Tree Automata

Betim Musa

Seminar: Automata Theory

Albert-Ludwigs-University of Freiburg

UNI

FREIBURG

Introduction

= Automata for tree structures
= Generalization of finite automata

= Two types of tree automata
= (1) top-down, (2) bottom-up

= Applications:
= Compiler construction: generate machine code
= Natural Language Processing: machine translation
= XML: processing XML documents

University of Freiburg - Computer Science Department

Outline

"= Tree automata
= Basics of tree automata
= Bottom-up tree automata
* Top-down tree automata
= Decision problems & complexity

= Connection to logic
= Monadic Second Order Logic (MSOL)
= Equivalence between tree automata and MSOL

University of Freiburg - Computer Science Department

Basics

= Definition: X is a ranked alphabet if

= |t is a non-empty finite set

= each symbol a€X is assigned a finite set rank(a)<IN
3 :=laeX | i€rank(a)}
=3 U..US

University of Freiburg - Computer Science Department

Basics

= Definition: ¥ is a ranked alphabet if
= |t is a non-empty finite set
= each symbol a€X is assigned a finite set rank(a)<IN
3 :=laeX | i€rank(a)}
2=2,U.U2
= Definition: A tree over % is inductively defined
= each symbol a€2, is a tree

= Forf€2, andtrees t,...t, , f(t,..t,) isalsoa
tree.

University of Freiburg - Computer Science Department

Basics

= Definition: ¥ is a ranked alphabet if
= |t is a non-empty finite set
= each symbol a€X is assigned a finite set rank(a)<IN
« X:={a€X | i€rank(a)}
= 2 =2,U... U2
= Definition: A tree over % is inductively defined
= each symbol a€2, is a tree

= Forf€2, andtrees t,...t, , f(t,..t,) isalsoa
tree.

* The set of all trees over X is denoted by T ()

University of Freiburg - Computer Science Department

Bottom-up tree automata

= Definition: A bottom-up tree automaton is a
quadruple B=(X,Q,F,A)
= 2 aranked alphabet
= Q finite set of states
= FCSQ set of final states
= A finite set of transition rules of the form

f(q,(t)),....q,(t,)—q
where f€2,, d,q,--,9,€0Q, t,...,t, trees

University of Freiburg - Computer Science Department

Bottom-up tree automata

= Definition: A bottom-up tree automaton is a
quadruple B=(X,Q,F,A)
= 2 aranked alphabet
= Q finite set of states
= FCSQ set of final states
= A finite set of transition rules of the form

f(q,(t)),....q,(t,)—q
where f€2,, d,q,--,9,€0Q, t,...,t, trees
= Rules for constants are ,,initial rules” a—gq,

University of Freiburg - Computer Science Department

Bottom-up tree automata

= Definition: A bottom-up tree automaton is a
quadruple B=(X,Q,F,A)
= 2 aranked alphabet
= Q finite set of states
= FCSQ set of final states
= A finite set of transition rules of the form

f(q,(t)),....q,(t,)—q
where f€2,, d,q,--,9,€0Q, t,...,t, trees
= Rules for constants are ,,initial rules” a—gq,

= Definition: Acceptance of a tree
= Atree teT(2) is accepted iff t—="q(t), whereqeF

University of Freiburg - Computer Science Department

Bottom-up tree automata
Example 1

= Example: A tree automaton, which accepts
all true Boolean expressions over X={A,, V,, 7,,0,,1,]

University of Freiburg - Computer Science Department

Bottom-up tree automata
Example 1

= Example: A tree automaton, which accepts

all true Boolean expressions over X={A,,V,,

—(Z Q,F,A) with Q={q,q,}, F=lq,
{0—>q0,1—>q1, (qo(t)—=qy,~(q,(t)—qy |
U{ J<t))quin(i,j)}

RY (() q;(65)) = Qi)

University of Freiburg - Computer Science Department

U

Bottom-up tree automata
Example 1

B=(X,Q,F,A) with Q=[q,q,}, F=[q,]
{0—>q0 1-q,,-(qy(t))—~q,.~(q, (1)~ q,]
[A

UL A6, (6:) = Qini 1)
U{V(qi(tl):qj'<t2))_>qmax(i,j)}

= Assume we have the following input:
t,= A(V(0,1),-(0))

