 2: We can define that Q,,...,Q,
represents an accepting run

= Leaf nodes are labeled with a state according to
the rules

/\VXP \/Q

2 a—>q1€A
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Equivalence

between tree automata and MSOL

= Observation 2: We can define that Q,,...,Q,
represents an accepting run

= Leaf nodes are labeled with a state according to
the rules

/\VXP \/Q

2 a—>q1€A

* |nner nodes are labeled as follows:

= VxVy,.Vy_

aEZr

(Pa(x)/\Sr(X,yl)/\.../\Sr(X,yn)/\yl<yz<..yn_1<yn

> V(@ (y)A-AQ, (y,)AQ (X))
a(q; ,..q; )= q,€A
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Equivalence

between tree automata and MSOL

= Observation 3: In MSO we can guess Q,,...,Q,
« $:=3Q,..3Q, b, AP, AP AP,
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Equivalence

between tree automata and MSOL

= Observation 3: In MSO we can guess Q,,...,Q,
« $:=3Q,..3Q, b, AP, AP,AD,
= Then A accepts tiff t F ¢

* |tis clear, that L(A)=L(¢)

* Hence, every finite tree language is MSO-
definable.
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Equivalence

between tree automata and MSOL

= Proof: Direction from formulae to tree
automata
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Equivalence

between tree automata and MSOL

* Proof: Direction from formulae to tree
automata
* Induction over construction of MSO-L formulae
= Use closure properties of tree automata

* |If a tree language is MSO-definable, then it is
recognizable by a tree automaton A.
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Summary

"= Tree automata
= Basics of tree automata
= Bottom-up tree automata
* Top-down tree automata
= Decision problems & complexity

= Connection to logic
= Monadic Second Order Logic (MSOL)
= Equivalence between tree automata and MSOL
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