University of Freiburg - Computer Science Department

Bottom-up tree automata
Example 1

B=(X,Q,F,A) with Q=[q,q,}, F=[q,]
{0—>q0 1-q,,7(q,(t)—q,,~(q,(t)— q}
UL A(Q(t1),q,;(65)) = Qpingi 1)
U{V(qi(tl):qj'<t2))_>qmax(i,j)}

= Assume we have the following input:
t,= A(V(0,1),-(0))

A N\

0 1 0 0 10

University of Freiburg - Computer Science Department

Bottom-up tree automata
Example 1

B=(X,Q,F,A) with Q=[q,q,}, F=[q,]
{0—>q0 1-q,,-(qy(t))—~q,.~(q, (1)~ q,]
[A

UL A6, (6:) = Qini 1)
U{V(qi(t1>:qj'<t2)>_>qmax(i,j)}

= Assume we have the following input:
t1: /\< V(O,l),_'(()))

0 1 0 0 10 0

University of Freiburg - Computer Science Department

Bottom-up tree automata
Example 1

B=(X,Q,F,A) with Q=[q,q,}, F=[q,]
{0—>q0 1-q,,-(qy(t))—~q,.~(q, (1)~ q,]
[A

UL A6, (6:) = Qini 1)
U{V(qi(tl):qj'<t2))_>qmax(i,j)}

= Assume we have the following input:
t,= A(V(0,1),-(0))

University of Freiburg - Computer Science Department

Bottom-up tree automata
Example 1

B=(X,Q,F,A) with Q=[q,q,}, F=[q,]
{0—>q0 1-q,,7(q,(t)—q,,(q,(t)—q,
LA

UL A6, (6:) = Qini 1)
U{V(qi(tl):qj'<t2))_>qmax(i,j)}

= Assume we have the following input:
t,= A(V(0,1),-(0))

A A
V. = \Y/ O 71V,
- =
q0 1 0 1 lgp 10
0 10 0 10 0

University of Freiburg - Computer Science Department

)

Bottom-up tree automata
Example 1

B=(X,Q,F,A) with Q=[q,q,}, F=[q,]
{0—>q0 1-q,,-(qy(t))—~q,.~(q, (1)~ q,]
[A

UL A6, (6:) = Qini 1)
U{V(qi(tl):qj'<t2))_>qmax(i,j)}

= Assume we have the following input:
t,= A(V(0,1),-(0))

A A
qo 1 9o qo 1 |qo
0 1 0 0 1 0

University of Freiburg - Computer Science Department

Bottom-up tree automata
Example 1

B=(X,Q,F,A) with Q={q,q,}), F=lq
{0—>q0 1-q,,7(q,(t)—q,,~(q,(t))—
(A

UL A6, (6:) = Qini 1)
U{V(qi(tl):qj'<t2))_>qmax(i,j)}

= Assume we have the following input:
t,= A(V(0,1),-(0))

Y
—4

A A
ql\/ ! - Q1\/ — Qi - Q1\/
qo 1 |qo o 1 g qo
0 10 0 1 0 0

University of Freiburg - Computer Science Department

)

AU
Ny 1

1 1qo
1 0

Bottom-up tree automata

Further information

* Non-deterministic if there are at least two
rules with the same left-hand side

a(ql,...,q,)—q
a(ql,...,q,)—q’ where g#q'

= But expressive power is equal
= Powerset construction

= Reqular expressions definable
= Equal power to tree automata

Top-down tree automata

= Definition: A top-down automaton is a structure
T=(2,Q,Q,,A)
= where 2 is a ranked alphabet
= Q is a finite set of states

Q; is a finite set of initial states

A finite set of transition rules of the form

q(f<t1,“"tn))_>f<q1(t1)’"'9qn(tn))

where f€2,, q,q,...,9,€0Q, t,...,t, different trees

= Atree t€T(X) is accepted iff q(t)—"tforsomeqeQ,

University of Freiburg - Computer Science Department

Top-down tree automata
Example 1

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,q,}

University of Freiburg - Computer Science Department

Top-down tree automata
Example 1

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,q,}

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,
A={q,(f(t t,)—f(q,(t)),q,(t,))),q,(g(t)—>g(q,(t))}
Ulq,(a)—al f

= Instance input is: /\

d d

University of Freiburg - Computer Science Department

Top-down tree automata
Example 1

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,q,}

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,
A={q,(f(t t,)—f(q,(t)),q,(t,))),q,(g(t)—>g(q,(t))}
Ulq,(a)—al f

= Instance input is: /\

f.dg

AN

d d -

University of Freiburg - Computer Science Department

Top-down tree automata
Example 1

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,q,}

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,
A={q,(f(t t,)—f(q,(t)),q,(t,))),q,(g(t)—>g(q,(t))}
Ulq,(a)—al f

= Instance input is: /\

f.do f
/\-} q1/\q1
a a d d

University of Freiburg - Computer Science Department

Top-down tree automata
Example 1

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,q,}

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,
A={q,(f(t t,)—f(q,(t)),q,(t,))),q,(g(t)—>g(q,(t))}
Ulq,(a)—al f

= Instance input is: /\

f f f
/\-» q1/\q1-> /\
a a d d a a: -

University of Freiburg - Computer Science Department

Top-down tree automata
Example 2

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,q,}

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,

A={q,(f(t,t,) =1 (q,(t)),q,(t;)),q,(g(t) = glq,(t)))
Ulg,(a)=a] J

* |Input, which is not accepted: g

d

University of Freiburg - Computer Science Department

Top-down tree automata
Example 2

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,a,

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,
A={q,(f (t,)= (q,(t,),q,(t,)),q,(g(t)) = g(q,(t)))

Ulq,(a)—a] f
* |Input, which is not accepted: g
f o a
g
d
3 _

University of Freiburg - Computer Science Department

Top-down tree automata
Example 2

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,a,

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,
A={q,(f (t,)= (q,(t,),q,(t,)),q,(g(t)) = g(q,(t)))

Ulq,(a)—a] f
* |Input, which is not accepted: g
f o f a
g ud
a RN
d d -

University of Freiburg - Computer Science Department

Top-down tree automata
Example 2

= A top-down automaton, which accepts all trees
with depth 1 over X={f,,g,,a,

= Define T=(X,0Q,Q,,A) where Q=1q0,9:}, Q;=1q,
A={q,(f (t,)= (q,(t,),q,(t,)),q,(g(t)) = g(q,(t)))

Ulq,(a)—a] f
* |Input, which is not accepted: g
f o f f a
n o o 3 d
a 3 d -

University of Freiburg - Computer Science Department

Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata
are strictly less powerful than the non-
deterministic ones

University of Freiburg - Computer Science Department

Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata
are strictly less powerful than the non-
deterministic ones

= Remark: The doubleton set DT={f(a,b)f(b,a)}

IS acceptable by non-determinstic top-down tree
automata

University of Freiburg - Computer Science Department

Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata
are strictly less powerful than the non-
deterministic ones

*= Remark: The doubleton set DT={f(a,b)f(b,a)}

IS acceptable by non-determinstic top-down tree
automata

" T=(X,Q,Q,,A) where X={f,,a,,b,},Q0=1q,,9,,9,}»Q,=19q,)

A={q,(f(t,,t,)=F(q,(t)),q,(t,)),qo(f(t;,t,))=f(q,(t,),q,(t,))]
Uiq,(a)—a,q,(b)—b]

University of Freiburg - Computer Science Department

Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata are
strictly less powerful than the non-deterministic
ones

" T=(X,Q,Q,,A)where X=\f,,a,,b,},Q=1q,,9,,9,}>Q,=14,)
A:{q0<f(t1’t2)>_>f<qa(t1)’qb(t2))’q0<f<t1’t2>)_>f(qb<t1)’qa<t2>)}
ulq,(a)—a,q,(b)—b}

= Assume that there is a determinstic top-down
automaton which recognizes the doubleton set

University of Freiburg - Computer Science Department

Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata are

strictly less powerful than the non-deterministic
ones

" T=(X,Q,Q,,A)where X=\f,,a,,b,},Q=1q,,9,,9,}>Q,=14,)
t

A:{qo(f<t1’tz))_)f(qa(t1>’Qb(t2)>’qo(f(tl’tz))ﬁf(Qb“,l)’qa(2))}
Ulq,(a)—a,q,(b)—b]

= Assume that there is a determinstic top-down
automaton which recognizes the doubleton set

= |t must have the following transition rules

A={qo(f (t,,t,)) = [(q,(t,),q,(t,))]

University of Freiburg - Computer Science Department

Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata are

strictly less powerful than the non-deterministic
ones

" T=(X,Q,Q,,A)where X=\f,,a,,b,},Q=1q,,9,,9,}>Q,=14,)
t

A:{qo(f<t1’tz))_)f(qa(t1>’Qb(t2)>’qo(f(tl’tz))ﬁf(Qb“,l)’qa(2))}
Ulq,(a)—a,q,(b)—b]

= Assume that there is a determinstic top-down
automaton which recognizes the doubleton set

= |t must have the following transition rules

A:{QO(f(tl’tz))_’f((h(tl):(b(tz)):Q1(a>_’a’Q2(b)_’b}

University of Freiburg - Computer Science Department

Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata are
strictly less powerful than the non-deterministic

ones
- T:<2,QaQ1’A) where Z:{fZ’GO’bO}’Q:{qO’qa’qb}’QI:{qO}
AZ{QO(f(Q’tz))_)f(qa(t1>’%(tz)):q()(f(tptz))*f(%(ﬁ)’qa(tz))}
ulq,(a)—a,q,(b)— b}
= Assume that there is a determinstic top-down
automaton which recognizes the doubleton set
It must have the following transition rules

A:{CI()(f(tptz))_)f(CI1<t1>:CI2(t2>>:Q1<a)_’a’CI2(b)_)b}
Ulq,(a)—a,q,(b)—b]

University of Freiburg - Computer Science Department

Top-down tree automata

Non-deterministic vs. deterministic

= Claim: Deterministic top-down tree automata are

strictly less powerful than the non-deterministic
ones

" T=(X,Q,Q,,A)where X=\f,,a,,b,},Q=1q,,9,,9,},Q,=19,]
A={qy(f(t;,t,))=f(q,(t)),q,(t;)),qo(f (t15t,)) = f(q,(t)),q,(t,))]
Uiq,(a)—a,q,(b)—b]

= Assume that there is a determinstic top-down
automaton which recognizes the doubleton set

= |t must have the following transition rules
A:{QO(f(tptz))_>f(Q1<t1):Q2<t2)>:CI1(a>_>a’%(b)_)b}
Ulq,(a)—a,q,(b)—b]

= |t accepts also f(a, a) = Contradiction.

University of Freiburg - Computer Science Department

Decision problems & complexity

U L)

complement v v X
Intersection 4 v X

emptiness
equivalence

Inclusion

University of Freiburg - Computer Science Department

* v v 4

FREIBUR

Decision problems & complexity

* v v v

U,-,
complement v v X
Intersection 4 v X
emptiness linear time PTIME PTIME
equivalence EXPTIME PTIME undecidable
Inclusion EXPTIME PTIME undecidable

FREIBUR

University of Freiburg - Computer Science Department

Outline

" Tree automata
* Basics of tree automata
= Bottom-up tree automata
* Top-down tree automata
= Decision problems & complexity

= Connection to logic
= Monadic Second Order Logic (MSOL)
= Equivalence between tree automata and MSOL

University of Freiburg - Computer Science Department

FREIBURG

Monadic Second Order Logic
Why?

= Why consider logic on trees?
= To specify languages in a more comfortable way

= L= ,Thereis a path which consists of only a“

= Reqular expression of L would become too
large

= A formula for L:
« ¢p:=AxJy(x<yAVz((x<zAnz<y)— P, (z)))

University of Freiburg - Computer Science Department

Monadic Second Order Logic

= Extension of first-order logic

= Second-order because quantification over

sets is allowed
« 3X(X(min)— P (min))

= Monadic because quantification is restricted
to sets (unary relations)

University of Freiburg - Computer Science Department

Monadic Second Order Logic

over trees

* Formulae are built up from
= Variables x, y, z denoting positions of branches
= Constant min , Position of the root node
= Set variables X, Y, Z denoting sets of positions

University of Freiburg - Computer Science Department

Monadic Second Order Logic

over trees

* Formulae are built up from
= Variables x, y, z denoting positions of branches
= Constant min , Position of the root node
= Set variables X, Y, Z denoting sets of positions
= Atomic formulae (with explicit semantics)
= X =Y (equality)

= < prefix relation

= S.(x,y) i-th successor relation

g Pa(X) ,at position x there is an a“
= X(y) »Y is element of X“

= And the usual connectors, quantifiers A,V ,—,..., 3,V

University of Freiburg - Computer Science Department

Monadic Second Order Logic

over trees

= How can we describe the properties of trees
in terms of MSOL-formulae?

University of Freiburg - Computer Science Department

Monadic Second Order Logic

over trees

= How can we describe the properties of trees
In terms of MSOL-formulae?

" Let X=X u..uX_ be aranked alphabet.
Following structure encodes a tree t:

_ t t t t
u E_(domtasl)")Sm ’ <)(Pa)a€Z)

University of Freiburg - Computer Science Department

Monadic Second Order Logic

over trees

= How can we describe the properties of trees
In terms of MSOL-formulae?

" Let X=X u..uX_ be aranked alphabet.
Following structure encodes a tree t:

. Lz(domt, Slt,..,Smt, < t,(P;)aez)
. domt domain of t (i.e. set of all positions in t)
. Sit the i-th successor relation on the domain
- <! prefix relation (between two positions in t
that are on the same path)
0 P; set of all positions of t labeled with an a

University of Freiburg - Computer Science Department

Monadic Second Order Logic

Example

= Let =3 ,UX UX, where X,={a},>,=(g},>,={f]

_ t t t t
u I_<d0mtasl)“)Sm ’ <)(Pa)a62)

University of Freiburg - Computer Science Department

Monadic Second Order Logic

Example

= Let =3 ,UX UX, where X,={a},>,=(g},>,={f]

_ t t t t
u I_(domtasl)")Sm ’ <)(Pa)a€Z)

University of Freiburg - Computer Science Department

Monadic Second Order Logic

Example

= Let =3 ,UX UX, where X,={a},>,=(g},>,={f]

_ t t t t
u I_(domtasl 3°°3Sm ’ < ’<Pa)a€Z) f

- dom =[min,1,11,12,2,21,211]

University of Freiburg - Computer Science Department

Monadic Second Order Logic

Example

= Let =3 UX UX, where X,={a},> =g}, > =[f]
u I:(domtasltaﬂasmt:<t3<P;)aEZ) f

- dom =[min,1,11,12,2,21,211]

{ t
- Sl’SZ
. S, (min, 2),5;(2,21)

University of Freiburg - Computer Science Department

Monadic Second Order Logic

Example

: Let =3 uZluz2 where X ={a},> =(g},2,={f]
t t {

- (domt,S1 vrS S L(P)) f

o dOInt {m1n,1,11,12,2,21,211}

{ t
. SIS,
. S, (min, 2),5;(2,21)
= P =(11,12 211} P.={min, 1]
P ={2,21]
g 211e

University of Freiburg - Computer Science Department

Monadic Second Order Logic

= Given a sentence ¢ in MSO-L, the expression
" (domtys t)ﬂasmta <t><Pg)a€Z)|=¢

= states that t satisfies ¢ if there is an
automaton A, which accepts t.

* Tree languages
= ¢ defines T(¢p):={teT, | t E ¢ |
= T(¢) is called MSO-definable

University of Freiburg - Computer Science Department

Equivalence

between tree automata and MSOL

* Theorem(Doner, Thatcher-Wright, 1968):

A tree language is recognizable by a finite
tree automaton iff it is MSO-definable.

University of Freiburg - Computer Science Department

Equivalence

between tree automata and MSOL

* Theorem(Doner, Thatcher-Wright, 1968):

A tree language is recognizable by a finite
tree automaton iff it is MSO-definable.

* Proof: Direction from tree automata to MSOL

= Given automaton A, specify a formula such
that:

= teL(A) o t E ¢

University of Freiburg - Computer Science Department

Equivalence

between tree automata and MSOL

= Observation 1: If states of A are (4, ---,q,]
then every run of of A on a tree t can be
represented by sets of nodes Q,,--.,Q,

University of Freiburg - Computer Science Department

Equivalence

between tree automata and MSOL

= Observation 1: If states of A are (4, ---,q,]
then every run of of A on a tree t can be
represented by sets of nodes Q,,--.,Q,

= Observation 2: We can define that Q,,...,Q,
represent an accepting run

University of Freiburg - Computer Science Department

Equivalence

between tree automata and MSOL

= Observation 1: If states of A are (4, ---,q,]
then every run of of A on a tree t can be
represented by sets of nodes Q,,--.,Q,

= Observation 2: We can define that Q,,...,Q,
represent an accepting run
= every node is labeled with at most one state

b= /N Vx(Q(x)=-Q(x)

17]

University of Freiburg - Computer Science Department

Equivalence

between tree automata and MSOL

= Observation 1: If states of A are (4, ---,q,]
then every run of of A on a tree t can be
represented by sets of nodes Q,,...,Q,

= Observation 2: We can define that Q,,...,Q,
represent an accepting run
= every node is labeled with at most one state
b= /\ Vx[Q(x)--Q,(x)
17]
= root node is labeled with an accepting state
¢, = \/ Q.(min)

q.€F

University of Freiburg - Computer Science Department

Equivalence

between tree automata and MSOL

= Observation 2: We can define that Q,,...,Q,
represents an accepting run

= Leaf nodes are labeled with a state according to
the rules

/\VXP \/Q

2 a—>q1€A

University of Freiburg - Computer Science Department

Equivalence

between tree automata and MSOL

= Observation 2: We can define that Q,,...,Q,
represents an accepting run

= Leaf nodes are labeled with a state according to
the rules

/\VXP \/Q

2 a—>q1€A

* |nner nodes are labeled as follows:

= VxVy,.Vy_

aEZr

(Pa(x)/\Sr(X,yl)/\.../\Sr(X,yn)/\yl<yz<..yn_1<yn

> V(@ (y)A-AQ, (y,)AQ (X))
a(q; ,..q;)= q,€A

University ‘of Freiburg - Computer Science Department

Equivalence

between tree automata and MSOL

= Observation 3: In MSO we can guess Q,,...,Q,
« $:=3Q,..3Q, b, AP, AP AP,

University of Freiburg - Computer Science Department

Equivalence

between tree automata and MSOL

= Observation 3: In MSO we can guess Q,,...,Q,
« $:=3Q,..3Q, b, AP, AP,AD,
= Then A accepts tiff t F ¢

* |tis clear, that L(A)=L(¢)

* Hence, every finite tree language is MSO-
definable.

University of Freiburg - Computer Science Department

Equivalence

between tree automata and MSOL

= Proof: Direction from formulae to tree
automata

University of Freiburg - Computer Science Department

Equivalence

between tree automata and MSOL

* Proof: Direction from formulae to tree
automata
* Induction over construction of MSO-L formulae
= Use closure properties of tree automata

* |If a tree language is MSO-definable, then it is
recognizable by a tree automaton A.

University of Freiburg - Computer Science Department

Summary

"= Tree automata
= Basics of tree automata
= Bottom-up tree automata
* Top-down tree automata
= Decision problems & complexity

= Connection to logic
= Monadic Second Order Logic (MSOL)
= Equivalence between tree automata and MSOL

University of Freiburg - Computer Science Department

References

*= M.Dauchet, H.Comon,..
Tree Automata Techniques and Applications
(TATA), chapter 1, 2008

* Prof. Dr. W.Thomas, RWTH Aachen
Applied Automata Theory, chapter 3, 2005

= Wim Martens, Stijn Vansummeren
Automata and Logic on Trees
University of Dortmund

University of Freiburg - Computer Science Department

	Title
	Motivation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

